1
|
Truong TN, Curran SS, Simcox BL, Bybel AP, Bullard SA. Revision of Cryptogonimus Osborn, 1903 and Caecincola Marshall et Gilbert, 1905 (Digenea: Cryptogonimidae), supplemental description of Cryptogonimus chili Osborn, 1903, and description of a new species of Caecincola infecting basses (Centrarchiformes: Centrarchidae) in Tennessee and Alabama rivers. Folia Parasitol (Praha) 2025; 72:2025.006. [PMID: 39995160 DOI: 10.14411/fp.2025.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/27/2024] [Indexed: 02/26/2025]
Abstract
We provide a supplemental description of the type species for Cryptogonimus Osborn, 1903 (Digenea: Cryptogonimidae), Cryptogonimus chili Osborn, 1903, based on newly-collected, heat-killed, formalin-fixed specimens infecting rock bass, Ambloplites rupestris (Rafinesque), and smallmouth bass, Micropterus dolomieu Lacepède (both Centrarchiformes: Centrarchidae), from the Duck River, Tennessee (USA). We emend Cryptogonimus to include features observed in the present specimens of its type species and in the descriptions of its congeners: a broad (wider than long) oral sucker, an intestine that bifurcates in the posterior half of the forebody, a bipartite seminal vesicle, a hermaphroditic duct that is dorsal to the ventral sucker, a preovarian seminal receptacle, and a Laurer's canal that opens dorsally at the level of the anterior testis. We describe Caecincola duttonae sp. n. (Cryptogonimidae) infecting largemouth bass, Micropterus salmoides (Lacepède), from Neely Henry Reservoir (Coosa River, Alabama, USA). The new species differs from its congeners by having a combination of a less elongate body, an intestine that bifurcates at the level of the ventral sucker, caeca that terminate at the level of the testes, diagonal testes in the middle of the hindbody, and a vitellarium predominantly distributed in the hindbody. We emend Caecincola Marshall et Gilbert, 1905 (type species Caecincola parvulus Marshall et Gilbert, 1905) to include features of the new species and recently-described congeners: an elongate body, an intestine that bifurcates in the posterior half of the forebody, caeca that extend posteriad beyond the testes, tandem testes, and a vitellarium that is wholly or primarily in the hindbody. Our 28S and ITS2 phylogenetic analyses recovered Caecincola and Cryptogonimus as sister taxa; Caecincola was recovered as paraphyletic with 28S but monophyletic with ITS2. This is the first phylogenetic study of Cryptogonimidae that includes a nucleotide sequence for a species of the type genus Cryptogonimus. We regard Cryptogonimus diaphanus (Stafford, 1904) Miller, 1941 as a species inquirenda.
Collapse
Affiliation(s)
- Triet N Truong
- Aquatic Parasitology Laboratory, Southeastern Cooperative Fish Parasite and Disease Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, Auburn, Alabama, USA
| | - Stephen S Curran
- Aquatic Parasitology Laboratory, Southeastern Cooperative Fish Parasite and Disease Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, Auburn, Alabama, USA
| | | | - Alex P Bybel
- Tennessee Wildlife Resources Agency, Nashville, Tennessee, USA
| | - Stephen A Bullard
- Aquatic Parasitology Laboratory, Southeastern Cooperative Fish Parasite and Disease Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences, College of Agriculture, Auburn University, Auburn, Alabama, USA
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa *Address for correspondence: Triet N. Truong, Aquatic Parasitology Laboratory, Southeastern Cooperative Fish Parasite and Disease Laboratory, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, 559 Devall Drive, Auburn, Alabama 36832, USA. E-mail: ; ORCID: 0000-0002-5556-2938
| |
Collapse
|
2
|
Yong RQY, Martin SB, Smit NJ. A new species of Siphoderina Manter, 1934 (Digenea: Cryptogonimidae) infecting the Dory Snapper Lutjanus fulviflamma (Teleostei: Lutjanidae) from the east coast of South Africa. Syst Parasitol 2023; 100:673-686. [PMID: 37845589 PMCID: PMC10613151 DOI: 10.1007/s11230-023-10116-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023]
Abstract
Parasitological assessment of marine fishes at Sodwana Bay in the iSimangaliso Marine Protected Area on the east coast of South Africa revealed a new species of cryptogonimid trematode infecting the pyloric caeca of the Dory Snapper, Lutjanus fulviflamma (Forsskål) (Lutjanidae). The new species is morphologically consistent with the concept of the large genus Siphoderina Manter, 1934; its phylogenetic position within this genus was validated through molecular sequencing of the ITS2 and partial 28S ribosomal DNA sub-regions. We name this species Siphoderina nana n. sp. and comment on the current state of understanding for this genus of cryptogonimids.
Collapse
Affiliation(s)
- Russell Q-Y Yong
- Water Research Group, Unit for Environmental Sciences & Management, North-West University, Potchefstroom, 2520, South Africa.
| | - Storm B Martin
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences & Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
3
|
Martin SB, Cutmore SC. Siphoderina hustoni n. sp. (Platyhelminthes: Trematoda: Cryptogonimidae) from the Maori snapper Lutjanus rivulatus (Cuvier) on the Great Barrier Reef. Syst Parasitol 2022; 99:403-417. [PMID: 35553302 PMCID: PMC9233634 DOI: 10.1007/s11230-022-10031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 11/20/2022]
Abstract
A new cryptogonimid trematode, Siphoderina hustoni n. sp., is reported, collected off Lizard Island, Queensland, Australia, from the Maori snapper Lutjanus rivulatus (Cuvier). The new species is moderately distinctive within the genus. It is larger and more elongate than most other species of Siphoderina Manter, 1934, has the shortest forebody of any, a relatively large ventral sucker, a long post-testicular zone, and is perhaps most recognisable for the substantial space in the midbody between the ventral sucker and ovary devoid of uterine coils and vitelline follicles, the former being restricted to largely posterior to the ovary and the latter distributed from the level of the anterior testis to the level of the ovary. In phylogenetic analyses of 28S ribosomal DNA, the new species resolved with the other nine species of Siphoderina for which sequence data are available, all of which are from Queensland waters and from lutjanid and haemulid fishes. Molecular barcode data were also generated, for the ITS2 ribosomal DNA and cox1 mitochondrial DNA markers. The new species is the first cryptogonimid known from L. rivulatus and the first metazoan parasite reported from that fish in Australian waters.
