1
|
Cohen-Or M, Chapnik N, Froy O. β-Hydroxy-β-methylbutyrate (HMB) increases muscle mass and diminishes weight gain in high-fat-fed mice. J Nutr Biochem 2025; 142:109926. [PMID: 40250490 DOI: 10.1016/j.jnutbio.2025.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
β-Hydroxy-β-methylbutyrate (HMB) is a catabolite of leucine, which promotes muscle growth. However, little is known about the effect of HMB on body composition in the context of a high-fat diet. Our aim was to study the circadian metabolic effect of HMB on body weight. C57BL male mice were fed ad libitum chow diet (C), chow diet supplemented with 500 mg Ca-HMB per 1 kg body weight (C+HMB), a high-fat diet (HFD) or HFD supplemented with 500 mg Ca-HMB per 1 kg body weight (HFD+HMB) for 7 weeks. HMB led to reduced fat weight (30%, P<.05) and body weight (7%, P<.05) and increased muscle weight (17%, P<.05) in the HFD+HMB group. HMB increased glucose oxidation (27%, P<.0001) and reduced fatty acid oxidation (30%, P<.0001) in the C group, but increased fatty acid oxidation in the HFD+HMB group (10%, P<.05). At the molecular level, HMB did not affect metabolic proteins in the liver, but lowered NF-κB levels in adipose tissue (24%, P<.05). In the muscle, HMB showed no activation of AKT and mTOR, but did show activation of P70S6K (67%, P<.01) and S6 (42%, P<.01). The activation of the P70S6K and S6 was independent of AKT and mTOR and was accompanied by increased activation of phospholipase D2 (PLD) (35%, P<.0001). In addition, HMB led to altered circadian rhythms. In conclusion, mice fed a HFD supplemented with HMB have increased muscle weight and reduced fat mass and body weight presumably due to increased locomotor activity. HMB induces myogenesis by activating P70S6K and S6 via PLD2.
Collapse
Affiliation(s)
- Meytal Cohen-Or
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Nava Chapnik
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
2
|
Avital-Cohen N, Chapnik N, Froy O. Resveratrol Induces Myotube Development by Altering Circadian Metabolism via the SIRT1-AMPK-PP2A Axis. Cells 2024; 13:1069. [PMID: 38920697 PMCID: PMC11201382 DOI: 10.3390/cells13121069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Resveratrol is a polyphenol known to have metabolic as well as circadian effects. However, there is little information regarding the metabolic and circadian effect of resveratrol on muscle cells. We sought to investigate the metabolic impact of resveratrol throughout the circadian cycle to clarify the associated signaling pathways. C2C12 myotubes were incubated with resveratrol in the presence of increasing concentrations of glucose, and metabolic and clock proteins were measured for 24 h. Resveratrol led to SIRT1, AMPK and PP2A activation. Myotubes treated with increasing glucose concentrations showed higher activation of the mTOR signaling pathway. However, resveratrol did not activate the mTOR signaling pathway, except for P70S6K and S6. In accordance with the reduced mTOR activity, resveratrol led to advanced circadian rhythms and reduced levels of pBMAL1 and CRY1. Resveratrol increased myogenin expression and advanced its rhythms. In conclusion, resveratrol activates the SIRT1-AMPK-PP2A axis, advances circadian rhythms and induces muscle development.
Collapse
Affiliation(s)
| | | | - Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; (N.A.-C.); (N.C.)
| |
Collapse
|
3
|
Sulaimani N, Houghton MJ, Bonham MP, Williamson G. Effects of (Poly)phenols on Circadian Clock Gene-Mediated Metabolic Homeostasis in Cultured Mammalian Cells: A Scoping Review. Adv Nutr 2024; 15:100232. [PMID: 38648895 PMCID: PMC11107464 DOI: 10.1016/j.advnut.2024.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Circadian clocks regulate metabolic homeostasis. Disruption to our circadian clocks, by lifestyle behaviors such as timing of eating and sleeping, has been linked to increased rates of metabolic disorders. There is now considerable evidence that selected dietary (poly)phenols, including flavonoids, phenolic acids and tannins, may modulate metabolic and circadian processes. This review evaluates the effects of (poly)phenols on circadian clock genes and linked metabolic homeostasis in vitro, and potential mechanisms of action, by critically evaluating the literature on mammalian cells. A systematic search was conducted to ensure full coverage of the literature and identified 43 relevant studies addressing the effects of (poly)phenols on cellular circadian processes. Nobiletin and tangeretin, found in citrus, (-)-epigallocatechin-3-gallate from green tea, urolithin A, a gut microbial metabolite from ellagitannins in fruit, curcumin, bavachalcone, cinnamic acid, and resveratrol at low micromolar concentrations all affect circadian molecular processes in multiple types of synchronized cells. Nobiletin emerges as a putative retinoic acid-related orphan receptor (RORα/γ) agonist, leading to induction of the circadian regulator brain and muscle ARNT-like 1 (BMAL1), and increased period circadian regulator 2 (PER2) amplitude and period. These effects are clear despite substantial variations in the protocols employed, and this review suggests a methodological framework to help future study design in this emerging area of research.
