1
|
Li J, Ji W, Chen G, Yu K, Zeng J, Zhang Q, Xiong G, Du C, Peng Y, Zeng X, Chen C. Peonidin-3-O-(3,6-O-dimalonyl-β-D-glucoside), a polyacylated anthocyanin isolated from the black corncobs, alleviates colitis by modulating gut microbiota in DSS-induced mice. Food Res Int 2025; 202:115688. [PMID: 39967148 DOI: 10.1016/j.foodres.2025.115688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025]
Abstract
Polyacylated anthocyanins are known for their enhanced stability and immunosuppressive properties. Although peonidin-3-O-(3,6-O-dimalonyl-β-D-glucoside) (P3GdM) from black corncobs has demonstrated notable antibacterial and stress-resistance effects in plants, its regulatory role in inflammatory bowel disease (IBD) remains unexplored. In this study, P3GdM was isolated from black corncobs, and its potential as a treatment for dextran sulfate sodium (DSS)-induced colitis in mice was evaluated. The findings revealed that P3GdM significantly mitigated clinical symptoms, reduced the disease activity index (DAI), suppressed the production of pro-inflammatory cytokines and endotoxins, and repaired the intestinal barrier. Furthermore, P3GdM markedly improved DSS-induced gut microbiota dysbiosis, significantly increasing microbial diversity and enhancing the relative abundance of critical bacterial species such as Akkermansia muciniphila and Lactobacillus reuteri, while also stimulating the production of short-chain fatty acids (SCFAs) and lactic acid. Correlation analyses further revealed strong associations between key microbial taxa, pro-inflammatory factors, clinical symptoms, tight junction proteins, and SCFAs. These findings provide support for the potential of P3GdM as an adjunct therapy for intestinal disorders, particularly colitis.
Collapse
Affiliation(s)
- Junjie Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Wenting Ji
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Guijie Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences & Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Kun Yu
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Jianhua Zeng
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Qi Zhang
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Guoyuan Xiong
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Chuanlai Du
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China
| | - Yujia Peng
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Chunxu Chen
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, Anhui, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China; Anhui Provincial Key Laboratory of Functional Agriculture and Functional Foods, Chuzhou 233100, China.
| |
Collapse
|
2
|
Zhao Y, Wang L, Huang Y, Evans PC, Little PJ, Tian X, Weng J, Xu S. Anthocyanins in Vascular Health and Disease: Mechanisms of Action and Therapeutic Potential. J Cardiovasc Pharmacol 2024; 84:289-302. [PMID: 39240726 DOI: 10.1097/fjc.0000000000001602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/31/2024] [Indexed: 09/08/2024]
Abstract
ABSTRACT Unhealthy lifestyles have placed a significant burden on individuals' cardiovascular health. Anthocyanins are water-soluble flavonoid pigments found in a wide array of common foods and fruits. Anthocyanins have the potential to contribute to the prevention and treatment of cardiovascular disease by improving lipid profiles and vascular function, reducing blood glucose levels and blood pressure, and inhibiting inflammation. These actions have been demonstrated in numerous clinical and preclinical studies. At the cellular and molecular level, anthocyanins and their metabolites could protect endothelial cells from senescence, apoptosis, and inflammation by activating the phosphoinositide 3-kinase/protein kinase B/endothelial nitric oxide synthases, silent information regulator 1 (SIRT1), or nuclear factor erythroid2-related factor 2 pathways and inhibiting the nuclear factor kappa B, Bax, or P38 mitogen-activated protein kinase pathways. Furthermore, anthocyanins prevent vascular smooth muscle cell from platelet-derived growth factor -induced or tumor necrosis factor-α-induced proliferation and migration by inhibiting the focal adhesion kinase and extracellular regulated protein kinases signaling pathways. Anthocyanins could also attenuate vascular inflammation by reducing the formation of oxidized lipids, preventing leukocyte adhesion and infiltration of the vessel wall, and macrophage phagocytosis of deposited lipids through reducing the expression of cluster of differentiation 36 and increasing the expression of ATP-binding cassette subfamily A member 1 and ATP-binding cassette subfamily G member 1. At the same time, anthocyanins could lower the risk of thrombosis by inhibiting platelet activation and aggregation through down-regulating P-selectin, transforming growth factor-1, and CD40L. Thus, the development of anthocyanin-based supplements or derivative drugs could provide new therapeutic approaches to the prevention and treatment of vascular diseases.