Collapse
Affiliation(s)
- Storm B Martin
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia.
| | - Scott C Cutmore
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
4
|
Wiroonpan P, Chontananarth T, Chai JY, Purivirojkul W. The high diversity of trematode metacercariae that parasitize freshwater gastropods in Bangkok, Thailand, and their infective situations, morphologies, and phylogenetic relationships. Parasitology 2022; 149:1-56. [PMID: 35264280 DOI: 10.1017/s0031182022000312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractWe investigated diversity, infective situations, morphological features and phylogenetic relationships of the metacercariae in freshwater snails from Bangkok between March 2018 and February 2020. Crushing and dissection techniques were performed to explore the metacercariae in the snail hosts. Polymerase chain reaction was implemented to amplify the internal transcribed spacer 1 (ITS1), 5.8S ribosomal DNA and ITS2 regions of metacercarial DNA. A total of 3173 of all 21 707 snails showed infections with metacercariae, representing a relatively high infective prevalence (14.62%) compared to earlier research. All infected snails belonged to 14 species/subspecies. A group of viviparid snails exhibited the highest metacercarial infections (26.10–82.18%). We found metacercariae with seven morphological groups. Five of them can be stated as new records of the metacercariae in Thailand, indicating a broader spectrum of larval trematode diversity. Our phylogenetic assessments established that five of the seven morphological groups can be molecularly classified into different taxonomic levels of digenean trematodes. Echinostome A metacercariae revealed the highest infective prevalence (7.15%), and their sequence data were conspecific with a sequence of Echinostoma mekongki, which is a human intestinal fluke; this finding denotes the distribution and suggests epidemiological surveillance of this medically important fluke in Bangkok and adjacent areas. However, two groups of Opisthorchiata-like and renicolid metacercariae remain unclear as to their narrow taxonomic status, although their molecular properties were considered. For more understanding about trematode transmissions in ecosystems, both physical and biological factors may be further analysed to consider the factors that relate to and contribute to trematode infections.
Collapse
Affiliation(s)
- Pichit Wiroonpan
- Animal Systematics and Ecology Speciality Research Unit, Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Thapana Chontananarth
- Applied Parasitology Research Laboratory, Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Center of Excellence in Animal, Plant and Parasitic Biotechnology, Srinakharinwirot University, Bangkok, Thailand
| | - Jong-Yil Chai
- Institute of Parasitic Diseases, Korea Association of Health Promotion (KAHP), Seoul, 07649, Korea
| | - Watchariya Purivirojkul
- Animal Systematics and Ecology Speciality Research Unit, Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
5
|
Bray RA, Cutmore SC, Cribb TH. A paradigm for the recognition of cryptic trematode species in tropical Indo-west Pacific fishes: the problematic genus Preptetos (Trematoda: Lepocreadiidae). Int J Parasitol 2021; 52:169-203. [PMID: 34656610 DOI: 10.1016/j.ijpara.2021.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/30/2022]
Abstract
Molecular data have transformed approaches to trematode taxonomy by providing objective evidence for the delineation of species. However, although the data are objective, the interpretation of these data regarding species boundaries is subjective, especially when different markers conflict. Conserved markers can lead to an underestimation of richness and those used for finer species delineation have the capacity to inflate species recognition, perhaps unrealistically. Here we examine molecular and morphological evidence for species recognition in an especially confusing system, the lepocreadiid genus Preptetos Pritchard, 1960 in acanthuriform fishes of the tropical Indo-west Pacific. We consider species boundaries within this genus based on combined data (ITS2 and 28S rDNA; cox1 mtDNA and morphometrics) for substantial new collections. Delineation of species using only morphological data suggest fewer species than analysis of the sequence data; the latter suggests the presence of potential cryptic species and analysis of different markers suggests the presence of differing numbers of species. We conclude that an integrative interpretation creates the most satisfying taxonomic hypothesis. In the light of the new data, we have chosen and propose a model of trematode species recognition that demands reciprocal monophyly in the most discriminating available molecular marker plus distinction in morphology or host distribution. By invoking these criteria, we distinguish eight species in our new tropical Indo-west Pacific collections. Six of these are new (Preptetos allocaballeroi n. sp., Preptetos paracaballeroi n. sp., Preptetos pearsoni n. sp., Preptetos prudhoei n. sp., Preptetos quandamooka n. sp. and Preptetos zebravaranus n. sp.) and we continue to recognise Preptetos cannoni Barker, Bray & Cribb, 1993 and Preptetos laguncula Bray and Cribb, 1996. Notably; two of the new species, P. allocaballeroi n. sp. and P. paracaballeroi n. sp., are morphologically cryptic relative to each other. Our criteria lead us to recognise, as species, populations with unvarying morphology and similar host relationships but which may have a complex population structure over their range. In our view, this paradigm has the capacity to render tractable the interpretation of the species status of the huge trematode fauna of the tropical Indo-west Pacific.