Collapse
Affiliation(s)
- Noha Sulaimani
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia; Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia; Department of Food and Nutrition, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Michael J Houghton
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia; Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Maxine P Bonham
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia; Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia.
| |
Collapse
|
4
|
Wang G, Qin S, Geng H, Zheng Y, Li R, Xia C, Chen L, Yao J, Deng L. Resveratrol Promotes Gluconeogenesis by Inhibiting SESN2-mTORC2-AKT Pathway in Calf Hepatocytes. J Nutr 2023; 153:1930-1943. [PMID: 37182694 DOI: 10.1016/j.tjnut.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND The glucose requirement of dairy cows is mainly met by increasing the rate of hepatic gluconeogenesis. However, due to negative energy balance, the liver of periparturient cows is under oxidative stress induced by lipid over-mobilization, and hepatic gluconeogenesis is reduced. Studies have demonstrated that resveratrol, which is widely known for its antioxidant properties, can alter hepatic gluconeogenesis. However, it is not clear whether resveratrol could regulate hepatic gluconeogenesis by its antioxidant properties. OBJECTIVES This study aims to investigate the precise effect of resveratrol in hepatic gluconeogenesis, the role of resveratrol on hydrogen peroxide (H2O2)-induced oxidative stress in hepatocytes and the potential mechanism using primary hepatocytes. METHODS Primary hepatocytes were isolated from 5 healthy Holstein calves (1 d old, 30 to 40 kg, fasted) and treated with different concentrations of resveratrol (0, 5, 10, 25, or 50 μM) combined with or without H2O2 (0, 100, or 200 μM) induction for 12 h. RESULTS Resveratrol enhanced the expression of gluconeogenic genes of calf hepatocytes in a dose-dependent manner (P < 0.05). Conversely, H2O2 suppressed the expression of gluconeogenic genes and induced oxidative stress (P < 0.05), which was improved by resveratrol in calf hepatocytes (P < 0.001). Furthermore, the mechanistic target of rapamycin complex 2 (mTORC2)-AKT pathway was found to negatively regulate gluconeogenesis. An AKT inhibitor was used to assess the role of the mTORC2-AKT pathway in the effects of resveratrol. The results showed resveratrol promoted hepatic gluconeogenesis by inhibiting the mTORC2-AKT pathway. Moreover, sestrin 2 (SESN2) upregulated the activity of mTORC2. We further found that resveratrol decreased SESN2 levels (P < 0.001). CONCLUSIONS This study indicated that resveratrol enhances the gluconeogenic capacity of calf hepatocytes by improving H2O2-induced oxidative stress and modulating the activity of the SESN2-mTORC2-AKT pathway, implying that resveratrol may be a promising target for ameliorating liver oxidative stress in transition cows.
Collapse
Affiliation(s)
- GuoYan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - SenLin Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - HuiJun Geng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yining Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Rongnuo Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Xia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - JunHu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
5
|
Spaleniak W, Cuendet M. Resveratrol as a circadian clock modulator: mechanisms of action and therapeutic applications. Mol Biol Rep 2023; 50:6159-6170. [PMID: 37231216 PMCID: PMC10289927 DOI: 10.1007/s11033-023-08513-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
In the past decades, resveratrol has gained increasing attention due to its versatile and beneficial properties. This natural polyphenol, commonly present in the human diet, has been shown to induce SIRT1 and to modulate the circadian rhythm at the cellular and organismal levels. The circadian clock is a system regulating behavior and function of the human body, thus playing a crucial role in health maintenance. It is primarily entrained by light-dark cycles; however, other factors such as feeding-fasting, oxygen and temperature cycles play a significant role in its regulation. Chronic circadian misalignment can lead to numerous pathologies, including metabolic disorders, age-related diseases or cancer. Therefore, the use of resveratrol may be a valuable preventive and/or therapeutic strategy for these pathologies. This review summarizes studies that evaluated the modulatory effect of resveratrol on circadian oscillators by focusing on the potential and limitations of resveratrol in biological clock-related disorders.
Collapse
Affiliation(s)
- Weronika Spaleniak
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Mayor E. Neurotrophic effects of intermittent fasting, calorie restriction and exercise: a review and annotated bibliography. FRONTIERS IN AGING 2023; 4:1161814. [PMID: 37334045 PMCID: PMC10273285 DOI: 10.3389/fragi.2023.1161814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023]
Abstract
In the last decades, important progress has been achieved in the understanding of the neurotrophic effects of intermittent fasting (IF), calorie restriction (CR) and exercise. Improved neuroprotection, synaptic plasticity and adult neurogenesis (NSPAN) are essential examples of these neurotrophic effects. The importance in this respect of the metabolic switch from glucose to ketone bodies as cellular fuel has been highlighted. More recently, calorie restriction mimetics (CRMs; resveratrol and other polyphenols in particular) have been investigated thoroughly in relation to NSPAN. In the narrative review sections of this manuscript, recent findings on these essential functions are synthesized and the most important molecules involved are presented. The most researched signaling pathways (PI3K, Akt, mTOR, AMPK, GSK3β, ULK, MAPK, PGC-1α, NF-κB, sirtuins, Notch, Sonic hedgehog and Wnt) and processes (e.g., anti-inflammation, autophagy, apoptosis) that support or thwart neuroprotection, synaptic plasticity and neurogenesis are then briefly presented. This provides an accessible entry point to the literature. In the annotated bibliography section of this contribution, brief summaries are provided of about 30 literature reviews relating to the neurotrophic effects of interest in relation to IF, CR, CRMs and exercise. Most of the selected reviews address these essential functions from the perspective of healthier aging (sometimes discussing epigenetic factors) and the reduction of the risk for neurodegenerative diseases (Alzheimer's disease, Huntington's disease, Parkinson's disease) and depression or the improvement of cognitive function.
Collapse
|