1
|
Han Y, Gao H, Gan X, Liu J, Bao C, He C. Roles of IL-11 in the regulation of bone metabolism. Front Endocrinol (Lausanne) 2024; 14:1290130. [PMID: 38352248 PMCID: PMC10862480 DOI: 10.3389/fendo.2023.1290130] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024] Open
Abstract
Bone metabolism is the basis for maintaining the normal physiological state of bone, and imbalance of bone metabolism can lead to a series of metabolic bone diseases. As a member of the IL-6 family, IL-11 acts primarily through the classical signaling pathway IL-11/Receptors, IL-11 (IL-11R)/Glycoprotein 130 (gp130). The regulatory role of IL-11 in bone metabolism has been found earlier, but mainly focuses on the effects on osteogenesis and osteoclasis. In recent years, more studies have focused on IL-11's roles and related mechanisms in different bone metabolism activities. IL-11 regulates osteoblasts, osteoclasts, BM stromal cells, adipose tissue-derived mesenchymal stem cells, and chondrocytes. It's involved in bone homeostasis, including osteogenesis, osteolysis, bone marrow (BM) hematopoiesis, BM adipogenesis, and bone metastasis. This review exams IL-11's role in pathology and bone tissue, the cytokines and pathways that regulate IL-11 expression, and the feedback regulations of these pathways.
Collapse
Affiliation(s)
| | | | - Xinling Gan
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Khadri L, Ziraksaz MH, Barekzai AB, Ghauri B. T cell responses to SARS-CoV-2. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 202:183-217. [PMID: 38237986 DOI: 10.1016/bs.pmbts.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This chapter provides a comprehensive analysis of T cell responses in COVID-19, focusing on T cell differentiation, specificity, and functional characteristics during SARS-CoV-2 infection. The differentiation of T cells in COVID-19 is explored, highlighting the key factors that influence T cell fate and effector functions. The immunology of the spike protein, a critical component of SARS-CoV-2, is discussed in detail, emphasizing its role in driving T-cell responses. The cellular immune responses against SARS-CoV-2 during acute infection are examined, including the specificity, phenotype, and functional attributes of SARS-CoV-2-specific T-cell responses. Furthermore, the chapter explores T-cell cross-recognition against other human coronaviruses (HCoVs) and the mechanisms of immune regulation mediated by spike proteins. This includes the induction of regulation through the innate immune system, the activation of self-spike protein-cross-reactive regulatory T cells, and the impact of self-tolerance on the regulation of spike proteins. The chapter investigates T cell responses to self-spike proteins and their implications in disease. The role of spike proteins as immunological targets in the context of COVID-19 is examined, shedding light on potential therapeutic interventions and clinical trials in autoimmune diseases. In conclusion, this chapter provides a comprehensive understanding of T cell responses in COVID-19, highlighting their differentiation, immune regulation, and clinical implications. This knowledge contributes to the development of targeted immunotherapies, vaccine strategies, and diagnostic approaches for COVID-19 and other related diseases.
Collapse
Affiliation(s)
- Laiqha Khadri
- Department of Biotechnology, Immune Inspired, Bangalore.