Collapse
Affiliation(s)
- Rodney A Bray
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | - Scott C Cutmore
- The University of Queensland, School of Biological Sciences, St Lucia, Queensland 4072, Australia
| | - Thomas H Cribb
- The University of Queensland, School of Biological Sciences, St Lucia, Queensland 4072, Australia
| |
Collapse
|
6
|
A review of molecular identification tools for the opisthorchioidea. J Microbiol Methods 2021; 187:106258. [PMID: 34082051 DOI: 10.1016/j.mimet.2021.106258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022]
Abstract
The superfamily Opisthorchioidea encompasses the families Cryptogonimidae, Opisthorchiidae and Heterophyidae. These parasites depend on the aquatic environment and include marine and freshwater species. Some species, such as Clonorchis sinensis and Opisthorchis viverrini, have a high impact on public health with millions of infected people worldwide and have thus been the object of many studies and tool developments. However, for many species, tools for identification and detection are scarce. Although morphological descriptions have been used and are still important, they are often not efficient on the immature stages of these parasites. Thus, during the past few decades, molecular approaches for parasite identification have become commonplace. These approaches are efficient, quick and reliable. Nonetheless, for some parasites of the superfamily Opisthorchioidea, reference genomic data are limited. This study reviews available genetic data and molecular tools for the identification and/or the detection of this superfamily. Molecular data on this superfamily are mostly based on mitochondrial and ribosomal gene sequence analyses, especially on the cytochrome c oxidase subunit 1 gene and internal transcribed spacer regions respectively.
Collapse
|
7
|
Miller TL, Adlard RD. Stemmatostoma cribbi n. sp. (Digenea: Cryptogonimidae) from Freshwater Fishes in the Wet Tropics Bioregion of Queensland, Australia. J Parasitol 2020; 106:411-417. [PMID: 32294186 DOI: 10.1645/19-60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A survey of the parasite fauna of freshwater fishes from the Wet Tropics Bioregion in Queensland, Australia, revealed the presence of a new species of Stemmatostoma Cribb, 1986 (Digenea: Cryptogonimidae). Stemmatostoma cribbi n. sp. is described from the intestine and pyloric caeca of 2 species of grunter (Terapontidae), Hephaestus fuliginosus (Macleay) and Hephaestus tulliensis (De Vis), and the Jungle perch (Kuhliidae), Kuhlia rupestris (Lacepède), collected from the Barron and Mulgrave-Russell River drainage divisions in tropical north Queensland, Australia. Stemmatostoma cribbi is primarily distinguished morphologically from the type and only other species in the genus, Stemmatostoma pearsoni Cribb, 1986, in having consistently fewer oral spines (14 in S. cribbi vs. 16 in S. pearsoni). Alignment of novel molecular data for S. cribbi and S. pearsoni revealed that they differ genetically by 26 nucleotides (2.1%) over the 1,258 bp partial large subunit (LSU) region, 1 nucleotide (0.8%) over the 121 bp partial 5.8S region, and 23 nucleotides (7.2%) over the entire 318 bp ITS2 rDNA region. Bayesian inference and maximum likelihood phylogenetic analyses of the partial LSU region for the species of Stemmatostoma sequenced here were used to explore the relationships of these species to other cryptogonimid species reported from freshwater ecosystems.
Collapse
Affiliation(s)
- Terrence L Miller
- Aquatic Diagnostics Laboratory, DPIRD Diagnostics and Laboratory Services, Department of Primary Industries and Regional Development, Kensington, Western Australia 6151, Australia.,Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute and School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Robert D Adlard
- Biodiversity and Geosciences Program, Queensland Museum Network, South Brisbane, Queensland 4101, Australia
| |
Collapse
|
8
|
Kmentová N, Bray RA, Koblmüller S, Artois T, De Keyzer ELR, Gelnar M, Vanhove MPM, Georgieva S. Uncharted digenean diversity in Lake Tanganyika: cryptogonimids (Digenea: Cryptogonimidae) infecting endemic lates perches (Actinopterygii: Latidae). Parasit Vectors 2020; 13:221. [PMID: 32357898 PMCID: PMC7195733 DOI: 10.1186/s13071-020-3913-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lake Tanganyika is considered a biodiversity hotspot with exceptional species richness and level of endemism. Given the global importance of the lake in the field of evolutionary biology, the understudied status of its parasite fauna is surprising with a single digenean species reported to date. Although the most famous group within the lake's fish fauna are cichlids, the pelagic zone is occupied mainly by endemic species of clupeids (Actinopterygii: Clupeidae) and lates perches (Actinopterygii: Latidae, Lates Cuvier), which are an important commercial source for local fisheries. In this study, we focused on the lake's four lates perches and targeted their thus far unexplored endoparasitic digenean fauna. METHODS A total of 85 lates perches from four localities in Lake Tanganyika were examined. Cryptogonimid digeneans were studied by means of morphological and molecular characterisation. Partial sequences of the nuclear 28S rRNA gene and the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene were sequenced for a representative subset of the specimens recovered. Phylogenetic analyses were conducted at the family level under Bayesian inference. RESULTS Our integrative approach revealed the presence of six species within the family Cryptogonimidae Ward, 1917. Three out of the four species of Lates were found to be infected with at least one cryptogonimid species. Two out of the three reported genera are new to science. Low interspecific but high intraspecific phenotypic and genetic diversity was found among Neocladocystis spp. Phylogenetic inference based on partial 28S rDNA sequences revealed a sister group relationship for two of the newly erected genera and their close relatedness to the widely distributed genus Acanthostomum Looss, 1899. CONCLUSIONS The present study provides the first comprehensive characterisation of the digenean diversity in a fish family from Lake Tanganyika which will serve as a baseline for future explorations of the lake's digenean fauna. Our study highlights the importance of employing an integrative approach for revealing the diversity in this unique host-parasite system.
