1
|
Njoku GC, Forkan CP, Soltysik FM, Nejsum PL, Pociot F, Yarani R. Unleashing the potential of extracellular vesicles for ulcerative colitis and Crohn's disease therapy. Bioact Mater 2025; 45:41-57. [PMID: 39610953 PMCID: PMC11602541 DOI: 10.1016/j.bioactmat.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- George Chigozie Njoku
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, USA
| | - Cathal Patrick Forkan
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Pharmacy, Université Grenoble Alpes, France
| | - Fumie Mitani Soltysik
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Peter Lindberg Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| |
Collapse
|
2
|
Forkan CP, Shrestha A, Yu A, Chuang C, Pociot F, Yarani R. Could hypoxic conditioning augment the potential of mesenchymal stromal cell-derived extracellular vesicles as a treatment for type 1 diabetes? Stem Cell Res Ther 2025; 16:37. [PMID: 39901225 PMCID: PMC11792614 DOI: 10.1186/s13287-025-04153-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025] Open
Abstract
Type1 Diabetes (T1D) is an autoimmune disorder characterised by the loss of pancreatic β-cells. This β cell loss occurs primarily through inflammatory pathways culminating in apoptosis. Mesenchymal stromal cells (MSCs) have been heavily studied for therapeutic applications due to their regenerative, anti-apoptotic, immunomodulatory, and anti-inflammatory properties. The therapeutic effects of MSCs are mediated through cell-to-cell contact, differentiation, and the release of paracrine factors, which include the release of extracellular vesicles (EVs). Culturing MSCs in hypoxia, a low oxygen tension state more analogous to their physiological environment, seems to increase the therapeutic efficacy of MSC cell therapy, enhancing their immunomodulatory, anti-inflammatory, and anti-fibrotic properties. This is also the case with MSC-derived EVs, which show altered properties based on the parent cell preconditioning. In this review, we examine the evidence supporting the potential application of hypoxic preconditioning in strengthening MSC-EVs for treating the inflammatory and apoptotic causes of β cell loss in T1D.
Collapse
Affiliation(s)
- Cathal Patrick Forkan
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Aruna Shrestha
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Alfred Yu
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Christine Chuang
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark.
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| |
Collapse
|
3
|
Soltani S, Zahedi A, Vergara AJS, Noli M, Soltysik FM, Pociot F, Yarani R. Preclinical Therapeutic Efficacy of Extracellular Vesicles Derived from Adipose-Derived Mesenchymal Stromal/Stem Cells in Diabetic Wounds: a Systematic Review and Meta-Analysis. Stem Cell Rev Rep 2024; 20:2016-2031. [PMID: 38970763 DOI: 10.1007/s12015-024-10753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
Extracellular vesicles isolated from adipose tissue-derived mesenchymal stromal/stem cells (ADSC-EVs) have demonstrated promising potential in wound healing treatment. To determine the therapeutic efficacy of ADSC-EVs for diabetic wounds in preclinical models, we performed a meta-analysis of available studies. PubMed and Embase were searched (to April 23, 2023). All full-text articles describing the therapeutic application of ADSC-EVs in diabetic wounds were included. Study outcomes were pooled using a random effects meta-analysis, including wound closure, angiogenesis, and collagen deposition. Other outcomes were only discussed descriptively. Seventy unique records were identified from our search; 20 full-text articles were included for qualitative analysis. Twelve studies were eligible for quantitative meta-analysis. The results showed that ADSC-EVs accelerated diabetic wound healing compared to controls with a large effect (standardized mean difference (SMD) 4.22, 95% confidence interval (CI) 3.07 to 5.36). The administration of ADSC-EVs also improved neovascularization (SMD 9.27, 95% CI 4.70 to 13.83) and collagen deposition (SMD 2.19, 95% CI 0.94 to 3.44), with a large effect. The risk of bias was unclear in all included studies. Conclusively, ADSC-EV is an effective treatment for diabetic wounds in preclinical trials, and it appears justified for transfer into the clinical field.