Collapse
Affiliation(s)
- Yaping Zhao
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, Anhui, China
| | - Li Wang
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, Anhui, China
| | - Yu Huang
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, Anhui, China
| | - Paul C Evans
- Department of Biomedical Sciences, City University of Hong Kong, China
| | - Peter J Little
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Xiaoyu Tian
- School of Pharmacy, The University of Queensland, Queensland, Australia; and
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, Anhui, China
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, Anhui, China
| |
Collapse
|
3
|
Li W, Zhang W, Fan X, Xu H, Yuan H, Wang Y, Yang R, Tian H, Wu Y, Yang H. Fructo-oligosaccharide enhanced bioavailability of polyglycosylated anthocyanins from red radish via regulating gut microbiota in mice. Food Chem X 2023; 19:100765. [PMID: 37780282 PMCID: PMC10534114 DOI: 10.1016/j.fochx.2023.100765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 10/03/2023] Open
Abstract
The anthocyanins from red radish (ARR) rich in polyglycosylated pelargonidin glucosides were used as pigment. However, bioavailability of anthocyanins was considered at low level. This work examined the intensive effects of fructo-oligosaccharide (FOS) on ARR bioavailability. Pelargonidin, cyanidin and pelargonidin-3-glucoside showed higher level in serum of mice fed with FOS together with ARR for 8 weeks than that fed with only ARR. Co-ingestion of FOS and ARR more effectively elevated the hepatic antioxidant activity by increase in total antioxidant capacity and activities of superoxide dismutase and glutathione peroxidase when compared with intake of ARR. FOS also markedly increased pelargonidin level in cecum of mice. 16S RNA sequencing found that Bacteroides genus play an important role in FOS elevating bioavailability of ARR. Fecal bacteria transplantation verified the positive effects of FOS on ARR bioavailability. These results suggested that combined ingestion of FOS and ARR is effective strategy for bioactivity of ARR.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Wanjie Zhang
- Faculty of Science, The University of Hong Kong, Hong Kong 999077, China
| | - Xin Fan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Hai Xu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Hong Yuan
- Medical School, Xi’an Peihua University, Xi’an, Shaanxi 710125, China
| | - Yimeng Wang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Rui Yang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Hua Tian
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Yinmei Wu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Hongyan Yang
- School of Aerospace Medicine, Air Force Medical University, Xi’an 710032, China
| |
Collapse
|
4
|
Li H, Zhang Q. Research Progress of Flavonoids Regulating Endothelial Function. Pharmaceuticals (Basel) 2023; 16:1201. [PMID: 37765009 PMCID: PMC10534649 DOI: 10.3390/ph16091201] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
The endothelium, as the guardian of vascular homeostasis, is closely related to the occurrence and development of cardiovascular diseases (CVDs). As an early marker of the development of a series of vascular diseases, endothelial dysfunction is often accompanied by oxidative stress and inflammatory response. Natural flavonoids in fruits, vegetables, and Chinese herbal medicines have been shown to induce and regulate endothelial cells and exert anti-inflammatory, anti-oxidative stress, and anti-aging effects in a large number of in vitro models and in vivo experiments so as to achieve the prevention and improvement of cardiovascular disease. Focusing on endothelial mediation, this paper introduces the signaling pathways involved in the improvement of endothelial dysfunction by common dietary and flavonoids in traditional Chinese medicine and describes them based on their metabolism in the human body and their relationship with the intestinal flora. The aim of this paper is to demonstrate the broad pharmacological activity and target development potential of flavonoids as food supplements and drug components in regulating endothelial function and thus in the prevention and treatment of cardiovascular diseases. This paper also introduces the application of some new nanoparticle carriers in order to improve their bioavailability in the human body and play a broader role in vascular protection.
Collapse
Affiliation(s)
| | - Qi Zhang
- The Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, China;
| |
Collapse
|
5
|
Li W, Zhang Y, Deng H, Yuan H, Fan X, Yang H, Tan S. In vitro and in vivo bioaccessibility, antioxidant activity, and color of red radish anthocyanins as influenced by different drying methods. Food Chem X 2023; 18:100633. [PMID: 36968311 PMCID: PMC10034266 DOI: 10.1016/j.fochx.2023.100633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/18/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
This study aims to examine the effects of various drying methods, namely vacuum freeze drying (VFD), vacuum drying (VD), hot air drying (HAD), sun drying (SD), and air-impingement jet drying (AIJD), on in vitro and in vivo bioaccessibility of red radish anthocyanins. By color parameters, VFD- and AIJD-dried red radish showed redder color to HAD-, SD-, and VD-dried red radish. SEM images of dried red radish showed multiple holes and loose interior structure. Forty-six anthocyanins were identified in red radish. Original, in vitro and in vivo digestive samples from VFD-dried red radish contained more anthocyanins and were more bioaccessibility than fresh and other dried red radishes. In vitro and in vivo research revealed that dried red radish showed weaker and stronger FRAP and ABTS·+ scavenging activities than fresh red radish. Colon content of mice had significantly higher FRAP and ABTS·+ scavenging activities than the stomach, small intestine, and cecum contents.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Yaxi Zhang
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Hanlu Deng
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| | - Hong Yuan
- Medical School, Xi'an Peihua University, Xi'an, Shaanxi 710125, China
| | - Xin Fan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Hongyan Yang
- School of Aerospace Medicine, Air Force Medical University, Xi’an 710032, China
| | - Si Tan
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing 408100, China
| |
Collapse
|