1
|
Tsurkan MV, Bessert J, Selzer R, Tsurkan SD, Pette D, Maitz MF, Welzel PB, Werner C. FXa-Responsive Hydrogels to Craft Corneal Endothelial Lamellae. Adv Healthc Mater 2025; 14:e2402593. [PMID: 39840500 PMCID: PMC12004427 DOI: 10.1002/adhm.202402593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/12/2024] [Indexed: 01/23/2025]
Abstract
Cell-instructive polymer hydrogels are instrumental in tissue engineering for regenerative therapies. Implementing defined and selective responsiveness to external stimuli is a persisting challenge that critically restricts their functionality. Addressing this challenge, this study introduces a versatile, modular hydrogel system composed of four-arm poly(ethylene glycol)(starPEG)-peptide and glycosaminoglycan(GAG)-maleimide conjugates. The gel system features a small peptide sequence that is selectively cleaved by the coagulation factor FXa. In a cell culture environment, where active FXa is absent, the hydrogel remains stable, providing a conducive matrix for the growth of complex tissue structures or organoids. Upon the introduction of FXa, the hydrogel is designed to disintegrate rapidly, enabling the gentle release of the cultivated tissues without impairing their functionality. The efficacy of this approach is demonstrated through the ex vivo development, detachment, and transplantation of human corneal endothelial lamellae, achieving sizes relevant for clinical application in Descemet Membrane Endothelial Keratoplasty (DMEK). Furthermore, the practicality of the hydrogel system is validated in vitro using a de-endothelialized porcine cornea as a surrogate recipient. Since the FXa-cleavable peptide can be integrated into a variety of multifunctional hydrogels, it can pave the way for next-generation scaffold-free tissue engineering and organoid regenerative therapies.
Collapse
Affiliation(s)
- Mikhail V. Tsurkan
- Max Bergmann Center of Biomaterials DresdenLeibniz‐Institut für Polymerforschung Dresden e. V.Hohe Str. 601069DresdenGermany
- TissueGUARD GmbHTrienter Str 1601217DresdenGermany
| | - Juliane Bessert
- Max Bergmann Center of Biomaterials DresdenLeibniz‐Institut für Polymerforschung Dresden e. V.Hohe Str. 601069DresdenGermany
- Faculty of Medicine Carl Gustav CarusInstitute of AnatomyTechnische Universität DresdenFetscherstr. 7401307DresdenGermany
| | - Rabea Selzer
- Max Bergmann Center of Biomaterials DresdenLeibniz‐Institut für Polymerforschung Dresden e. V.Hohe Str. 601069DresdenGermany
| | - Sarah D. Tsurkan
- TissueGUARD GmbHTrienter Str 1601217DresdenGermany
- Else Kröner Fresenius Center for Digital HealthUniversity Hospital Carl Gustav Carus DresdenTechnische Universität DresdenFetscherstr. 7401307DresdenGermany
| | - Dagmar Pette
- Max Bergmann Center of Biomaterials DresdenLeibniz‐Institut für Polymerforschung Dresden e. V.Hohe Str. 601069DresdenGermany
| | - Manfred F. Maitz
- Max Bergmann Center of Biomaterials DresdenLeibniz‐Institut für Polymerforschung Dresden e. V.Hohe Str. 601069DresdenGermany
| | - Petra B. Welzel
- Max Bergmann Center of Biomaterials DresdenLeibniz‐Institut für Polymerforschung Dresden e. V.Hohe Str. 601069DresdenGermany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials DresdenLeibniz‐Institut für Polymerforschung Dresden e. V.Hohe Str. 601069DresdenGermany
- Center for Regenerative Therapies DresdenTechnische Universität DresdenFetscherstr. 10501307DresdenGermany
| |
Collapse
|
2
|
Bryzek D, Gasiorek A, Kowalczyk D, Santocki M, Ciaston I, Dobosz E, Kolaczkowska E, Kjøge K, Kantyka T, Lech M, Potempa B, Enghild JJ, Potempa J, Koziel J. Non-classical neutrophil extracellular traps induced by PAR2-signaling proteases. Cell Death Dis 2025; 16:109. [PMID: 39971938 PMCID: PMC11840154 DOI: 10.1038/s41419-025-07428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
Neutrophil extracellular traps (NETs) are associated with diseases linked to aberrant coagulation. The blood clotting cascade involves a series of proteases, some of which induce NET formation via a yet unknown mechanism. We hypothesized that this formation involves signaling via a factor Xa (FXa) activation of the protease-activated receptor 2 (PAR2). Our findings revealed that NETs can be triggered in vitro by enzymatically active proteases and PAR2 agonists. Intravital microscopy of the liver vasculature revealed that both FXa infusion and activation of endogenous FX promoted NET formation, effects that were prevented by the FXa inhibitor, apixaban. Unlike classical NETs, these protease-induced NETs lacked bactericidal activity and their proteomic signature indicates their role in inflammatory disorders, including autoimmune diseases and carcinogenesis. Our findings suggest a novel mechanism of NET formation under aseptic conditions, potentially contributing to a self-amplifying clotting and NET formation cycle. This mechanism may underlie the pathogenesis of disseminated intravascular coagulation and other aseptic conditions.