Collapse
Affiliation(s)
- Nikol Kmentová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium
| | - Rodney A. Bray
- Parasitic Worms Division, Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
| | - Stephan Koblmüller
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Tom Artois
- Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
| | - Els Lea R. De Keyzer
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Maarten P. M. Vanhove
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium
- Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Ch. Deberiotstraat 32, 3000 Leuven, Belgium
- Zoology Unit, Finnish Museum of Natural History, University of Helsinki, P.O.Box 17, Helsinki, 00014 Finland
| | - Simona Georgieva
- Cavanilles Institute of Biodiversity and Evolutionary Biology, Science Park, University of Valencia, P.O. Box 46071, Valencia, Spain
| |
Collapse
|
9
|
Towards the resolution of the Microcotyle erythrini species complex: description of Microcotyle isyebi n. sp. (Monogenea, Microcotylidae) from Boops boops (Teleostei, Sparidae) off the Algerian coast. Parasitol Res 2019; 118:1417-1428. [PMID: 30915549 DOI: 10.1007/s00436-019-06293-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
The monogenean Microcotyle erythrini is atypical because it has been recorded from several fish host species in the Mediterranean Sea and Atlantic Ocean, in contrast to many species which are considered strictly specific. This could indicate a true lack of specificity or that several cryptic species are involved. This paper is a partial attempt to solve this problem. Specimens of a monogenean resembling M. erythrini were collected from bogues, Boops boops, caught off Algeria. A comparison with published descriptions and with museum specimens of M. erythrini did not yield any clear morphological difference. However, sequences of cytochrome c oxidase subunit I (COI) differed by 16.3% from that of M. erythrini (from GenBank, material collected from the type-host Pagellus erythrinus), indicating that the species was different. The species from B. boops is therefore described here as Microcotyle isyebi n. sp. and differential diagnoses with Microcotyle species from the Mediterranean and from sparids are provided. These results suggest that a molecular re-evaluation of other M. erythrini-like specimens from various fish hosts could reveal the existence of additional parasite biodiversity.
Collapse
|
10
|
Bray RA, Cutmore SC, Cribb TH. Lepotrema Ozaki, 1932 (Lepocreadiidae: Digenea) from Indo-Pacific fishes, with the description of eight new species, characterised by morphometric and molecular features. Syst Parasitol 2018; 95:693-741. [PMID: 30324416 PMCID: PMC6223840 DOI: 10.1007/s11230-018-9821-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/02/2018] [Indexed: 11/24/2022]
Abstract
We review species of the genus Lepotrema Ozaki, 1932 from marine fishes in the Indo-West Pacific. Prior to the present study six species were recognised. Here we propose eight new species on the basis of combined morphological and molecular analysis: Lepotrema acanthochromidis n. sp. ex Acanthochromis polyacanthus from the Great Barrier Reef (GBR); Lepotrema hemitaurichthydis n. sp. ex Hemitaurichthys polylepis and H. thompsoni from Palau and French Polynesia; Lepotrema melichthydis n. sp. ex Melichthys vidua from Palau and the GBR; Lepotrema amansis n. sp. ex Amanses scopas from the GBR; Lepotrema cirripectis n. sp. ex Cirripectes filamentosus, C. chelomatus and C. stigmaticus from the GBR; Lepotrema justinei n. sp. ex Sufflamen fraenatum from New Caledonia; Lepotrema moretonense n. sp. ex Prionurus microlepidotus, P. maculatus and Selenotoca multifasciata from Moreton Bay; and Lepotrema amblyglyphidodonis n. sp. ex Amblyglyphidodon curacao and Amphipron akyndynos from the GBR. We also report new host records and provide novel molecular data for two known species: Lepotremaadlardi Bray, Cribb & Barker, 1993 and Lepotremamonile Bray & Cribb, 1998. Two new combinations are formed, Lepotrema cylindricum (Wang, 1989) n. comb. (for Preptetos cylindricus) and Lepotrema navodonis (Shen, 1986) n. comb. (for Lepocreadium navodoni). With the exception of a handful of ambiguous records, the evidence is compelling that the host-specificity of species in this genus is overwhelmingly oioxenous or stenoxenous. This renders the host distribution in three orders and ten families especially difficult to explain as many seemingly suitable hosts are not infected. Multi-loci molecular data (ITS2 rDNA, 28S rDNA and cox1 mtDNA) demonstrate that Lepotrema is a good generic concept, but limited variability in sequence data and differences in phylogenies produced for different gene regions make relationships within the genus difficult to define.
Collapse
Affiliation(s)
- Rodney A Bray
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - Scott C Cutmore
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Thomas H Cribb
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
11
|
Pantoja CS, Hernández-Mena DI, de León GPP, Luque JL. Phylogenetic Position of Pseudosellacotyla lutzi (Freitas, 1941) (Digenea: Cryptogonimidae), A Parasite of Hoplias malabaricus (Bloch) in South America, through 28S rDNA Sequences, and New Observations of the Ultrastructure of Their Tegument. J Parasitol 2018; 104:530-538. [PMID: 29990447 DOI: 10.1645/17-201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The freshwater fish digenean Pseudosellacotyla lutzi ( Freitas, 1941 ) Yamaguti, 1954 has had an unsettled taxonomic history, and has at various times been classified as a member of Nanophyetidae, Heterophyidae, Microphallidae, Faustulidae, and Cryptogonimidae. Nine individual specimens of the trahira, Hoplias malabaricus (Bloch, 1794), were sampled in the Paraná River basin, Paraná State, Brazil; 22 specimens of P. lutzi were collected. One specimen of P. lutzi was used to obtain a sequence of the domains D1-D3 of the 28S rRNA gene, and to perform a phylogenetic analysis to assess their position and classification within Plagiorchiida. The resulting tree unequivocally shows that the species, along with acanthostomines, belong to the Cryptogonimidae, corroborating recent findings based on the morphology of the cercariae, and in the characteristics of the life cycle. In addition, the study of the ultrastructure of the tegumental spines through scanning electron microscopy allowed us to characterize them as pectinate spines possessing 3 to 8 digitiform projections at their distal end and extending from the anterior to the posterior extremity of the body. This study also provides the first molecular data for a cryptogonimid from South America.