| | | | | | - Baber Ghauri
- Department of Biotechnology, Immune Inspired, Bangalore
| |
Collapse
|
3
|
Rajizadeh M, Hosseini MH, Bahrami M, Hosseini NS, Rostamabadi F, Bagheri F, Khoramipour K, Najafipour H, Bejeshk M. Comparison of preventive and therapeutic effects of continuous exercise on acute lung injury induced with methotrexate. Exp Physiol 2023; 108:1215-1227. [PMID: 37497815 PMCID: PMC10988479 DOI: 10.1113/ep091162] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Methotrexate (Mtx) is used to treat various diseases, including cancer, arthritis and other rheumatic diseases. However, it induces oxidative stress and pulmonary inflammation by stimulating production of reactive oxygen species and cytokines. Considering the positive effects of physical activity, our goal was to investigate the preventive and therapeutic role of continuous training (CT) on Mtx-induced lung injury in rats. The rats were divided into five groups of 14 animals: a control group (C); a continuous exercise training group (CT; healthy rats that experienced CT); an acute lung injury with Mtx group (ALI); a pretreatment group with CT (the rats experienced CT before ALI induction), and a post-treatment group with CT (the rats experienced CT after ALI induction). One dose of 20 mg/kg Mtx intraperitoneal was administered in the Mtx and training groups. Forty-eight hours after the last exercise session all rats were sacrificed. According to our results, the levels of tumour necrosis factor-α (TNF-α), malondialdehyde (MDA), myeloperoxidase (MPO), GATA binding protein 3 (GATA3) and caspase-3 in the ALI group significantly increased compared to the control group, and the levels of superoxide dismutase (SOD), glutathione peroxidase (GPX), total antioxidant capacity (TAC), interleukin-10 (IL-10), forkhead box protein 3 (FOXP3), and T-bet decreased. In contrast, compared to the acute lung injury group, pretreatment and treatment with CT reduced TNF-α, MDA, MPO, GATA3 and caspase-3 and increased SOD, GPX, TAC, IL-10, FOXP3 and T-bet levels. The effects of CT pretreatment were more significant than the effects of CT post-treatment. Continuous exercise training effectively reduced oxidative stress and inflammatory cytokines and ameliorated Mtx-induced injury, and the effects of CT pretreatment were more significant than the effects of CT post-treatment. NEW FINDINGS: What is the central question of this study? Considering the high prevalence of lung injury in society, does exercise as a non-pharmacological intervention have ameliorating effects on lung injury? What is the main finding and its importance? Exercise can have healing effects on the lung after pulmonary injury through reducing inflammation, oxidative stress and apoptosis. Considering the lower side effects of exercise compared to drug treatments, the results of this study may be useful in the future.
Collapse
Affiliation(s)
- Mohammad‐Amin Rajizadeh
- Department of Physiology and PharmacologyKerman University of Medical SciencesKermanIran
- Physiology Research Center, Institute of Pulmonary PhysiologyKerman University of Medical SciencesKermanIran
| | - Mahdiyeh Haj Hosseini
- Physiology Research Center, Institute of Pulmonary PhysiologyKerman University of Medical SciencesKermanIran
- Faculty of Physical Education and Sports Sciences, Department of Exercise Physiology, Shahid Bahonar University of KermanKermanIran
| | - Mina Bahrami
- Physiology Research Center, Institute of Pulmonary PhysiologyKerman University of Medical SciencesKermanIran
- Faculty of Physical Education and Sports Sciences, Department of Exercise Physiology, Shahid Bahonar University of KermanKermanIran
| | - Najmeh Sadat Hosseini
- Physiology Research Center, Institute of Pulmonary PhysiologyKerman University of Medical SciencesKermanIran
- Faculty of Physical Education and Sports Sciences, Department of Exercise Physiology, Shahid Bahonar University of KermanKermanIran
| | - Fahimeh Rostamabadi
- Noncommunicable Diseases Research CenterBam University of Medical Sciences, BamKermanIran
- Faculty of MedicineDepartment of Medical ImmunologyRafsanjan University of Medical SciencesRafsanjanIran
| | - Fatemeh Bagheri
- Pathology and Stem Cell Research Center, Department of PathologyAfzalipour School of MedicineKermanIran
- Legal Medicine Research CenterLegal Medicine OrganizationKermanIran
| | - Kayvan Khoramipour
- Department of Physiology and PharmacologyKerman University of Medical SciencesKermanIran
| | - Hamid Najafipour
- Department of Physiology and PharmacologyKerman University of Medical SciencesKermanIran
- Physiology Research Center, Institute of Pulmonary PhysiologyKerman University of Medical SciencesKermanIran
| | - Mohammad‐Abbas Bejeshk
- Department of Physiology and PharmacologyKerman University of Medical SciencesKermanIran
- Physiology Research Center, Institute of Pulmonary PhysiologyKerman University of Medical SciencesKermanIran
- Student Research CommitteeKerman University of Medical SciencesKermanIran
| |
Collapse
|
4
|