Collapse
Affiliation(s)
- Danuta Bryzek
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Anna Gasiorek
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Dominik Kowalczyk
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Michal Santocki
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Izabela Ciaston
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ewelina Dobosz
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Elzbieta Kolaczkowska
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Katarzyna Kjøge
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Maciej Lech
- LMU Hospital, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians University, Munich, Germany
| | - Barbara Potempa
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan Potempa
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Joanna Koziel
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
3
|
Featherby SJ, Faulkner EC, Ettelaie C. Tissue factor signalling modifies the expression and regulation of G1/S checkpoint regulators: Implications during injury and prolonged inflammation. Mol Med Rep 2025; 31:39. [PMID: 39611476 PMCID: PMC11626423 DOI: 10.3892/mmr.2024.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Tissue factor (TF) possesses additional physiological functions beyond initiating the coagulation cascade. Cellular signals initiated by cellular TF or on contact with TF‑containing microvesicles, contribute to wound healing through regulating a number of cellular properties and functions. TF regulates the cell cycle checkpoints, however the underlying signalling mechanisms have not been determined. Endothelial (human dermal blood endothelial cells and human umbilical vein endothelial cells) and epithelial [human telomerase reverse transcriptase‑human pancreatic nestin‑expressing ductal cells (hTERT‑HPNE) and AsPC‑1] cells were exposed to different concentrations of recombinant TF, and the influence on G1/S checkpoint regulators examined. Short‑term exposure to a lower concentration of TF promoted increased p16INKa and decreased p21CIP1/WAF1 expression, together with higher early region 2 binding factor (E2F) transcriptional activity and increased phosphorylation of Thr821/826 within retinoblastoma protein, leading to cell proliferation. The increase in p16INKa expression was prevented following inhibition of β1‑integrin, or blocking the exosite within TF with AIIB2 and 10H10 antibodies, respectively. Exposure of cells to higher concentrations of TF induced disproportionate increases in p16INKa and p21CIP1/WAF1 expression, reduced retinoblastoma protein phosphorylation and E2F activity. Prolonged treatment of the immortalised hTERT‑HPNE cells with recombinant TF, resulted in significant downregulation of p16INKa protein, which was partially due to reduced mRNA expression, together with increased E2F activity, and cyclin E mRNA expression. Although an increase in the methylation of the p16INKa promoter was detected, the reduction in p16INKa protein was concurrent with, and partly attributed to increased p14ARF expression. TF appears early at the site of trauma, and its concentration is an ideal gauge for determining the extent of cellular damage, initiating clearance and repair. It is hypothesised that the balance of this signal is also dependent on the ability of cells to moderate the TF, and therefore on the level of damage. However, prolonged exposure of cells for example due to inflammation, leads to the dysregulation of the G1/S checkpoint by the tumour suppressors, leading to aberrant growth.
Collapse
Affiliation(s)
- Sophie J. Featherby
- Biomedical Section, Hull-York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Eamon C. Faulkner
- Biomedical Section, Hull-York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Camille Ettelaie
- Biomedical Section, Hull-York Medical School, University of Hull, Hull, HU6 7RX, UK
| |
Collapse
|
4
|
Karimi S, Abboud K, Umoru G, Bernicker EH. Effect of direct oral anticoagulants compared to enoxaparin on objective response to immune checkpoint inhibitors in patients with lung cancer. J Oncol Pharm Pract 2024:10781552241303992. [PMID: 39636003 DOI: 10.1177/10781552241303992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
INTRODUCTION A hypoxic tumor microenvironment inhibits the normal functioning of immune cells. Studies have hypothesized that anticoagulants that can penetrate and bind to factor Xa in the tumor microenvironment, can enhance T-cell function and augment immunotherapy activity. This study compared objective response rate and progression-free survival of lung cancer patients on concomitant immunotherapy treated with direct-acting oral anticoagulants versus enoxaparin. METHODS This single-center retrospective study included 73 adults with stage-IV lung cancer who received at least two cycles of immunotherapy and one month of anticoagulant therapy with direct-acting oral anticoagulants (Arm A) versus enoxaparin (Arm B) between June 1, 2016, to September 30, 2022. Primary endpoint was objective response rate, and secondary endpoints were rates of complete response, progression-free survival, incidence of thrombotic events, and major bleeding. RESULTS Objective response rate at 6 months was 24.5% versus 25% while progression-free survival at 6 months was 54.7% versus 45% in Arm A versus Arm B, respectively. Complete response rates at 6 months were 7.5% in Arm A versus 0% in Arm B. One patient in Arm A and two in Arm B had a recurrent deep vein thrombosis. Nine patients in Arm A and two in Arm B were diagnosed with new deep vein thrombosis. One patient in Arm B was diagnosed with new pulmonary embolism. Two major bleeding events occurred in Arm B. CONCLUSIONS Our study suggests a trend toward improved progression-free survival at 6 months with no new safety concerns in lung cancer patients on concurrent immunotherapy and direct-acting oral anticoagulants.