Collapse
Affiliation(s)
- Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahora Zahedi
- Department of Artificial Intelligence in Medical Sciences, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - April Joy S Vergara
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Marta Noli
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Fumie Mitani Soltysik
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark.
| |
Collapse
|
4
|
Ji C, Zhang J, Shi H, Chen B, Xu W, Jin J, Qian H. Single-cell RNA transcriptomic reveal the mechanism of MSC derived small extracellular vesicles against DKD fibrosis. J Nanobiotechnology 2024; 22:339. [PMID: 38890734 PMCID: PMC11184851 DOI: 10.1186/s12951-024-02613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Diabetic kidney disease (DKD), a chronic kidney disease, is characterized by progressive fibrosis caused due to persistent hyperglycemia. The development of fibrosis in DKD determines the patient prognosis, but no particularly effective treatment. Here, small extracellular vesicles derived from mesenchymal stem cells (MSC-sEV) have been used to treat DKD fibrosis. Single-cell RNA sequencing was used to analyze 27,424 cells of the kidney, we have found that a novel fibrosis-associated TGF-β1+Arg1+ macrophage subpopulation, which expanded and polarized in DKD and was noted to be profibrogenic. Additionally, Actin+Col4a5+ mesangial cells in DKD differentiated into myofibroblasts. Multilineage ligand-receptor and cell-communication analysis showed that fibrosis-associated macrophages activated the TGF-β1/Smad2/3/YAP signal axis, which promotes mesangial fibrosis-like change and accelerates renal fibrosis niche. Subsequently, the transcriptome sequencing and LC-MS/MS analysis indicated that MSC-sEV intervention could restore the levels of the kinase ubiquitin system in DKD and attenuate renal interstitial fibrosis via delivering CK1δ/β-TRCP to mediate YAP ubiquitination degradation in mesangial cells. Our findings demonstrate the unique cellular and molecular mechanisms of MSC-sEV in treating the DKD fibrosis niche at a single-cell level and provide a novel therapeutic strategy for renal fibrosis.
Collapse
Affiliation(s)
- Cheng Ji
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, Jiangsu, 213004, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Binghai Chen
- Institute of Translational Medicine, Department of Urology, Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, Jiangsu, 213004, China.
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Chang Zhou, Jiangsu, 213004, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, ShangHai, 200040, China.
| |
Collapse
|
5
|
Yang S, Sun Y, Yan C. Recent advances in the use of extracellular vesicles from adipose-derived stem cells for regenerative medical therapeutics. J Nanobiotechnology 2024; 22:316. [PMID: 38844939 PMCID: PMC11157933 DOI: 10.1186/s12951-024-02603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs) isolated from adipose tissue. They possess remarkable properties, including multipotency, self-renewal, and easy clinical availability. ADSCs are also capable of promoting tissue regeneration through the secretion of various cytokines, factors, and extracellular vesicles (EVs). ADSC-derived EVs (ADSC-EVs) act as intercellular signaling mediators that encapsulate a range of biomolecules. These EVs have been found to mediate the therapeutic activities of donor cells by promoting the proliferation and migration of effector cells, facilitating angiogenesis, modulating immunity, and performing other specific functions in different tissues. Compared to the donor cells themselves, ADSC-EVs offer advantages such as fewer safety concerns and more convenient transportation and storage for clinical application. As a result, these EVs have received significant attention as cell-free therapeutic agents with potential future application in regenerative medicine. In this review, we focus on recent research progress regarding regenerative medical use of ADSC-EVs across various medical conditions, including wound healing, chronic limb ischemia, angiogenesis, myocardial infarction, diabetic nephropathy, fat graft survival, bone regeneration, cartilage regeneration, tendinopathy and tendon healing, peripheral nerve regeneration, and acute lung injury, among others. We also discuss the underlying mechanisms responsible for inducing these therapeutic effects. We believe that deciphering the biological properties, therapeutic effects, and underlying mechanisms associated with ADSC-EVs will provide a foundation for developing a novel therapeutic approach in regenerative medicine.