Yu HT, Zhang JQ, Sun MC, Chen H, Shi XM, You FP, Qiao SY. Polymeric Nanohybrids Engineered by Chitosan Nanoparticles and Antimicrobial Peptides as Novel Antimicrobials in Food Biopreservatives: Risk Assessment and Anti-Foodborne Pathogen Escherichia coli O157:H7 Infection by Immune Regulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12535-12549. [PMID: 36153996 DOI: 10.1021/acs.jafc.2c05308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Polymeric nanomaterials (APs) are gaining attention as promising clinical antimicrobials with rapidly increasing antibiotic resistance. Infections by zoonotic enterohemorrhagic Escherichia coli are a severe global threat to public health. Chitosan nanoparticles-microcin J25 (CNM), a class of APs engineered by bioactive peptides and chitosan nanoparticles, can be used as a novel antimicrobial agent against bacterial infections. However, the risk assessment of CNM on animal health or its potential immune modulation to treat serotype E. coli O157:H7 infection impacts in vivo are not well understood. Herein, our findings in mouse models uncovered that oral administration of low levels of CNM significantly increased the body weight and made beneficial effects on the lifespan or clinical signs, accompanied by a significant improvement in gut health, including enhancing the intestinal barrier, immune modulation, and changes in gut microbiota compositions or metabolites. However, high concentrations of CNM induced serious adverse effects, negatively improving intestinal health targets. Anti-infective results proved that oral 0.1% CNM enhances host defense against E. coli O157:H7 infection by improving immune functions and modulating the Th1/Th2 balance. In summary, these findings uncover an instrumental link between the dosage and toxicity risk, suggesting that APs need to be comprehensively assessed for risk before application as safe and reliable food preservatives or therapeutic agents. In addition, CNM as a promising AP may markedly enhance host immunity and therapeutic effects by oral administration.
Collapse
Affiliation(s)
- Hai-Tao Yu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Jia-Qi Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Ming-Chao Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Han Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xiu-Mei Shi
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Fu-Ping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Shi-Yan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs Feed Industry Center, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
5
|
CD4 + T cell phenotypes in the pathogenesis of immune thrombocytopenia. Cell Immunol 2020; 351:104096. [PMID: 32199587 DOI: 10.1016/j.cellimm.2020.104096] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by low platelet counts due to enhanced platelet clearance and compromised production. Traditionally, ITP was regarded a B cell mediated disorder as anti-platelet antibodies are detected in most patients. The very nature of self-antigens, evident processes of isotype switching and the affinity maturation of anti-platelet antibodies indicate that B cells in order to mount anti-platelet immune response require assistance of auto-reactive CD4+ T cells. For a long time, ITP pathogenesis has been exclusively reviewed through the prism of the disturbed balance between Th1 and Th2 subsets of CD4+ T cells, however, more recently new subsets of these cells have been described including Th17, Th9, Th22, T follicular helper and regulatory T cells. In this paper, we review the current understanding of the role and immunological mechanisms by which CD4+ T cells contribute to the pathogenesis of ITP.
Collapse
|
6
|
Li MZ, Huang XJ, Hu JL, Cui SW, Xie MY, Nie SP. The protective effects against cyclophosphamide (CTX)-induced immunosuppression of three glucomannans. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Ye L, Shi H, Wu S, Yu C, Wang B, Zheng L. Dysregulated interleukin 11 in primary Sjögren's syndrome contributes to apoptosis of glandular epithelial cells. Cell Biol Int 2020; 44:327-335. [PMID: 31502734 DOI: 10.1002/cbin.11236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/08/2019] [Indexed: 01/24/2023]
Abstract
The purpose of this study was to explore the potential function of interleukin-11 (IL-11) in the pathogenesis of primary Sjögren's syndrome (pSS) patients. Real-time polymerase chain reaction was performed to examine IL-11 expression in the labial glands of 30 pSS patients and 30 healthy controls. Immunohistochemistry was conducted to assess the distribution of IL-ll-positive cells in labial glands. The human salivary gland (HSG) cell line was used to study the effects of IL-11 on gland epithelial cells in vitro. Cell viability and cell proliferation were examined by CCK-8 kit and EdU assay, respectively. The population of apoptotic cells was detected in flow cytometry followed by Annexin V/PI and Hoechst staining. We found that the expression levels of IL-11 were remarkably decreased in pSS labial glands and were positively correlated with C-reactive protein levels and negatively correlated with rheumatoid factor levels. Fewer numbers of glandular epithelial cells were observed to be positively stained with IL-11 antibody in labial glands from pSS patients than those in healthy control patients. After IL-11 treatment, the viability and proliferation of HSG cells were significantly higher than those in the control group. The total apoptotic and necrotic rates of HSG cells in the group after IL-11 treatment were significantly lower. In conclusion, the results indicated that IL-11 promoted viability and proliferation and inhibited apoptotic and necrotic rates of glandular epithelial cells. In pSS, downregulated IL-11 might contribute to the apoptosis of salivary gland epithelial cells. However, it might be a potential target to alleviate the pathological atrophy of glandular epithelial cells in pSS patients.