Collapse
Affiliation(s)
- Solmaz Karimi
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX, USA
| | - Karen Abboud
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX, USA
| | - Godsfavour Umoru
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX, USA
| | - Eric H Bernicker
- Department of Hematology and Medical Oncology, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
5
|
Calì B, Troiani M, Bressan S, Attanasio G, Merler S, Moscarda V, Mosole S, Ricci E, Guo C, Yuan W, Gallagher L, Lundberg A, Bernett I, Figueiredo I, Arzola RA, Abreut EB, D'Ambrosio M, Bancaro N, Brina D, Zumerle S, Pasquini E, Maddalena M, Lai P, Colucci M, Pernigoni N, Rinaldi A, Minardi D, Morlacco A, Moro FD, Sabbadin M, Galuppini F, Fassan M, Rüschoff JH, Moch H, Rescigno P, Francini E, Saieva C, Modesti M, Theurillat JP, Gillessen S, Wilgenbus P, Graf C, Ruf W, de Bono J, Alimonti A. Coagulation factor X promotes resistance to androgen-deprivation therapy in prostate cancer. Cancer Cell 2024; 42:1676-1692.e11. [PMID: 39303726 DOI: 10.1016/j.ccell.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/13/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Although hypercoagulability is commonly associated with malignancies, whether coagulation factors directly affect tumor cell proliferation remains unclear. Herein, by performing single-cell RNA sequencing (scRNA-seq) of the prostate tumor microenvironment (TME) of mouse models of castration-resistant prostate cancer (CRPC), we report that immunosuppressive neutrophils (PMN-MDSCs) are a key extra-hepatic source of coagulation factor X (FX). FX activation within the TME enhances androgen-independent tumor growth by activating the protease-activated receptor 2 (PAR2) and the phosphorylation of ERK1/2 in tumor cells. Genetic and pharmacological inhibition of factor Xa (FXa) antagonizes the oncogenic activity of PMN-MDSCs, reduces tumor progression, and synergizes with enzalutamide therapy. Intriguingly, F10high PMN-MDSCs express the surface marker CD84 and CD84 ligation enhances F10 expression. Elevated levels of FX, CD84, and PAR2 in prostate tumors associate with worse survival in CRPC patients. This study provides evidence that FXa directly promotes cancer and highlights additional targets for PMN-MDSCs for cancer therapies.
