1
|
Ouayloul L, Agirrezabal-Telleria I, Sebastien P, El Doukkali M. Trend and Progress in Catalysis for Ethylene Production from Bioethanol Using ZSM-5. ACS Catal 2024; 14:17360-17397. [DOI: 10.1021/acscatal.4c04162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- L. Ouayloul
- Department of Chemistry, University of Sultan Moulay Slimane (USMS), 23000, Beni-Mellal, Morocco
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), 45013 Bilbao, Spain
| | - I. Agirrezabal-Telleria
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), 45013 Bilbao, Spain
| | - Paul Sebastien
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - M. El Doukkali
- Department of Chemistry, University of Sultan Moulay Slimane (USMS), 23000, Beni-Mellal, Morocco
| |
Collapse
|
2
|
Thangaraj B, Monama W, Mohiuddin E, Millan Mdleleni M. Recent developments in (bio)ethanol conversion to fuels and chemicals over heterogeneous catalysts. BIORESOURCE TECHNOLOGY 2024; 409:131230. [PMID: 39117246 DOI: 10.1016/j.biortech.2024.131230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Bioethanol is one of the most important bio-resources produced from biomass fermentation and is an environmentally friendly alternative to fossil-based fuels as it is regarded as renewable and clean. Bioethanol and its derivatives are used as feedstocks in petrochemical processes as well as fuel and fuel additives in motor vehicles to compensate for the depletion of fossil fuels. This review chronicles the recent developments in the catalytic conversion of ethanol to diethyl ether, ethylene, propylene, long-chain hydrocarbons, and other important products. Various heterogeneous catalysts, such as zeolites, metal oxides, heteropolyacids, mesoporous materials, and metal-organic frameworks, have been used in the ethanol conversion processes and are discussed extensively. The significance of various reaction parameters such as pressure, temperature, water content in the ethanol feed, and the effect of catalyst modification based on various kinds of literature are critically evaluated. Further, coke formation and coke product analysis using various analytical and spectroscopic techniques during the ethanol conversion are briefly discussed. The review concludes by providing insights into possible research paths pertaining to catalyst design aimed at enhancing the catalytic conversion of (bio)ethanol.
Collapse
Affiliation(s)
- Baskaran Thangaraj
- PetroSA-Synthetic Fuels Innovation Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape, Bellville 7535, South Africa.
| | - Winnie Monama
- PetroSA-Synthetic Fuels Innovation Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape, Bellville 7535, South Africa
| | - Ebrahim Mohiuddin
- PetroSA-Synthetic Fuels Innovation Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape, Bellville 7535, South Africa
| | - Masikana Millan Mdleleni
- PetroSA-Synthetic Fuels Innovation Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape, Bellville 7535, South Africa.
| |
Collapse
|
3
|
Pratika RA, Wijaya K, Utami M, Mulijani S, Patah A, Alarifi S, Ram Mani R, Kumar Yadav K, Ravindran B, Chung WJ, Chang SW, Munusamy-Ramanujam G. The potency of hydrothermally prepared sulfated silica (SO 4/SiO 2) as a heterogeneous acid catalyst for ethanol dehydration into diethyl ether. CHEMOSPHERE 2023; 341:139822. [PMID: 37598950 DOI: 10.1016/j.chemosphere.2023.139822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/26/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023]
Abstract
The dehydration of ethanol into diethyl ether over a SO4/SiO2 catalyst was investigated. The SO4/SiO2 catalysts were prepared by the sulfation method using 1, 2, and 3 M of sulfuric acid (SS1, SS2, and SS3) via hydrothermal treatment. This study is focused on the synthesis of a SO4/SiO2 catalyst with high total acidity that can be subsequently utilized to convert ethanol into diethyl ether. The total acidity test revealed that the sulfation process increased the total acidity of SiO2. The SS2 catalyst (with 2 M sulfuric acid) displayed the highest total acidity of 7.77 mmol/g, whereas the SiO2 total acidity was only 0.11 mmol/g. Meanwhile, the SS3 catalyst (with 3 M sulfuric acid) has a lower total acidity of 7.09 mmol/g due to the distribution of sulfate groups on the surface having reached its optimum condition. The crystallinity and structure of the SS2 catalyst were not affected by the hydrothermal treatment or the sulfate process on silica. Furthermore, The SS2 catalyst characteristics in the presence of sulfate lead to a flaky surface in the morphology and non-uniform particle size. In addition, the surface area and pore volume of the SS2 catalyst decreased (482.56-172.26 m2/g) and (0.297-0.253 cc/g), respectively, because of the presence of sulfate on the silica surface. The SS2 catalyst's pore shape information explains the formation of non-uniform pore sizes and shapes. Finally, the activity and selectivity of SO4/SiO2 catalysts in the conversion of ethanol to diethyl ether yielded the highest ethanol conversion of 70.01% and diethyl ether product of 9.05% from the SS2 catalyst (the catalyst with the highest total acidity). Variations in temperature reaction conditions (175-225 °C) show an optimum reaction temperature to produce diethyl ether at 200 °C (11.36%).