Collapse
Affiliation(s)
- Camila S Pantoja
- 1 Curso de Pós-Graduação em Ciências Veterinárias, Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Caixa Postal 74·540, 23851-970, Seropédica, RJ, Brazil
| | - David Iván Hernández-Mena
- 2 Instituto de Biología, Universidad Nacional Autónoma de México., Ap. Postal 70-153, C.P. 04510, México D.F., México
| | - Gerardo Pérez-Ponce de León
- 2 Instituto de Biología, Universidad Nacional Autónoma de México., Ap. Postal 70-153, C.P. 04510, México D.F., México
| | - José L Luque
- 1 Curso de Pós-Graduação em Ciências Veterinárias, Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Caixa Postal 74·540, 23851-970, Seropédica, RJ, Brazil
| |
Collapse
|
12
|
Miller TL, Cutmore SC, Cribb TH. Two species of Neometadena Hafeezullah & Siddiqi, 1970 (Digenea: Cryptogonimidae) from Moreton Bay, Australia, including the description of Neometadena paucispina n. sp. from Australian Lutjanidae. Syst Parasitol 2018; 95:655-664. [PMID: 29968056 DOI: 10.1007/s11230-018-9804-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/10/2018] [Indexed: 10/28/2022]
Abstract
A survey of the trematode fauna of lutjanid fishes off the east coast of Queensland (QLD), Australia revealed the presence of two species of Neometadena Hafeezullah & Siddiqi, 1970 (Digenea: Cryptogonimidae). Neometadena paucispina n. sp. is described from the intestine and pyloric caeca of Lutjanus fulviflamma (Forsskål) and L. russellii (Bleeker) from Moreton Bay, in southeast QLD. Specimens of the type- and only other species, N. ovata (Yamaguti, 1952) Miller & Cribb, 2008, were recovered from L. carponotatus (Richardson), L. fulviflamma, L. fulvus (Forster), L. russellii, and L. vitta (Quoy & Gaimard) off Lizard Island, on the northern Great Barrier Reef (GBR). Neometadena paucispina is distinguished from N. ovata in having fewer oral spines (55-65 vs 67-80). Alignment of novel molecular data for these two taxa revealed that they differ consistently by 13 nucleotides (1.5%) over the partial large subunit (LSU), 34 nucleotides (6.6%) over the internal transcribed spacer 1 (ITS1), 0 nucleotides over the 5.8S, and 21 nucleotides (7.3%) over the ITS2 rDNA regions. Despite relatively large samples of L. carponotatus, L. fulviflamma and L. russellii from three distinct locations along the east coast of QLD (i.e. Moreton Bay in the south, Heron Island in central QLD and Lizard Island in northern QLD), these two species have been found at only one site each with neither species at Heron Island. These distributions are discussed in the context of the wide distribution of other cryptogonomid species in the same hosts elsewhere in the Indo-West Pacific.
Collapse
Affiliation(s)
- Terrence L Miller
- Fish Health Laboratory, Department of Primary Industries and Regional Development, South Perth, WA, 6151, Australia. .,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Marine and Environmental Sciences, James Cook University, Cairns, QLD, 4870, Australia.
| | - Scott C Cutmore
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Thomas H Cribb
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
13
|
Huston DC, Cutmore SC, Cribb TH. Trigonocephalotrema (Digenea : Haplosplanchnidae), a new genus for trematodes parasitising fishes of two Indo-West Pacific acanthurid genera. INVERTEBR SYST 2018. [DOI: 10.1071/is17075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Great Barrier Reef is the largest coral reef ecosystem on the planet and supports a diverse community of marine fishes, as well as the organisms that parasitise them. Although the digenetic trematodes that parasitise fishes of the Great Barrier Reef have been studied for over a century, the species richness and diversity of many trematode lineages is yet to be explored. Trigonocephalotrema, gen. nov. is proposed to accommodate three new species, Trigonocephalotrema euclidi, sp. nov., T. hipparchi, sp. nov. and T. sohcahtoa, sp. nov., parasitic in fishes of Naso Lacepède and Zebrasoma Swainson (Acanthuridae) in the tropical Pacific. Species of Trigonocephalotrema are characterised with morphological and molecular data (18S rRNA, ITS2 and 28S rRNA). Species of Trigonocephalotrema are morphologically distinguished from all other haplosplanchnid lineages by having terminal, triangular, plate-like oral suckers. With the inclusion of the new molecular data, Bayesian inference and maximum likelihood analyses of the Haplosplanchnidae Poche, 1926 recovered identical tree topologies and demonstrated Trigonocephalotrema as a well-supported monophyletic group. Although species of Trigonocephalotrema are differentiated from all other haplosplanchnid lineages on the basis of morphology, species within the genus are morphologically cryptic; thus, accurate species identification will require inclusion of host and molecular data. Species of Trigonocephalotrema cannot be assigned to a recognised subfamily within the Haplosplanchnidae using either morphological or molecular data and would require the erection of a new subfamily to accommodate them. However, we find little value in the use of subfamilies within the Haplosplanchnidae, given that there are so few taxa in the family, and herein propose that their use be avoided.