Collapse
Affiliation(s)
- Bianca Calì
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Martina Troiani
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Silvia Bressan
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
| | - Giuseppe Attanasio
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Sara Merler
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Section of Oncology, Department of Medicine, University of Verona, 37134 Verona, Italy; Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland; Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Viola Moscarda
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Section of Oncology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Simone Mosole
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Elena Ricci
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Christina Guo
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Wei Yuan
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Lewis Gallagher
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Arian Lundberg
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Ilona Bernett
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Ines Figueiredo
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Rydell Alvarez Arzola
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Department of Immunoregulation, Immunology and Immunotherapy Division, Center of Molecular Immunology, La Habana 3GGH+C9G, Cuba
| | - Ernesto Bermudez Abreut
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Department of Immunoregulation, Immunology and Immunotherapy Division, Center of Molecular Immunology, La Habana 3GGH+C9G, Cuba
| | - Mariantonietta D'Ambrosio
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Nicolò Bancaro
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Daniela Brina
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Sara Zumerle
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Medicine, University of Padova, 35121 Padova, Italy
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Martino Maddalena
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Ping Lai
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Manuel Colucci
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Nicolò Pernigoni
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Davide Minardi
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Urology Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Alessandro Morlacco
- Urology Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Fabrizio Dal Moro
- Urology Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Marianna Sabbadin
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Medicine, Surgical Pathology Unit, University of Padova, 35121 Padova, Italy
| | - Francesca Galuppini
- Department of Medicine, Surgical Pathology Unit, University of Padova, 35121 Padova, Italy
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology Unit, University of Padova, 35121 Padova, Italy
| | - Jan Hendrik Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | | | - Edoardo Francini
- Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland; Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
| | - Calogero Saieva
- Cancer Risk Factors and Lifestyle Epidemiology Unit - ISPRO, 50139 Florence, Italy
| | - Mikol Modesti
- Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Silke Gillessen
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland
| | - Petra Wilgenbus
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Claudine Graf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Johann de Bono
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland; Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Medicine, University of Padova, 35121 Padova, Italy; Department of Health Sciences and Technology (D-HEST) ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
6
|
Jannati S, Patnaik R, Banerjee Y. Beyond Anticoagulation: A Comprehensive Review of Non-Vitamin K Oral Anticoagulants (NOACs) in Inflammation and Protease-Activated Receptor Signaling. Int J Mol Sci 2024; 25:8727. [PMID: 39201414 PMCID: PMC11355043 DOI: 10.3390/ijms25168727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/02/2024] Open
Abstract
Non-vitamin K oral anticoagulants (NOACs) have revolutionized anticoagulant therapy, offering improved safety and efficacy over traditional agents like warfarin. This review comprehensively examines the dual roles of NOACs-apixaban, rivaroxaban, edoxaban, and dabigatran-not only as anticoagulants, but also as modulators of inflammation via protease-activated receptor (PAR) signaling. We highlight the unique pharmacotherapeutic properties of each NOAC, supported by key clinical trials demonstrating their effectiveness in preventing thromboembolic events. Beyond their established anticoagulant roles, emerging research suggests that NOACs influence inflammation through PAR signaling pathways, implicating factors such as factor Xa (FXa) and thrombin in the modulation of inflammatory responses. This review synthesizes current evidence on the anti-inflammatory potential of NOACs, exploring their impact on inflammatory markers and conditions like atherosclerosis and diabetes. By delineating the mechanisms by which NOACs mediate anti-inflammatory effects, this work aims to expand their therapeutic utility, offering new perspectives for managing inflammatory diseases. Our findings underscore the broader clinical implications of NOACs, advocating for their consideration in therapeutic strategies aimed at addressing inflammation-related pathologies. This comprehensive synthesis not only enhances understanding of NOACs' multifaceted roles, but also paves the way for future research and clinical applications in inflammation and cardiovascular health.
Collapse
Affiliation(s)
- Shirin Jannati
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Rajashree Patnaik
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Yajnavalka Banerjee
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
- Centre for Medical Education, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
7
|
Schneckmann R, Döring M, Gerfer S, Gorressen S, Heitmeier S, Helten C, Polzin A, Jung C, Kelm M, Fender AC, Flögel U, Grandoch M. Rivaroxaban attenuates neutrophil maturation in the bone marrow niche. Basic Res Cardiol 2023; 118:31. [PMID: 37580509 PMCID: PMC10425524 DOI: 10.1007/s00395-023-01001-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Pharmacological inhibition of factor Xa by rivaroxaban has been shown to mediate cardioprotection and is frequently used in patients with, e.g., atrial fibrillation. Rivaroxaban's anti-inflammatory actions are well known, but the underlying mechanisms are still incompletely understood. To date, no study has focused on the effects of rivaroxaban on the bone marrow (BM), despite growing evidence that the BM and its activation are of major importance in the development/progression of cardiovascular disease. Thus, we examined the impact of rivaroxaban on BM composition under homeostatic conditions and in response to a major cardiovascular event. Rivaroxaban treatment of mice for 7 days markedly diminished mature leukocytes in the BM. While apoptosis of BM-derived mature myeloid leukocytes was unaffected, lineage-negative BM cells exhibited a differentiation arrest at the level of granulocyte-monocyte progenitors, specifically affecting neutrophil maturation via downregulation of the transcription factors Spi1 and Csfr1. To assess whether this persists also in situations of increased leukocyte demand, mice were subjected to cardiac ischemia/reperfusion injury (I/R): 7 d pretreatment with rivaroxaban led to reduced cardiac inflammation 72 h after I/R and lowered circulating leukocyte numbers. However, BM myelopoiesis showed a rescue of the leukocyte differentiation arrest, indicating that rivaroxaban's inhibitory effects are restricted to homeostatic conditions and are mainly abolished during emergency hematopoiesis. In translation, ST-elevation MI patients treated with rivaroxaban also exhibited reduced circulating leukocyte numbers. In conclusion, we demonstrate that rivaroxaban attenuates neutrophil maturation in the BM, which may offer a therapeutic option to limit overshooting of the immune response after I/R.