Collapse
Affiliation(s)
- Song Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Yiran Sun
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People's Republic of China.
| | - Chenchen Yan
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People's Republic of China
| |
Collapse
|
6
|
Arredondo-Damián JG, Martínez-Soto JM, Molina-Pelayo FA, Soto-Guzmán JA, Castro-Sánchez L, López-Soto LF, Candia-Plata MDC. Systematic review and bioinformatics analysis of plasma and serum extracellular vesicles proteome in type 2 diabetes. Heliyon 2024; 10:e25537. [PMID: 38356516 PMCID: PMC10865249 DOI: 10.1016/j.heliyon.2024.e25537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Background Type 2 diabetes (T2D) is a complex metabolic ailment marked by a global high prevalence and significant attention in primary healthcare settings due to its elevated morbidity and mortality rates. The pathophysiological mechanisms underlying the onset and progression of this disease remain subjects of ongoing investigation. Recent evidence underscores the pivotal role of the intricate intercellular communication network, wherein cell-derived vesicles, commonly referred to as extracellular vesicles (EVs), emerge as dynamic regulators of diabetes-related complications. Given that the protein cargo carried by EVs is contingent upon the metabolic conditions of the originating cells, particular proteins may serve as informative indicators for the risk of activating or inhibiting signaling pathways crucial to the progression of T2D complications. Methods In this study, we conducted a systematic review to analyze the published evidence on the proteome of EVs from the plasma or serum of patients with T2D, both with and without complications (PROSPERO: CRD42023431464). Results Nine eligible articles were systematically identified from the databases, and the proteins featured in these articles underwent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. We identified changes in the level of 426 proteins, with CST6, CD55, HBA1, S100A8, and S100A9 reported to have high levels, while FGL1 exhibited low levels. Conclusion These proteins are implicated in pathophysiological mechanisms such as inflammation, complement, and platelet activation, suggesting their potential as risk markers for T2D development and progression. Further studies are required to explore this topic in greater detail.
Collapse
Affiliation(s)
| | | | | | | | - Luis Castro-Sánchez
- University Center for Biomedical Research, University of Colima, Colima, Colima, Mexico
- CONAHCYT-University of Colima, Colima, Colima, Mexico
| | | | | |
Collapse
|
7
|
Jing S, Li H, Xu H. Mesenchymal Stem Cell Derived Exosomes Therapy in Diabetic Wound Repair. Int J Nanomedicine 2023; 18:2707-2720. [PMID: 37250470 PMCID: PMC10216860 DOI: 10.2147/ijn.s411562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Nowadays, refractory diabetic wounds cause a worldwide medical burden. Mesenchymal stem cells derived exosomes (MSC-Exos) show promise as a solid alternative to existing therapeutics in the latest researches, since MSC-Exos share similar biologic activity but less immunogenicity when compared with MSCs. To facilitate further understanding and application, it is essential to summarize the current progress and limitations of MSC-Exos in the treatment of diabetic wounds. In this review, we introduce the effects of different MSC-Exos on diabetic wounds according to their origins and contents and discuss the specific experimental conditions, target wound cells/pathways, and specific mechanisms. In addition, this paper focuses on the combination of MSC-Exos and biomaterials, which improves the efficacy and utilization of MSC-Exos therapy. Together, exosome therapy has high clinical value and application prospects, both in its role and in combination with biomaterials, while novel drugs or molecules loaded into exosomes as carriers targeting wound cells will be development trends.
Collapse
Affiliation(s)
- Shengyu Jing
- Department of Vascular Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Hongjie Li
- Department of Vascular Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Hongbo Xu
- Department of Vascular Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
8
|
Attia N, Khalifa YH, Mashal M, Puras G, Pedraz JL. Stem Cell-Derived Extracellular Vesicles as a Potential Therapeutic Tool for Eye Diseases: From Benchtop to Bedside. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:127-143. [PMID: 36525172 DOI: 10.1007/5584_2022_754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stem cell-derived extracellular vesicles (SC-EVs) have remarkably drawn clinicians' attention in treating ocular diseases. As a paracrine factor of stem cells and an appealing alternative for off-the-shelf cell-free therapeutics, SC-EVs can be conveniently applied topically on the ocular surface or introduced to the retina via intravitreal injection, without increasing the risks of immunogenesis or oncogenesis. This chapter aims to assess the potential applications for EV, obtained from various types of stem cells, in myriad eye diseases (traumatic, inflammatory, degenerative, immunological, etc.). To the best of our knowledge, all relevant pre-clinical studies are summarized here. Furthermore, we highlight the up-to-date status of clinical trials in the same realm and emphasize where future research efforts should be directed. For a successful clinical translation, various drawbacks of EVs therapy should be overcome (e.g., contamination, infection, insufficient yield, etc.). Moreover, standardized, and scalable extraction, purification, and characterization protocols are highly suggested to determine the exosome quality before they are offered to patients with ocular disorders.