Collapse
Affiliation(s)
- Lei Ye
- Department of Oral Surgery, Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai, Zhizaoju Road 639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road 639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Zhizaoju Road 639, Shanghai, 200011, China
| | - Huan Shi
- Department of Oral Surgery, Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai, Zhizaoju Road 639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road 639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Zhizaoju Road 639, Shanghai, 200011, China
| | - Shufeng Wu
- Department of Oral Surgery, Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai, Zhizaoju Road 639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road 639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Zhizaoju Road 639, Shanghai, 200011, China
| | - Chuangqi Yu
- Department of Oral Surgery, Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai, Zhizaoju Road 639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road 639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Zhizaoju Road 639, Shanghai, 200011, China
| | - Baoli Wang
- Department of Oral Surgery, Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai, Zhizaoju Road 639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road 639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Zhizaoju Road 639, Shanghai, 200011, China
| | - Lingyan Zheng
- Department of Oral Surgery, Shanghai 9th Peoples Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai, Zhizaoju Road 639, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Zhizaoju Road 639, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Zhizaoju Road 639, Shanghai, 200011, China
| |
Collapse
|
8
|
Chen S, Wang J, Fang Q, Dong N, Nie S. Polysaccharide from natural Cordyceps sinensis ameliorated intestinal injury and enhanced antioxidant activity in immunosuppressed mice. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Wang X, Li L, Wang Y, Li X, Feng Q, Hou Y, Ma C, Gao C, Hou M, Peng J. High-Dose Dexamethasone Alters the Increase in Interleukin-16 Level in Adult Immune Thrombocytopenia. Front Immunol 2019; 10:451. [PMID: 30936868 PMCID: PMC6431608 DOI: 10.3389/fimmu.2019.00451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 02/19/2019] [Indexed: 11/26/2022] Open
Abstract
Adult primary immune thrombocytopenia (ITP) is an autoimmune-mediated haemorrhagic disorder. Interleukin-16 (IL-16) can directly affect cellular or humoural immunity by mediating the cellular cross-talk among T cells, B cells and dendritic cells. Several studies have focused on IL-16 as an immunomodulatory cytokine that takes part in Th1 polarization in autoimmune diseases. In this study, we investigated IL-16 expression in the bone marrow supernatant and plasma of ITP patients and healthy controls. What's more, we detected IL-16 expression in ITP patients with the single-agent 4-day high-dose dexamethasone (HD-DXM) therapy. In patients with active ITP, bone marrow supernatant and plasma IL-16 levels increased (P < 0.05) compared with those of healthy controls. In the meantime, the mRNA expression in BMMCs (pro-IL-16, caspase-3) and PBMCs (pro-IL-16, caspase-3 and T-bet) of ITP patients was increased (P < 0.05) relative to those of healthy controls. In patients who responded to HD-DXM therapy, both plasma IL-16 levels and gene expression in PBMCs (pro-IL-16, caspase-3, and T-bet) were decreased (P < 0.05). In summary, the abnormal level of IL-16 plays important roles in the pathogenesis of ITP. Regulating Th1 polarization associated with IL-16 by HD-DXM therapy may provide a novel insight for immune modulation in ITP.