Collapse
Affiliation(s)
- R Schneckmann
- Institute for Translational Pharmacology Düsseldorf, Medical Faculty, University Hospital of the Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - M Döring
- Institute for Translational Pharmacology Düsseldorf, Medical Faculty, University Hospital of the Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - S Gerfer
- Department of Cardiothoracic Surgery, Heart Center of the University Hospital of Cologne, Cologne, Germany
| | - S Gorressen
- Institute for Pharmacology Düsseldorf, Medical Faculty, University Hospital and Heinrich Heine University, Düsseldorf, Germany
| | - S Heitmeier
- Research & Development Pharmaceuticals, Bayer AG, Acute Hospital Research, Wuppertal, Germany
| | - C Helten
- Department for Cardiology, Pneumology and Vascular Medicine, University Hospital and Heinrich Heine University, Düsseldorf, Germany
| | - A Polzin
- Department for Cardiology, Pneumology and Vascular Medicine, University Hospital and Heinrich Heine University, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - C Jung
- Department for Cardiology, Pneumology and Vascular Medicine, University Hospital and Heinrich Heine University, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - M Kelm
- Department for Cardiology, Pneumology and Vascular Medicine, University Hospital and Heinrich Heine University, Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - A C Fender
- Institute of Pharmacology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - U Flögel
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, University Hospital and Heinrich Heine University, Düsseldorf, Germany
| | - M Grandoch
- Institute for Translational Pharmacology Düsseldorf, Medical Faculty, University Hospital of the Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany.
- CARID, Cardiovascular Research Institute Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
8
|
Ren Z, Xue Y, Liu L, Zhang X, Pei J, Zhang Y, Wang Y, Yu K. Tissue factor overexpression in triple-negative breast cancer promotes immune evasion by impeding T-cell infiltration and effector function. Cancer Lett 2023; 565:216221. [PMID: 37192729 DOI: 10.1016/j.canlet.2023.216221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
Triple-negative breast cancer (TNBC) remains a most deadly human malignancy with limited response to chemotherapy, targeted therapy and immunotherapy. Tumor immunoenvironment plays an increasingly important role in therapy outcome. Tissue factor (TF) is the target of the FDA-approved ADC Tivdak. HuSC1-39 is the parent antibody of MRG004A, a clinical stage TF-ADC (NCT04843709). Here, we employed HuSC1-39 (termed "anti-TF") to investigate the role of TF in regulating immune-tolerance in TNBC. We found that patients with aberrant TF expression had a poor prognosis and low immune effector cell infiltration, characterizing as "cold tumor". In the 4T1 TNBC syngeneic mouse model, knockout of tumor cell TF inhibited tumor growth and increased tumor infiltration of effector T cell, which was not dependent on the clotting inhibition. In an immune-reconstituted M-NSG mouse model of TNBC, anti-TF inhibited tumor growth, which was further enhanced by a dual-targeting anti-TF&TGFβR fusion protein. There were diminished P-AKT and P-ERK signaling and profound tumor cell death in treated tumors. Transcriptome analyses and immunohistochemistry revealed a dramatically improved tumor immunoenvironment including the increase of effector T cells, decrease of Treg cells and the transformation of tumor into "hot tumor". Moreover, employing qPCR analysis and T cell culture, we further demonstrated that TF expression in tumor cells is sufficient to block the synthesis and secretion of T cell-recruiting chemokine CXCL9/10/11. Treatment of TF-high TNBC cells with anti-TF or TF-knockout all stimulated CXCL9/10/11 production, promoted T cell migration and effector function. Thus, we have identified a new mechanism of TF in TNBC tumor progression and therapy resistance.
Collapse
Affiliation(s)
- Zhiqiang Ren
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Yinyin Xue
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Liang Liu
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Xuesai Zhang
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Jinpeng Pei
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Yu Zhang
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Yue Wang
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Ker Yu
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China.