Collapse
Affiliation(s)
- Remi Ayu Pratika
- Study Program of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Palangka Raya, Palangka Raya, Indonesia
| | - Karna Wijaya
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
| | - Maisari Utami
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Yogyakarta, 55584, Indonesia
| | - Sri Mulijani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor, Bogor, Indonesia
| | - Aep Patah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ravishankar Ram Mani
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Taman Connaught, 56000, Kuala Lumpur, Malaysia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India.
| | - Woo Jin Chung
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| | - Ganesh Munusamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM-IST, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
4
|
Janbandhu S, Patra U, Sukhadeve G, Kumar R, Gedam R. Photocatalytic performance of glasses embedded with Ag-TiO2 quantum dots on photodegradation of indigo carmine and eosin Y dyes in sunlight. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Sarve DT, Singh SK, Ekhe JD. Ethanol dehydration to diethyl ether over ZSM-5 and β-Zeolite supported Ni W catalyst. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Synthesis, Characterizations and Catalysis of Sulfated Silica and Nickel Modified Silica Catalysts for Diethyl Ether (DEE) Production from Ethanol towards Renewable Energy Applications. Catalysts 2021. [DOI: 10.3390/catal11121511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sulfated silica (SO4/SiO2) and nickel impregnated sulfated silica (Ni-SO4/SiO2) catalysts have been successfully carried out for the conversion of ethanol into diethyl ether (DEE) as a biofuel. The aims of this research were to study the effects of acidity on the SO4/SiO2 and Ni-SO4/SiO2 catalysts in the conversion of ethanol into diethyl ether. This study focuses on the increases in activity and selectivity of SiO2 with the impregnation of sulfate and Ni metal, which had good activity and acidity and were less expensive. The SO4/SiO2 catalysts were prepared using TEOS (Tetraethyl Orthosilicate) as a precursor and sulfuric acid with various concentrations (1, 2, 3, 4 M). The results showed that SO4/SiO2 acid catalyst treated with 2 M H2SO4 and calcined at 400 °C (SS-2-400) was the catalyst with highest total acidity (2.87 g/mmol), while the impregnation of Ni metal showed the highest acidity value at 3%/Ni-SS-2 catalyst (4.89 g/mmol). The SS-2-400 and 3%/Ni-SS-2 catalysts were selected and applied in the ethanol dehydration process into diethyl ether at temperatures 175, 200, and 225 °C. The activity and selectivity of SS-2-400 and 3%/Ni-SS-2 catalysts shown the conversion of ethanol reached up to 9.54% with good selectivity towards diethyl ether liquid product formation.
Collapse
|
7
|
Effectively Synthesizing SO4/TiO2 Catalyst and Its Performance for Converting Ethanol into Diethyl Ether (DEE). Catalysts 2021. [DOI: 10.3390/catal11121492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This SO4/TiO2 catalyst as a heterogeneous acidic catalyst was synthesized in various concentrations of H2SO4. The activity and selectivity of the SO4/TiO2 catalyst on the dehydration reaction of ethanol to diethyl ether were studied as well. The SO4/TiO2 was prepared from TiO2 powder by wet impregnation method with a various aqueous solution of H2SO4 (1; 2; 3 M H2SO4) and calcination temperature (400, 500, and 600 °C) to obtain a catalyst with optimum acidity. The catalysts were characterized using FTIR, XRD, SEM-EDX, SAA, TGA/DSC, and acidity test gravimetrically with ammonia. The liquid product of DEE was analyzed by gas chromatography (GC) to analyze the selectivity of the catalyst. The catalyst TS-3-400 had the highest activity and selectivity in the dehydration reaction of ethanol to diethyl ether at a temperature of 225 °C, with a conversion of 51.83% and a DEE selectivity of 1.72%.