Collapse
Affiliation(s)
- Xinru Wang
- Department of Haematology and Qilu Hospital, Shandong University, Jinan, China.,Department of Haematology, Liaocheng People's Hospital, Liaocheng, China
| | - Lizhen Li
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Yuanjian Wang
- West China School of Medicine, Sichuan University, Jinan, China
| | - Xin Li
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Qi Feng
- Department of Haematology and Qilu Hospital, Shandong University, Jinan, China
| | - Yu Hou
- Department of Haematology and Qilu Hospital, Shandong University, Jinan, China
| | - Chunhong Ma
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Chengjiang Gao
- Department of Immunology, Shandong University School of Medicine, Jinan, China
| | - Ming Hou
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China
| | - Jun Peng
- Department of Haematology and Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
10
|
Ghanavat M, Ebrahimi M, Rafieemehr H, Maniati M, Behzad MM, Shahrabi S. Thrombocytopenia in solid tumors: Prognostic significance. Oncol Rev 2019; 13:413. [PMID: 31205603 PMCID: PMC6542370 DOI: 10.4081/oncol.2019.413] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/18/2019] [Indexed: 01/01/2023] Open
Abstract
Solid tumors are a heterogeneous group of malignancies that result from out-of-control proliferation of cells. Thrombocytopenia is a common complication among patients with solid tumors that predispose them to bleeding disorders. The aim of this review article is to investigate the underlying mechanisms of the risk and incidence of thrombocytopenia in solid tumors. It can be argued that thrombocytopenia is a poor prognostic factor in solid tumors that can result from several factors such as polymorphism and mutation in some transcription factors and cytokines involved in megakaryocytic maturation or from the adverse effects of treatment. Therefore, an understanding of the exact mechanism of thrombocytopenia pathogenesis in each stage of solid tumors can help in developing therapeutic strategies to decrease bleeding complications in these malignancies.
Collapse
Affiliation(s)
- Majid Ghanavat
- Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan
| | - Mina Ebrahimi
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
| | - Hassan Rafieemehr
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan
| | - Mahmood Maniati
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
| | - Masumeh Maleki Behzad
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University Of Medical Sciences, Semnan, Iran
| |
Collapse
|
11
|
Li Y, Li Y, Lu W, Li H, Wang Y, Luo H, Wu Y, Dong W, Bai G, Zhang Y. Integrated Network Pharmacology and Metabolomics Analysis of the Therapeutic Effects of Zi Dian Fang on Immune Thrombocytopenic Purpura. Front Pharmacol 2018; 9:597. [PMID: 29971001 PMCID: PMC6018083 DOI: 10.3389/fphar.2018.00597] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/18/2018] [Indexed: 12/25/2022] Open
Abstract
Current hormone-based treatments for immune thrombocytopenic purpura (ITP) are associated with potentially serious adverse reactions. Zi Dian Fang (ZDF) is a multi-target Traditional Chinese Medicine (TCM) used to treat both the symptoms and root causes of ITP, with fewer side effects than hormone-based treatments. This study analysis of the therapeutic effects of ZDF on ITP from three aspects: platelet proliferation, immunoregulation, and inflammation. After detection of 52 chemical constituents of ZDF by UPLC-Q-TOF/MS, The main targets and pathways affected by ZDF were screened by network pharmacology and verified by Western blot and ELISA. Meanwhile, metabolomics analysis were applied to a mouse model of ITP to identify and screen endogenous terminal metabolites differentially regulated by ZDF. Integrated network pharmacology and metabolomics analysis of the therapeutic effects of ZDF on ITP may be as follows: ZDF counteracts ITP symptoms mainly by inhibiting Ras/MAPKs (Ras/Mitogen-activated protein kinases) pathway, and the expression of upstream protein (Ras) and downstream protein (p-ERK, p-JNK, p-p38) were inhibited, which affects the content of effect index associated with proliferation (Thrombopoietin, TPO; Granulocyte-macrophage colony stimulating factor, GM-CSF), inflammation (Tumor necrosis factor-α, TNF-α; Interleukin-6, IL-6), immune (Interleukin-2, IL-2; Interferon-gamma, IFN-γ; Interleukin-4, IL-4), so that the body’s arginine, Δ12-prostaglandin j2 (Δ12-PGJ2), 9-cis-Retinoic Acid, sphingosine-1-phosphate (S1P), oleic acid amide and other 12 endogenous metabolites significantly changes. Considering the established safety profile, the present study suggests ZDF may be a useful alternative to hormone-based therapies for the treatment of ITP.