| |
Collapse
|
9
|
Wu C, Zhong Q, Shrestha R, Wang J, Hu X, Li H, Rouchka EC, Yan J, Ding C. Reactive myelopoiesis and FX-expressing macrophages triggered by chemotherapy promote cancer lung metastasis. JCI Insight 2023; 8:e167499. [PMID: 36976637 PMCID: PMC10243818 DOI: 10.1172/jci.insight.167499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Several preclinical studies have demonstrated that certain cytotoxic drugs enhance metastasis, but the importance of host responses triggered by chemotherapy in regulating cancer metastasis has not been fully explored. Here, we showed that multidose gemcitabine (GEM) treatment promoted breast cancer lung metastasis in a transgenic spontaneous breast cancer model. GEM treatment significantly increased accumulation of CCR2+ macrophages and monocytes in the lungs of tumor-bearing as well as tumor-free mice. These changes were largely caused by chemotherapy-induced reactive myelopoiesis biased toward monocyte development. Mechanistically, enhanced production of mitochondrial ROS was observed in GEM-treated BM Lin-Sca1+c-Kit+ cells and monocytes. Treatment with the mitochondria targeted antioxidant abrogated GEM-induced hyperdifferentiation of BM progenitors. In addition, GEM treatment induced upregulation of host cell-derived CCL2, and knockout of CCR2 signaling abrogated the pro-metastatic host response induced by chemotherapy. Furthermore, chemotherapy treatment resulted in the upregulation of coagulation factor X (FX) in lung interstitial macrophages. Targeting activated FX (FXa) using FXa inhibitor or F10 gene knockdown reduced the pro-metastatic effect of chemotherapy. Together, these studies suggest a potentially novel mechanism for chemotherapy-induced metastasis via the host response-induced accumulation of monocytes/macrophages and interplay between coagulation and inflammation in the lungs.
Collapse
Affiliation(s)
- Caijun Wu
- UofL Health - Brown Cancer Center and
| | | | - Rejeena Shrestha
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | | | | | - Hong Li
- UofL Health - Brown Cancer Center and
| | - Eric C. Rouchka
- Department of Computer Science and Engineering, University of Louisville J.B. Speed School of Engineering, Louisville, Kentucky, USA
| | - Jun Yan
- UofL Health - Brown Cancer Center and
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Surgery, Division of Immunotherapy, UofL Health - Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Chuanlin Ding
- UofL Health - Brown Cancer Center and
- Department of Surgery, Division of Immunotherapy, UofL Health - Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
10
|
Dong W, Wang J, Tian L, Zhang J, Settles EW, Qin C, Steinken-Kollath DR, Itogawa AN, Celona KR, Yi J, Bryant M, Mead H, Jaramillo SA, Lu H, Li A, Zumwalt RE, Dadwal S, Feng P, Yuan W, Whelan SPJ, Keim PS, Barker BM, Caligiuri MA, Yu J. Factor Xa cleaves SARS-CoV-2 spike protein to block viral entry and infection. Nat Commun 2023; 14:1936. [PMID: 37024459 PMCID: PMC10079155 DOI: 10.1038/s41467-023-37336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Serine proteases (SP), including furin, trypsin, and TMPRSS2 cleave the SARS-CoV-2 spike (S) protein, enabling the virus to enter cells. Here, we show that factor (F) Xa, an SP involved in blood coagulation, is upregulated in COVID-19 patients. In contrast to other SPs, FXa exerts antiviral activity. Mechanistically, FXa cleaves S protein, preventing its binding to ACE2, and thus blocking viral entry and infection. However, FXa is less effective against variants carrying the D614G mutation common in all pandemic variants. The anticoagulant rivaroxaban, a direct FXa inhibitor, inhibits FXa-mediated S protein cleavage and facilitates viral entry, whereas the indirect FXa inhibitor fondaparinux does not. In the lethal SARS-CoV-2 K18-hACE2 model, FXa prolongs survival yet its combination with rivaroxaban but not fondaparinux abrogates that protection. These results identify both a previously unknown function for FXa and an associated antiviral host defense mechanism against SARS-CoV-2 and suggest caution in considering direct FXa inhibitors for preventing or treating thrombotic complications in COVID-19 patients.
Collapse
Affiliation(s)
- Wenjuan Dong
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Jing Wang
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Lei Tian
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Erik W Settles
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | | | - Ashley N Itogawa
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Kimberly R Celona
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Jinhee Yi
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Mitchell Bryant
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Heather Mead
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Sierra A Jaramillo
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Hongjia Lu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Aimin Li
- Pathology Core of Shared Resources Core, Beckman Research Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Ross E Zumwalt
- Department of Pathology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Sanjeet Dadwal
- Division of Infectious Diseases, Department of Medicine, City of Hope National Medical Center, Los Angeles, CA, 91010, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Paul S Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Bridget Marie Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Michael A Caligiuri
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, 91010, USA.
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
- City of Hope Comprehensive Cancer Center, Los Angeles, CA, 91010, USA.