Collapse
|
14
|
Martínez-Aquino A, Vidal-Martínez VM, Aguirre-Macedo ML. A molecular phylogenetic appraisal of the acanthostomines Acanthostomum and Timoniella and their position within Cryptogonimidae (Trematoda: Opisthorchioidea). PeerJ 2017; 5:e4158. [PMID: 29250471 PMCID: PMC5729820 DOI: 10.7717/peerj.4158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022] Open
Abstract
The phylogenetic position of three taxa from two trematode genera, belonging to the subfamily Acanthostominae (Opisthorchioidea: Cryptogonimidae), were analysed using partial 28S ribosomal DNA (Domains 1-2) and internal transcribed spacers (ITS1-5.8S-ITS2). Bayesian inference and Maximum likelihood analyses of combined 28S rDNA and ITS1 + 5.8S + ITS2 sequences indicated the monophyly of the genus Acanthostomum (A. cf. americanum and A. burminis) and paraphyly of the Acanthostominae. These phylogenetic relationships were consistent in analyses of 28S alone and concatenated 28S + ITS1 + 5.8S + ITS2 sequences analyses. Based on molecular phylogenetic analyses, the subfamily Acanthostominae is therefore a paraphyletic taxon, in contrast with previous classifications based on morphological data. Phylogenetic patterns of host specificity inferred from adult stages of other cryptogonimid taxa are also well supported. However, analyses using additional genera and species are necessary to support the phylogenetic inferences from this study. Our molecular phylogenetic reconstruction linked two larval stages of A. cf. americanum cercariae and metacercariae. Here, we present the evolutionary and ecological implications of parasitic infections in freshwater and brackish environments.
Collapse
Affiliation(s)
- Andrés Martínez-Aquino
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - Victor M. Vidal-Martínez
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - M. Leopoldina Aguirre-Macedo
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| |
Collapse
|
15
|
Revision of Podocotyloides Yamaguti, 1934 (Digenea: Opecoelidae), resurrection of Pedunculacetabulum Yamaguti, 1934 and the naming of a cryptic opecoelid species. Syst Parasitol 2017; 95:1-31. [DOI: 10.1007/s11230-017-9761-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/29/2017] [Indexed: 10/18/2022]
|
16
|
Bastos Gomes G, Miller TL, Vaughan DB, Jerry DR, McCowan C, Bradley TL, Hutson KS. Evidence of multiple species of Chilodonella (Protozoa, Ciliophora) infecting Australian farmed freshwater fishes. Vet Parasitol 2017; 237:8-16. [DOI: 10.1016/j.vetpar.2017.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/16/2017] [Accepted: 03/03/2017] [Indexed: 01/20/2023]
|
17
|
Blasco-Costa I, Cutmore SC, Miller TL, Nolan MJ. Molecular approaches to trematode systematics: ‘best practice’ and implications for future study. Syst Parasitol 2016; 93:295-306. [DOI: 10.1007/s11230-016-9631-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/09/2016] [Indexed: 11/29/2022]
|
18
|
A complex of species related to Paradiscogaster glebulae (Digenea: Faustulidae) in chaetodontid fishes (Teleostei: Perciformes) of the Great Barrier Reef. Parasitol Int 2015; 64:421-8. [DOI: 10.1016/j.parint.2015.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/22/2015] [Accepted: 06/17/2015] [Indexed: 11/23/2022]
|
19
|
Trematodes of the Great Barrier Reef, Australia: emerging patterns of diversity and richness in coral reef fishes. Int J Parasitol 2014; 44:929-39. [DOI: 10.1016/j.ijpara.2014.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 11/17/2022]
|
20
|
Are cryptic species a problem for parasitological biological tagging for stock identification of aquatic organisms? Parasitology 2014; 142:125-33. [PMID: 24565166 DOI: 10.1017/s0031182014000092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The effective use of biological tags in stock assessment relies on the reliable identification of the parasites concerned. This may be compromised if cryptic species are not recognized. Here we review what is known about cryptic species in aquatic hosts and its potential importance in this respect. Although strictly cryptic species may be considered as species which can be distinguished only by molecular data, we accept the far looser but more practical definition of species that cannot be readily distinguished morphologically. Cryptic species appear to have been identified most frequently as occurring in separate host species; this is heartening in that this has no significant impact on tagging studies. But cryptic species have occasionally been identified in single hosts sympatrically and are relatively common in geographically distinct populations of the same host species. Ignorance of both kinds of occurrences has the capacity to undermine the reliability of tagging analysis. We review in detail what is known of intra- and interspecific genetic variation over geographical ranges in the trematodes, based on recent molecular studies. Although the existence of cryptic species and evidence of intraspecific variability may appear daunting, we suspect that these complexities will add, and indeed have already added, to the sophistication of the information that can be derived from tagging studies.