Collapse
Affiliation(s)
- Yubo Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yamei Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenliang Lu
- Tasly Institute, Tasly Pharmaceutical Group, Tianjin, China
| | - Hongbin Li
- Tasly Institute, Tasly Pharmaceutical Group, Tianjin, China
| | - Yuming Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Houmin Luo
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuanyuan Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenying Dong
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Gang Bai
- College of Pharmacy, Nankai University, Tianjin, China
| | - Yanjun Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
12
|
Yang H, Cong Y, Wu T, Tang H, Ma M, Zeng J, Zhang W, Lian Z, Yang X. Clinical efficacy of Yingliu mixture combined with metimazole for treating diffuse goitre with hyperthyroidism and its impact on related cytokines. PHARMACEUTICAL BIOLOGY 2017; 55:258-263. [PMID: 27927064 PMCID: PMC6130729 DOI: 10.1080/13880209.2016.1260595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 09/08/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Yingliu mixture was developed in 1990s by Affiliated Longhua Hospital of Shanghai University of Traditional Chinese Medicine, for treating diffuse goitre with hyperthyroidism (Graves' disease, GD). Former studies have shown Yingliu mixture combined with methimazole (Y-M) can effectively improve thyroid function and decrease thyrotropin-receptor antibody level. Furthermore, we researched its impact on related cytokines to prove that Y-M improve patients' immunity status. OBJECTIVE To observe the clinical efficacy of Y-M for treating GD. METHODS A total of 120 GD patients were randomly divided into two groups, the treatment and the control groups (n = 60). The treatment group's patients were treated with Y-M. The control group's patients were treated with methimazole alone. Yingliu mixture was orally administered, 25 mL three times daily. Methimazole was administered at 5-25 mg/day. After 12 weeks of the treatment, the cytokines, antibodies related to thyroid function, and Chinese medical syndromes were evaluated. RESULTS After the treatment, the free triiodothyronine and thyroxine levels in both groups decreased. The thyroid-stimulating hormone level increased in the treatment group. The thyrotropin-receptor antibody levels and TNF-α levels decreased in both groups. In the control group, IL-6 and IFN-γ levels were lower than that before the treatment. In the treatment group, CD4+ and CD25+ levels were higher than pretreatment levels, but IL-10 levels were reduced. CLINICAL SYMPTOMS the total CMS scores for both groups decreased. CONCLUSIONS The Y-M combination can improve thyroid function, and decrease autoantibodies, cytokines, and clinical symptoms, so its efficacy may surpass that of methimazole alone.
Collapse
Affiliation(s)
- Hua Yang
- Department of Endocrinology, Affiliated Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yilei Cong
- Department of Endocrinology, Affiliated Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tengfei Wu
- Department of Endocrinology, Affiliated Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Tang
- Department of Endocrinology, Affiliated Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Muhao Ma
- Department of Endocrinology, Affiliated Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juanhua Zeng
- Department of Endocrinology, Affiliated Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenya Zhang
- Department of Endocrinology, Affiliated Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen Lian
- Department of Endocrinology, Affiliated Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyu Yang
- Department of Endocrinology, Affiliated Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Wu X, Wang L, Sun L, Li T, Ran X. Analysis of clinical effects and mechanism of recombinant human interleukin-11 with glucocorticoids for treatment of idiopathic thrombocytopenic purpura. Exp Ther Med 2016; 13:519-522. [PMID: 28352325 PMCID: PMC5347441 DOI: 10.3892/etm.2016.3989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to evaluate the effectiveness and safety of recombinant human interleukin-11 (IL-11) with glucocorticoids for treatment of adult idiopathic thrombocytopenic purpura (ITP) and the regulatory effect on immune mechanisms. A total of 80 patients with initial diagnosis of ITP admitted to our hospital were selected. Patients were randomly divided into the control group and observation group, with 40 cases each. The control group received glucocorticoids treatment, and the observation group received IL-11 and glucocorticoids. The treatment effects were compared. The total effective rate and effective degree of the observation group was higher than in the control group and the difference was statistically significant (P<0.05); comparing the incidence of complications of the two groups, there was no statistical difference (P>0.05). In the observation group, onset time was reduced, platelet recovery level increased and platelet antibody positive rate decreased, and the differences were statistically significant (P<0.05). The total treatment course was shorter and recurrence rate was lower in the observation group compared with the control group, and the differences were statistically significant (P<0.05). The percentage of CD4+CD25+ regulatory T cells decreased in the two groups after treatment, and was more pronounced in the observation group. The difference was statistically significant (P<0.05). In conclusion, IL-11 with glucocorticoids for the treatment of adult ITP is safe and effective, and may be associated with decreased percentage of CD4+CD25+ regulatory T cells.