- Department of Immuno-Oncology, City of Hope, Los Angeles, CA, 91010, USA.
| |
Collapse
|
11
|
Konno T, Martinez EE, Ji J, Miranda-Ribera A, Fiorentino MR, Fasano A. Human coagulation factor X and CD5 antigen-like are potential new members of the zonulin family proteins. Biochem Biophys Res Commun 2023; 638:127-133. [PMID: 36446155 PMCID: PMC9797450 DOI: 10.1016/j.bbrc.2022.11.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Zonulin is a physiologic epithelial and endothelial permeability modulator. Zonulin increases antigen trafficking from the gut lumen into the bloodstream and in between body compartments, a mechanism linked to many chronic inflammatory diseases. Upon its initial discovery, it was noted that zonulin was not a single protein, but rather a family of structurally and functionally related proteins referred to as the zonulin family proteins (ZFPs). ZFPs are members of the mannose associated serine proteases (MASP) family and are the result of high mutation rates leading to many zonulin polymorphisms. Pre-haptoglobin 2, the precursor of haptoglobin 2, was identified as the first eukaryotic member of the ZFPs, and properdin, a key positive regulator of the alternative pathway, as a second member. In this study, we report two additional proteins that are likely ZFPs. Human coagulation factor X (FX) and CD5 antigen-like (CD5L). Both FX and CD5L recombinant proteins were detected by anti-zonulin antibody in Western immunoblot analysis, and both proteins decreased epithelial barrier competency of Caco-2 cell monolayers as established by the Trans Epithelial Electrical Resistance (TEER) assay. These results indicate that FX and CD5L have structural and functional similarities with previously identified ZFPs and, therefore, can be considered new members of this family of proteins.
Collapse
Affiliation(s)
- Takumi Konno
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Enid E Martinez
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA, USA; Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jian Ji
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Alba Miranda-Ribera
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Maria R Fiorentino
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Alessio Fasano
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital-East, 16th Street, Building 114 (M/S 114-3503), Charlestown, MA, 02114-4404, USA.
| |
Collapse
|
12
|
Inhibition of protein disulfide isomerase with PACMA-31 regulates monocyte tissue factor through transcriptional and posttranscriptional mechanisms. Thromb Res 2022; 220:48-59. [DOI: 10.1016/j.thromres.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
|
13
|
Abstract
Tissue factor (TF), an initiator of extrinsic coagulation pathway, is positively correlated with venous thromboembolism (VTE) of tumor patients. Beyond thrombosis, TF plays a vital role in tumor progression. TF is highly expressed in cancer tissues and circulating tumor cell (CTC), and activates factor VIIa (FVIIa), which increases tumor cells proliferation, angiogenesis, epithelial-mesenchymal transition (EMT) and cancer stem cells(CSCs) activity. Furthermore, TF and TF-positive microvesicles (TF+MVs) activate the coagulation system to promote the clots formation with non-tumor cell components (e.g., platelets, leukocytes, fibrin), which makes tumor cells adhere to clots to form CTC clusters. Then, tumor cells utilize clots to cause its reducing fluid shear stress (FSS), anoikis resistance, immune escape, adhesion, extravasation and colonization. Herein, we review in detail that how TF signaling promotes tumor metastasis, and how TF-targeted therapeutic strategies are being in the preclinical and clinical trials.
Collapse
|
14
|
Gunther RC, Bharathi V, Miles SD, Tumey LR, Schmedes CM, Tatsumi K, Bridges MD, Martinez D, Montgomery SA, Beck MA, Camerer E, Mackman N, Antoniak S. Myeloid Protease-Activated Receptor-2 Contributes to Influenza A Virus Pathology in Mice. Front Immunol 2021; 12:791017. [PMID: 34925374 PMCID: PMC8671937 DOI: 10.3389/fimmu.2021.791017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
BackgroundInnate immune responses to influenza A virus (IAV) infection are initiated in part by toll-like receptor 3 (TLR3). TLR3-dependent signaling induces an antiviral immune response and an NFκB-dependent inflammatory response. Protease-activated receptor 2 (PAR2) inhibits the antiviral response and enhances the inflammatory response. PAR2 deficiency protected mice during IAV infection. However, the PAR2 expressing cell-types contributing to IAV pathology in mice and the mechanism by which PAR2 contributes to IAV infection is unknown.MethodsIAV infection was analyzed in global (Par2-/-), myeloid (Par2fl/fl;LysMCre+) and lung epithelial cell (EpC) Par2 deficient (Par2fl/fl;SPCCre+) mice and their respective controls (Par2+/+ and Par2fl/fl). In addition, the effect of PAR2 activation on polyinosinic-polycytidylic acid (poly I:C) activation of TLR3 was analyzed in bone marrow-derived macrophages (BMDM). Lastly, we determined the effect of PAR2 inhibition in wild-type (WT) mice.ResultsAfter IAV infection, Par2-/- and mice with myeloid Par2 deficiency exhibited increased survival compared to infected controls. The improved survival was associated with reduced proinflammatory mediators and reduced cellular infiltration in bronchoalveolar lavage fluid (BALF) of Par2-/- and Par2fl/fl;LysMCre+ 3 days post infection (dpi) compared to infected control mice. Interestingly, Par2fl/fl;SPCCre+ mice showed no survival benefit compared to Par2fl/fl. In vitro studies showed that Par2-/- BMDM produced less IL6 and IL12p40 than Par2+/+ BMDM after poly I:C stimulation. In addition, activation of PAR2 on Par2+/+ BMDM increased poly I:C induction of IL6 and IL12p40 compared to poly I:C stimulation alone. Importantly, PAR2 inhibition prior to IAV infection protect WT mice.ConclusionGlobal Par2 or myeloid cell but not lung EpC Par2 deficiency was associated with reduced BALF inflammatory markers and reduced IAV-induced mortality. Our study suggests that PAR2 may be a therapeutic target to reduce IAV pathology.
