1
|
Makurat S, Cournia Z, Rak J. Inactive-to-Active Transition of Human Thymidine Kinase 1 Revealed by Molecular Dynamics Simulations. J Chem Inf Model 2022; 62:142-149. [PMID: 34919400 PMCID: PMC8757434 DOI: 10.1021/acs.jcim.1c01157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 11/28/2022]
Abstract
Despite its importance in the nucleoside (and nucleoside prodrug) metabolism, the structure of the active conformation of human thymidine kinase 1 (hTK1) remains elusive. We perform microsecond molecular dynamics simulations of the inactive enzyme form bound to a bisubstrate inhibitor that was shown experimentally to activate another TK1-like kinase, Thermotoga maritima TK (TmTK). Our results are in excellent agreement with the experimental findings for the TmTK closed-to-open state transition. We show that the inhibitor induces an increase of the enzyme radius of gyration due to the expansion on one of the dimer interfaces; the structural changes observed, including the active site pocket volume increase and the decrease in the monomer-monomer buried surface area and of the number of hydrogen bonds (as compared to the inactive enzyme control simulation), indicate that the catalytically competent (open) conformation of hTK1 can be assumed in the presence of an activating ligand.
Collapse
Affiliation(s)
- Samanta Makurat
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Zoe Cournia
- Biomedical
Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Janusz Rak
- Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
3
|
Molecular docking, linear and nonlinear QSAR studies on factor Xa inhibitors. Struct Chem 2020. [DOI: 10.1007/s11224-020-01535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Ponikvar-Svet M, Zeiger DN, Liebman JF. Interplay of thermochemistry and Structural Chemistry: the journal (volume 29, 2018, issues 5–6) and the discipline. Struct Chem 2019. [DOI: 10.1007/s11224-019-01398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Spisz P, Zdrowowicz M, Makurat S, Kozak W, Skotnicki K, Bobrowski K, Rak J. Why Does the Type of Halogen Atom Matter for the Radiosensitizing Properties of 5-Halogen Substituted 4-Thio-2'-Deoxyuridines? Molecules 2019; 24:E2819. [PMID: 31382376 PMCID: PMC6695862 DOI: 10.3390/molecules24152819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/06/2023] Open
Abstract
Radiosensitizing properties of substituted uridines are of great importance for radiotherapy. Very recently, we confirmed 5-iodo-4-thio-2'-deoxyuridine (ISdU) as an efficient agent, increasing the extent of tumor cell killing with ionizing radiation. To our surprise, a similar derivative of 4-thio-2'-deoxyuridine, 5-bromo-4-thio-2'-deoxyuridine (BrSdU), does not show radiosensitizing properties at all. In order to explain this remarkable difference, we carried out a radiolytic (stationary and pulse) and quantum chemical studies, which allowed the pathways to all radioproducts to be rationalized. In contrast to ISdU solutions, where radiolysis leads to 4-thio-2'-deoxyuridine and its dimer, no dissociative electron attachment (DEA) products were observed for BrSdU. This observation seems to explain the lack of radiosensitizing properties of BrSdU since the efficient formation of the uridine-5-yl radical, induced by electron attachment to the modified nucleoside, is suggested to be an indispensable attribute of radiosensitizing uridines. A larger activation barrier for DEA in BrSdU, as compared to ISdU, is probably responsible for the closure of DEA channel in the former system. Indeed, besides DEA, the XSdU anions may undergo competitive protonation, which makes the release of X- kinetically forbidden.
Collapse
Affiliation(s)
- Paulina Spisz
- Laboratory of Biological Sensitizers, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magdalena Zdrowowicz
- Laboratory of Biological Sensitizers, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Samanta Makurat
- Laboratory of Biological Sensitizers, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Witold Kozak
- Laboratory of Biological Sensitizers, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Konrad Skotnicki
- Centre of Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Krzysztof Bobrowski
- Centre of Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Janusz Rak
- Laboratory of Biological Sensitizers, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
6
|
Wen Z, Peng J, Tuttle PR, Ren Y, Garcia C, Debnath D, Rishi S, Hanson C, Ward S, Kumar A, Liu Y, Zhao W, Glazer PM, Liu Y, Sevilla MD, Adhikary A, Wnuk SF. Electron-Mediated Aminyl and Iminyl Radicals from C5 Azido-Modified Pyrimidine Nucleosides Augment Radiation Damage to Cancer Cells. Org Lett 2018; 20:7400-7404. [PMID: 30457873 PMCID: PMC6465127 DOI: 10.1021/acs.orglett.8b03035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two classes of azido-modified pyrimidine nucleosides were synthesized as potential radiosensitizers; one class is 5-azidomethyl-2'-deoxyuridine (AmdU) and cytidine (AmdC), while the second class is 5-(1-azidovinyl)-2'-deoxyuridine (AvdU) and cytidine (AvdC). The addition of radiation-produced electrons to C5-azido nucleosides leads to the formation of π-aminyl radicals followed by facile conversion to σ-iminyl radicals either via a bimolecular reaction involving intermediate α-azidoalkyl radicals in AmdU/AmdC or by tautomerization in AvdU/AvdC. AmdU demonstrates effective radiosensitization in EMT6 tumor cells.
Collapse
Affiliation(s)
- Zhiwei Wen
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Jufang Peng
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Paloma R. Tuttle
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Yaou Ren
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Carol Garcia
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Dipra Debnath
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Sunny Rishi
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Cameron Hanson
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Samuel Ward
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Anil Kumar
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Weixi Zhao
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520, United States
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Michael D. Sevilla
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
7
|
Barycki M, Sosnowska A, Jagiello K, Puzyn T. Multi-Objective Genetic Algorithm (MOGA) As a Feature Selecting Strategy in the Development of Ionic Liquids’ Quantitative Toxicity–Toxicity Relationship Models. J Chem Inf Model 2018; 58:2467-2476. [DOI: 10.1021/acs.jcim.8b00378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maciej Barycki
- Faculty of Chemistry, Department of Environmental Chemistry and Radiochemistry, Laboratory of Environmental Chemometrics, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Anita Sosnowska
- Faculty of Chemistry, Department of Environmental Chemistry and Radiochemistry, Laboratory of Environmental Chemometrics, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Karolina Jagiello
- Faculty of Chemistry, Department of Environmental Chemistry and Radiochemistry, Laboratory of Environmental Chemometrics, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Tomasz Puzyn
- Faculty of Chemistry, Department of Environmental Chemistry and Radiochemistry, Laboratory of Environmental Chemometrics, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
8
|
Yousefinejad S, Mahboubifar M, Rasekh S. Prediction of different antibacterial activity in a new set of formyl hydroxyamino derivatives with potent action on peptide deformylase using structural information. Struct Chem 2018. [DOI: 10.1007/s11224-018-1242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|