Collapse
|
21
|
McNamara MKA, Miller TL, Cribb TH. Evidence for extensive cryptic speciation in trematodes of butterflyfishes (Chaetodontidae) of the tropical Indo-West Pacific. Int J Parasitol 2013; 44:37-48. [PMID: 24188934 DOI: 10.1016/j.ijpara.2013.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
Abstract
Molecular data from the cytochrome c oxidase subunit I (cox1) mitochondrial DNA gene and the second internal transcribed spacer (ITS2) nuclear rDNA region were used to test the current morphologically-based taxonomic hypothesis regarding species of Monorchiidae (Hurleytrematoides) from chaetodontid and tetraodontid fishes from six sites in the tropical Indo-West Pacific (TIWP): Heron and Lizard Islands off the Great Barrier Reef (GBR, Australia), Moorea (French Polynesia), New Caledonia, Ningaloo Reef (Australia) and Palau. The 16 morphospecies analysed differed from each other by a minimum of 55bp (9.1%) over the mitochondrial cox1 and 8bp (1.6%) over the ITS2 DNA regions. For two species, Hurleytrematoides loi and Hurleytrematoides sasali, specimens from the same host species in sympatry differed at levels comparable to those between pairs of distinct morphospecies for both cox1 and ITS2 sequences. We take this as evidence of the presence of combinations of cryptic species; however, we do not propose new species for these taxa because we lack identified morphological voucher specimens. For seven species, Hurleytrematoides coronatum, Hurleytrematoides deblocki, Hurleytrematoides faliexae, H. loi, Hurleytrematoides morandi, H. sasali and Hurleytrematoides sp. A, samples from some combinations of localities had base pair differences that were equal to or greater than differences between some pairs of distinct morphospecies for one or both cox1 and ITS2 sequences. For three species, H. coronatum, H. loi and H. morandi, one haplotype differed from every other haplotype by more than the morphospecies benchmark. In these cases morphological specimens could not be distinguished by morphology. These data suggest extensive cryptic richness in this genus. For the present we refrain from dividing any of the morphospecies. This is because there is a continuum of levels of intra- and interspecific genetic variation in this system, so that distinguishing the two would be largely arbitrary.
Collapse
Affiliation(s)
- M K A McNamara
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - T L Miller
- School of Marine and Tropical Biology, James Cook University, PO Box 6811, Cairns, Queensland 4870, Australia
| | - T H Cribb
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
22
|
Dramatic phenotypic plasticity within species of Siphomutabilus n. g. (Digenea: Cryptogonimidae) from Indo-Pacific caesionines (Perciformes: Lutjanidae). Syst Parasitol 2013; 86:101-12. [DOI: 10.1007/s11230-013-9436-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/26/2013] [Indexed: 11/25/2022]
|
23
|
Arredondo NJ, de Núñez MCO. A new species of Parspina Pearse, 1920 (Digenea: Cryptogonimidae) from Pimelodella gracilis (Valenciennes) (Siluriformes: Heptapteridae) in the Paraná River basin, Argentina, and a key to the genus. Syst Parasitol 2012; 84:81-7. [PMID: 23263943 DOI: 10.1007/s11230-012-9394-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/19/2012] [Indexed: 11/30/2022]
Abstract
A new species of cryptogonimid belonging to the genus Parspina Pearse, 1920 is described from the intestine of Pimelodella gracilis (Valenciennes) in the Paraná River basin, Argentina. Parspina pimelodellae n. sp. is characterised by having: (i) a body length/width ratio of 1:3.6-5.3 at the level of the ventral sucker; (ii) 21 oral spines; (iii) an oral sucker larger than the ventral sucker, with a sucker width ratio of 1:0.6-0.7; (iv) a postcaecal region of 16-19% of the body-length; (v) a compact, transversely elongate ovary, anterior to and well separated from the testes; (vi) small, branched vitelline follicles, extending from the level of the ventral sucker to the anterior margin of the ovary; and (vii) a large seminal vesicle situated posterodorsal to the ventral sucker. A key to the species of Parspina is presented.
Collapse
Affiliation(s)
- Nathalia J Arredondo
- Laboratorio de Helmintología, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Universidad de Buenos Aires, Int. Güiraldes 2160, Pabellón II, 4º Piso, C1428EGA, Buenos Aires, Argentina.
| | | |
Collapse
|
24
|
Justine JL, Beveridge I, Boxshall GA, Bray RA, Miller TL, Moravec F, Trilles JP, Whittington ID. An annotated list of fish parasites (Isopoda, Copepoda, Monogenea, Digenea, Cestoda, Nematoda) collected from Snappers and Bream (Lutjanidae, Nemipteridae, Caesionidae) in New Caledonia confirms high parasite biodiversity on coral reef fish. AQUATIC BIOSYSTEMS 2012; 8:22. [PMID: 22947621 PMCID: PMC3507714 DOI: 10.1186/2046-9063-8-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/07/2012] [Indexed: 06/01/2023]
Abstract
UNLABELLED BACKGROUND Coral reefs are areas of maximum biodiversity, but the parasites of coral reef fishes, and especially their species richness, are not well known. Over an 8-year period, parasites were collected from 24 species of Lutjanidae, Nemipteridae and Caesionidae off New Caledonia, South Pacific. RESULTS Host-parasite and parasite-host lists are provided, with a total of 207 host-parasite combinations and 58 parasite species identified at the species level, with 27 new host records. Results are presented for isopods, copepods, monogeneans, digeneans, cestodes and nematodes. When results are restricted to well-sampled reef fish species (sample size > 30), the number of host-parasite combinations is 20-25 per fish species, and the number of parasites identified at the species level is 9-13 per fish species. Lutjanids include reef-associated fish and deeper sea fish from the outer slopes of the coral reef: fish from both milieus were compared. Surprisingly, parasite biodiversity was higher in deeper sea fish than in reef fish (host-parasite combinations: 12.50 vs 10.13, number of species per fish 3.75 vs 3.00); however, we identified four biases which diminish the validity of this comparison. Finally, these results and previously published results allow us to propose a generalization of parasite biodiversity for four major families of reef-associated fishes (Lutjanidae, Nemipteridae, Serranidae and Lethrinidae): well-sampled fish have a mean of 20 host-parasite combinations per fish species, and the number of parasites identified at the species level is 10 per fish species. CONCLUSIONS Since all precautions have been taken to minimize taxon numbers, it is safe to affirm than the number of fish parasites is at least ten times the number of fish species in coral reefs, for species of similar size or larger than the species in the four families studied; this is a major improvement to our estimate of biodiversity in coral reefs. Our results suggest that extinction of a coral reef fish species would eventually result in the coextinction of at least ten species of parasites.