Collapse
Affiliation(s)
- Noha Attia
- Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
- Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| | - Yasmine H Khalifa
- Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mohamed Mashal
- Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle Jose Atxotegi, Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- Laboratory of Pharmacy and Pharmaceutical Technology, NanoBioCel Research Group, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle Jose Atxotegi, Vitoria-Gasteiz, Spain
| |
Collapse
|
9
|
Ma J, Yong L, Lei P, Li H, Fang Y, Wang L, Chen H, Zhou Q, Wu W, Jin L, Sun D, Zhang X. Advances in microRNA from adipose-derived mesenchymal stem cell-derived exosome: focusing on wound healing. J Mater Chem B 2022; 10:9565-9577. [PMID: 36398750 DOI: 10.1039/d2tb01987f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Skin wounds are a common condition causing economic burden and they represent an urgent clinical need, especially chronic wounds. Numerous studies have been conducted on the applications of stem cell therapy in wound healing, with adipose-derived mesenchymal stem cells (ADMSCs) playing a major role since they can be isolated easily, yielding a high number of cells, the less invasive harvesting required, the longer life span and no ethical issues. However, the lack of standardized doses and protocols, the heterogeneity of clinical trials, as well as the incompatibility of the immune system limit its application. Recent studies have demonstrated that specific stem cell functions depend on paracrine factors, including extracellular vesicles, in which microRNAs in exosomes (Exo-miRNAs) are essential in controlling their functions. This paper describes the application and mechanism whereby ADMSC-Exo-miRNA regulates wound healing. ADMSC-Exo-miRNA is involved in various stages in wounds, including modulating the immune response and inflammation, accelerating skin cell proliferation and epithelialization, promoting vascular repair, and regulating collagen remodeling thereby reducing scar formation. In summary, this acellular therapy based on ADMSC-Exo-miRNA has considerable clinical potential, and provides reference values for developing new treatment strategies for wound healing.
Collapse
Affiliation(s)
- Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Ling Yong
- Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610000, China
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Hua Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Haojie Chen
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Qi Zhou
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou325000, China.
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China.
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325000, China. .,Wenzhou City and Kunlong Technology Co., Ltd Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou 325000, China
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou325000, China.
| |
Collapse
|
10
|
Chetty S, Yarani R, Swaminathan G, Primavera R, Regmi S, Rai S, Zhong J, Ganguly A, Thakor AS. Umbilical cord mesenchymal stromal cells-from bench to bedside. Front Cell Dev Biol 2022; 10:1006295. [PMID: 36313578 PMCID: PMC9597686 DOI: 10.3389/fcell.2022.1006295] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022] Open
Abstract
In recent years, mesenchymal stromal cells (MSCs) have generated a lot of attention due to their paracrine and immuno-modulatory properties. mesenchymal stromal cells derived from the umbilical cord (UC) are becoming increasingly recognized as having increased therapeutic potential when compared to mesenchymal stromal cells from other sources. The purpose of this review is to provide an overview of the various compartments of umbilical cord tissue from which mesenchymal stromal cells can be isolated, the differences and similarities with respect to their regenerative and immuno-modulatory properties, as well as the single cell transcriptomic profiles of in vitro expanded and freshly isolated umbilical cord-mesenchymal stromal cells. In addition, we discuss the therapeutic potential and biodistribution of umbilical cord-mesenchymal stromal cells following systemic administration while providing an overview of pre-clinical and clinical trials involving umbilical cord-mesenchymal stromal cells and their associated secretome and extracellular vesicles (EVs). The clinical applications of umbilical cord-mesenchymal stromal cells are also discussed, especially in relation to obstacles and potential solutions for their effective translation from bench to bedside.