Collapse
|
8
|
Adsorption and dehydration of ethanol on isomorphously B, Al, and Ga substituted H-ZSM-5 zeolite: an embedded ONIOM study. J Mol Model 2021; 27:354. [PMID: 34786608 DOI: 10.1007/s00894-021-04979-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Dehydration reactions are important in the petroleum and petrochemical industries, especially for the feedstock production. In this work, the catalytic activity of zeolites with different acidities for the dehydration of ethanol to ethylene and diethylether is investigated by density functional calculations on cluster models of three isomorphous B, Al, and Ga substituted H-ZSM-5 zeolites. Both unimolecular and bimolecular mechanisms are investigated. Detailed reaction profiles for the dehydration reaction, assuming either a stepwise or a concerted mechanism, were calculated by using the ONIOM(MP2:M06-2X) + SCREEP method. The adsorption energies of ethanol are -21.6, -28.1, and -27.7 kcal mol-1 on H-[B]-ZSM-5, H-[Al]-ZSM-5, and H-[Ga]-ZSM-5 zeolites, respectively. The activation energies for the rate-determining step of the unimolecular concerted mechanism for the ethylene formation are 48.5, 42.6, and 43.6 kcal mol-1 on H-[B]-ZSM-5, H-[Al]-ZSM-5, and H-[Ga]-ZSM-5 zeolites, respectively. The activation energies for the ethoxy formation as the rate-determining step for the bimolecular formation of diethylether are 42.3, 40.0, and 41.1 kcal mol-1 on H-[B]-ZSM-5, H-[Al]-ZSM-5, and H-[Ga]-ZSM-5 zeolites, respectively. The results indicate that the catalytic activities for the dehydration of ethanol decrease in the order H-[Al]-ZSM-5 ~ H-[Ga]-ZSM-5 > H-[B]-ZSM-5. Besides the acid strength, the zeolite framework affects the reaction by stabilizing the reaction intermediates, leading to more stable adsorption complexes and lower activation barriers.
Collapse
|
9
|
Bioethanol Upgrading to Renewable Monomers Using Hierarchical Zeolites: Catalyst Preparation, Characterization, and Catalytic Studies. Catalysts 2021. [DOI: 10.3390/catal11101162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bioethanol is one of the most promising renewable resources for the production of important monomers. To date, there have been various processes proposed for bioethanol conversion to renewable monomers. In this review, the catalytic bioethanol upgrading to various types of monomers using hierarchical zeolites as catalysts is illustrated, including the recent design and preparation of hierarchical zeolites for these catalytic processes. The characterizations of catalysts including textural properties, pore architectures, acidic properties, and active species are also exemplified. Moreover, the catalytic studies with various processes of monomer production from bioethanol including bioethanol dehydration, bioethanol to hydrocarbons, and bioethanol to butadiene are revealed in terms of catalytic activities and mechanistic studies. In addition, the future perspectives of these catalytic circumstances are proposed in both economic and sustainable development contexts.
Collapse
|
10
|
Autthanit C, Likitpiriya N, Praserthdam P, Jongsomjit B. Development of a New Ternary Al 2O 3-HAP-Pd Catalyst for Diethyl Ether and Ethylene Production Using the Preferential Dehydration of Ethanol. ACS OMEGA 2021; 6:19911-19923. [PMID: 34368578 PMCID: PMC8340412 DOI: 10.1021/acsomega.1c02818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
This study aims to convert ethanol to higher value-added products, particularly diethyl ether and ethylene using the catalytic dehydration of ethanol. Hence, the gas-phase dehydration of ethanol over Al2O3-HAP catalysts as such and modified by addition of palladium (Pd) in a microreactor was evaluated. The commercial Al2O3-HAP catalyst was first prepared by the physical mixing method, and then, the optimal ratio of the Al2O3-HAP catalyst (2:8 by wt %) was impregnated with Pd to develop a new functional catalyst to alter surface acidity. Based on the results, the combination of Al2O3 and HAP catalysts generated significant quantities of weak acid sites which demonstrates an enhancement in catalytic activity. In addition, Pd modification in the optimal composition ratio of the Al2O3-HAP catalyst extremely increased the amount of weak acid sites as well as weak acid density due to the synergistic effect between the Pd and Al2O3-HAP catalyst that are supposed to suggest the active sites in the reaction. Among all catalysts, the Al20-HAP80-Pd catalyst displayed brilliant catalytic performance in the course of diethyl ether yield (ca. 51.0%) at a reaction temperature of 350 °C and ethylene yield (ca. 75.0%) at a reaction temperature of 400 °C having an outstanding stability under time-on-stream for 10 h. This is recognized to the combination of the effects of weak acid sites (Lewis acidity), small amount of strong acid sites, and structural characteristics of the catalytic materials used.
Collapse
Affiliation(s)
- Chaowat Autthanit
- Center
of Excellence on Catalysis and Catalytic Reaction Engineering, Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Bio-Circular-Green-Economy
Technology & Engineering Center, BCGeTEC, Department of Chemical
Engineering, Faculty of Engineering, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Nutdanai Likitpiriya
- Center
of Excellence on Catalysis and Catalytic Reaction Engineering, Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piyasan Praserthdam
- Center
of Excellence on Catalysis and Catalytic Reaction Engineering, Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bunjerd Jongsomjit
- Center
of Excellence on Catalysis and Catalytic Reaction Engineering, Department
of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Bio-Circular-Green-Economy
Technology & Engineering Center, BCGeTEC, Department of Chemical
Engineering, Faculty of Engineering, Chulalongkorn
University, Bangkok 10330, Thailand
| |
Collapse
|