Collapse
Affiliation(s)
- Xifeng Wu
- Department of Hematology, Laiwu City People's Hospital, Laiwu, Shandong 271100, P.R. China
| | - Lijuan Wang
- Department of Hematology, Laiwu City People's Hospital, Laiwu, Shandong 271100, P.R. China
| | - Lin Sun
- Department of Hematology, Laiwu City People's Hospital, Laiwu, Shandong 271100, P.R. China
| | - Tantan Li
- Department of Hematology, Laiwu City People's Hospital, Laiwu, Shandong 271100, P.R. China
| | - Xuehong Ran
- Department of Hematology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
14
|
Ge F, Zhang Z, Hou J, Cao F, Zhang Y, Wang P, Wei H, Zhou J. Granulocyte colony-stimulating factor decreases the Th1/Th2 ratio in peripheral blood mononuclear cells from patients with chronic immune thrombocytopenic purpura in vitro. Thromb Res 2016; 148:76-84. [DOI: 10.1016/j.thromres.2016.10.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/06/2016] [Accepted: 10/26/2016] [Indexed: 01/06/2023]
|
15
|
Lin Y, Zhou X, Guo W, Li Q, Pan X, Bao Y, He M, Zhu B, Lin X, Jin L, Yao R. RhIL-11 treatment normalized Th1/Th2 and T-bet/GATA-3 imbalance in in human immune thrombocytopenic purpura (ITP). Int Immunopharmacol 2016; 38:40-4. [DOI: 10.1016/j.intimp.2016.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/18/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
|
16
|
Xie J, Yu Q, Nie S, Fan S, Xiong T, Xie M. Effects of Lactobacillus plantarum NCU116 on Intestine Mucosal Immunity in Immunosuppressed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10914-10920. [PMID: 26651209 DOI: 10.1021/acs.jafc.5b04757] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The effects of Lactobacillus plantarum (L. plantarum) NCU116 isolated from pickled vegetables on intestine mucosal immunity in cyclophosphamide treated mice were investigated. Animals were divided into six groups: normal group (NIM), immunosuppression group (IM), immunosuppression plus L. plantarum NCU116 groups with three different doses (NCU-H, NCU-M, and NCU-L), and plus Bifidobacterium BB12 as positive control group (BB12). Results showed that the thymus indexes of the four treatment groups were significantly higher than that of the IM group (2.02 ± 0.16) (p < 0.05) and close to the index of the NIM group (2.61 ± 0.37) at 10 days. The level of immune factor IL-2 notably increased (IM, 121 ± 9.0) (p < 0.05) and was close to 65% of NIM group's level (230 ± 10.7). The levels of other immune factors (IFN-γ, IL-10, IL-12p70, and sIgA), the gene expression levels of IL-2 and IFN-γ, and the number of IgA-secreting cells showed similar patterns (p < 0.05). However, the level of immune factor IL-4 remarkably decreased (IM, 128 ± 10.2) (p < 0.05) and was only approximately 50% of the NIM group (154 ± 18.2). The levels of other immune factors (IL-6 and IgE) and the gene expression level of IL-6 at 10 days exhibited similar changes (p < 0.05) but showed a slight recovery at 20 days, accompanied by the altered protein expression levels of T-bet and GATA-3 in the small intestine. These findings suggest that L. plantarum NCU116 enhanced the immunity of the small intestine in the immunosuppressed mice.
Collapse
Affiliation(s)
- Junhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| | - Songtao Fan
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
17
|
Decreased level of cytotoxic T lymphocyte antigen-4 (CTLA-4) in patients with acute immune thrombocytopenia (ITP). Thromb Res 2015; 136:797-802. [DOI: 10.1016/j.thromres.2015.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/19/2015] [Accepted: 07/11/2015] [Indexed: 01/15/2023]
|