Collapse
Affiliation(s)
- Shashank Chetty
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Reza Yarani
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Ganesh Swaminathan
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Rosita Primavera
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Shobha Regmi
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Sravanthi Rai
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Jim Zhong
- Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Abantika Ganguly
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Avnesh S Thakor
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| |
Collapse
|
11
|
Ngoepe MP, Battison A, Mufamadi S. Nano-Enabled Chronic Wound Healing Strategies: Burn and Diabetic Ulcer Wounds. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The human skin serves as the body’s first line of defense against the environment. Diabetes mellitus (DM) and 2nd–4th degree burns, on the other hand, affect the skin’s protective barrier features. Burn wounds, hypermetabolic state, and hyperglycemia compromise the
immune system leading to chronic wound healing. Unlike acute wound healing processes, chronic wounds are affected by reinfections which can lead to limb amputation or death. The conventional wound dressing techniques used to protect the wound and provide an optimal environment for repair have
their limitations. Various nanomaterials have been produced that exhibit distinct features to tackle issues affecting wound repair mechanisms. This review discusses the emerging technologies that have been designed to improve wound care upon skin injury. To ensure rapid healing and possibly
prevent scarring, different nanomaterials can be applied at different stages of healing (hemostasis, inflammation, proliferation, remodeling).
Collapse
Affiliation(s)
- Mpho Phehello Ngoepe
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha, 6001, Eastern Cape, South Africa
| | - Aidan Battison
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha, 6001, Eastern Cape, South Africa
| | - Steven Mufamadi
- DSI-Mandela Nanomedicine Platform, Nelson Mandela University, Gqeberha, 6001, Eastern Cape, South Africa
| |
Collapse
|
12
|
Li Y, Li T, Zhou Z, Xiao Y. Emerging roles of Galectin-3 in diabetes and diabetes complications: A snapshot. Rev Endocr Metab Disord 2022; 23:569-577. [PMID: 35083706 PMCID: PMC9156459 DOI: 10.1007/s11154-021-09704-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 12/13/2022]
Abstract
Galectin-3 is a member of the galectin family, widely expressed in immune cells and plays a role mainly in inflammation, autoimmunity, apoptosis, and chemotaxis. We summarized the roles of Galectin-3 in diabetes and its complications, as well as the underlying mechanisms. Clinical research has determined that the circulating level of Galectin-3 is closely related to diabetes and its complications, thus it is promising to use Galectin-3 as a predictor and biomarker for those diseases. Galectin-3 also may be considered as an ideal therapeutic target, which has broad prospects in the prevention and treatment of diabetes and its complications, especially macrovascular and microvascular complications.
Collapse
Affiliation(s)
- Yanhua Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, No. 139, Renmin Rd, Changsha, 410011, China
- Department of Metabolism and Endocrinology, The Third Hospital of Changsha, 176, West Labour Road, Changsha, 410011, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, No. 169 Changle West Rd, Xi'an, 710032, China.
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, No. 139, Renmin Rd, Changsha, 410011, China
| | - Yang Xiao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, No. 139, Renmin Rd, Changsha, 410011, China.
| |
Collapse
|
13
|
Soltani S, Mansouri K, Emami Aleagha MS, Moasefi N, Yavari N, Shakouri SK, Notararigo S, Shojaeian A, Pociot F, Yarani R. Extracellular Vesicle Therapy for Type 1 Diabetes. Front Immunol 2022; 13:865782. [PMID: 35464488 PMCID: PMC9024141 DOI: 10.3389/fimmu.2022.865782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/17/2022] [Indexed: 01/02/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic disorder characterized by immune-mediated destruction of pancreatic insulin-producing β-cells. The primary treatment for T1D is multiple daily insulin injections to control blood sugar levels. Cell-free delivery packets with therapeutic properties, extracellular vesicles (EVs), mainly from stem cells, have recently gained considerable attention for disease treatments. EVs provide a great potential to treat T1D ascribed to their regenerative, anti-inflammatory, and immunomodulatory effects. Here, we summarize the latest EV applications for T1D treatment and highlight opportunities for further investigation.
Collapse
Affiliation(s)
- Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Sajad Emami Aleagha
- Medical Technology Research Center (MTRC), School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Moasefi
- Medical Technology Research Center (MTRC), School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Niloofar Yavari
- Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Notararigo
- Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Spain
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
- *Correspondence: Reza Yarani, ;
| |
Collapse
|