Collapse
Affiliation(s)
- Jean-Lou Justine
- UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, Case postale 51, 55, rue Buffon, 75231 Paris cedex 05, France
| | - Ian Beveridge
- Department of Veterinary Science, University of Melbourne, Veterinary Clinical Centre, Werribee, 3030, Victoria, Australia
| | - Geoffrey A Boxshall
- Department of Zoology, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Rodney A Bray
- Department of Zoology, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Terrence L Miller
- Biodiversity Program, Queensland Museum, PO Box 3300, South Brisbane, Queensland, 4101, Australia
| | - František Moravec
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská, 31 370 05, České Budějovice, Czech Republic
| | - Jean-Paul Trilles
- Équipe Adaptation écophysiologique et Ontogenèse, UMR 5119 (CNRS-UM2-IRD-UM1-IFREMER), Université Montpellier 2, Place Eugène Bataillon, 34095, Montpellier cedex 05, France
| | - Ian D Whittington
- Monogenean Research Laboratory, The South Australian Museum, Adelaide 5000, & Marine Parasitology Laboratory, & Australian Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, North Terrace, Adelaide, 5005, South Australia, Australia
| |
Collapse
|
25
|
Justine JL, Briand MJ, Bray RA. A quick and simple method, usable in the field, for collecting parasites in suitable condition for both morphological and molecular studies. Parasitol Res 2012; 111:341-51. [DOI: 10.1007/s00436-012-2845-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
|
26
|
Caisová L, Marin B, Melkonian M. A close-up view on ITS2 evolution and speciation - a case study in the Ulvophyceae (Chlorophyta, Viridiplantae). BMC Evol Biol 2011; 11:262. [PMID: 21933414 PMCID: PMC3225284 DOI: 10.1186/1471-2148-11-262] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 09/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The second Internal Transcriber Spacer (ITS2) is a fast evolving part of the nuclear-encoded rRNA operon located between the 5.8S and 28S rRNA genes. Based on crossing experiments it has been proposed that even a single Compensatory Base Change (CBC) in helices 2 and 3 of the ITS2 indicates sexual incompatibility and thus separates biological species. Taxa without any CBC in these ITS2 regions were designated as a 'CBC clade'. However, in depth comparative analyses of ITS2 secondary structures, ITS2 phylogeny, the origin of CBCs, and their relationship to biological species have rarely been performed. To gain 'close-up' insights into ITS2 evolution, (1) 86 sequences of ITS2 including secondary structures have been investigated in the green algal order Ulvales (Chlorophyta, Viridiplantae), (2) after recording all existing substitutions, CBCs and hemi-CBCs (hCBCs) were mapped upon the ITS2 phylogeny, rather than merely comparing ITS2 characters among pairs of taxa, and (3) the relation between CBCs, hCBCs, CBC clades, and the taxonomic level of organisms was investigated in detail. RESULTS High sequence and length conservation allowed the generation of an ITS2 consensus secondary structure, and introduction of a novel numbering system of ITS2 nucleotides and base pairs. Alignments and analyses were based on this structural information, leading to the following results: (1) in the Ulvales, the presence of a CBC is not linked to any particular taxonomic level, (2) most CBC 'clades' sensu Coleman are paraphyletic, and should rather be termed CBC grades. (3) the phenetic approach of pairwise comparison of sequences can be misleading, and thus, CBCs/hCBCs must be investigated in their evolutionary context, including homoplasy events (4) CBCs and hCBCs in ITS2 helices evolved independently, and we found no evidence for a CBC that originated via a two-fold hCBC substitution. CONCLUSIONS Our case study revealed several discrepancies between ITS2 evolution in the Ulvales and generally accepted assumptions underlying ITS2 evolution as e.g. the CBC clade concept. Therefore, we developed a suite of methods providing a critical 'close-up' view into ITS2 evolution by directly tracing the evolutionary history of individual positions, and we caution against a non-critical use of the ITS2 CBC clade concept for species delimitation.
Collapse
Affiliation(s)
- Lenka Caisová
- Universität zu Köln, Biozentrum Köln, Botanisches Institut, Zülpicher Str. 47b, 50674 Köln, Germany.
| | | | | |
Collapse
|
27
|
Downie AJ, Bray RA, Jones BEH, Cribb TH. Taxonomy, host-specificity and biogeography of Symmetrovesicula Yamaguti, 1938 (Digenea: Fellodistomidae) from chaetodontids (Teleostei: Perciformes) in the tropical Indo-west Pacific region. Syst Parasitol 2010; 78:1-18. [PMID: 21161487 DOI: 10.1007/s11230-010-9271-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 07/09/2010] [Indexed: 11/28/2022]
Abstract
Combined molecular and morphological data demonstrate the presence of two species of Symmetrovesicula Yamaguti, 1938 in chaetodontid fishes from Australian waters. A total of 2,462 individuals of 46 species of chaetodontid at eight localities were dissected. Analysis of the rDNA ITS2 revealed the presence of three genotypes, two separated by a single base difference and the third differed from the other two by 10-11 base differences. Subsequent morphological examination identified a number of variations that supported the presence of two species; however, we found no additional evidence to support the presence of a third species corresponding to the single base variation. Thus, we take the conservative approach of recognising two species of Symmetrovesicula within Australian waters, S. chaetodontis Yamaguti, 1938 from off Ningaloo Reef, Western Australia and S. gracilis n. sp. from off Ningaloo Reef, the Great Barrier Reef, Queensland and New Caledonia. Both species exhibit distinct restrictions to certain clades of chaetodontids.
Collapse
Affiliation(s)
- Abigail J Downie
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|