Collapse
Affiliation(s)
- Randall C. Gunther
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Vanthana Bharathi
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephen D. Miles
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lauryn R. Tumey
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Clare M. Schmedes
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kohei Tatsumi
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Meagan D. Bridges
- UNC Blood Research Center, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David Martinez
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie A. Montgomery
- UNC Lineberger Comprehensive Cancer Center, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Melinda A. Beck
- Department of Nutrition, Gillings School of Global Public Health, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eric Camerer
- Department of Medicine, Université de Paris, Paris Cardiovascular Research Center (PARCC), INSERM UMR 970, Paris, France
| | - Nigel Mackman
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Silvio Antoniak
- UNC Blood Research Center, UNC Lineberger Comprehensive Cancer Center, UNC McAllister Heart Institute, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Silvio Antoniak,
| |
Collapse
|
15
|
Ettelaie C, Featherby S, Rondon AMR, Greenman J, Versteeg HH, Maraveyas A. De-Palmitoylation of Tissue Factor Regulates Its Activity, Phosphorylation and Cellular Functions. Cancers (Basel) 2021; 13:cancers13153837. [PMID: 34359738 PMCID: PMC8345185 DOI: 10.3390/cancers13153837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, the role of de-palmitoylation of tissue factor (TF) in the decryption of its activity was explored. TF-tGFP constructs were prepared by mutagenesis-substitution at Cys245 to prevent or mimic palmitolyation. Additionally, to reduce TF de-palmitoylation, the expression of palmitoyl-protein thioesterases (PPT) was suppressed. Other TF mutants were prepared with altered flexibility, hydrophobicity or length of the transmembrane domain. The outcome of these alterations on fXa-generation, fVIIa binding, Ser253 phosphorylation and TF-microvesicle release were assessed in endothelial cells, and the influence on endothelial and MCF-7 cell proliferation and apoptosis was analysed. Preventing TF palmitoylation (TFSer245-tGFP), increasing the hydrophobicity (TFPhe241-tGFP) or lengthening (TFLongTM-tGFP) of the transmembrane domain enhanced fXa-generation in resting cells compared to cells expressing TFWt-tGFP, but fXa-generation was not further increased following PAR2 activation. Extending the available length of the transmembrane domain enhanced the TF-tGFP release within microvesicles and Ser253 phosphorylation and increased cell proliferation. Moreover, prevention of PKCα-mediated Ser253 phosphorylation with Gö6976 did not preclude fXa-generation. Conversely, reducing the hydrophobicity (TFSer242-tGFP), shortening (TFShortTM-tGFP) or reducing the flexibility (TFVal225-tGFP) of the transmembrane domain suppressed fXa-generation, fVIIa-HRP binding and Ser253 phosphorylation following PAR2 activation. PPT knock-down or mimicking palmitoylation (TFPhe245-tGFP) reduced fXa-generation without affecting fVIIa binding. This study has for the first time shown that TF procoagulant activity is regulated through de-palmitoylation, which alters the orientation of its transmembrane domain and is independent of TF phosphorylation. However, Ser253 phosphorylation is facilitated by changes in the orientation of the transmembrane domain and can induce TF-cellular signalling that influences cellular proliferation/apoptosis.
Collapse
Affiliation(s)
- Camille Ettelaie
- Biomedical Section, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (S.F.); (J.G.)
- Correspondence: ; Tel.: +44-(0)1482-465528; Fax: +44-(0)1482-465458
| | - Sophie Featherby
- Biomedical Section, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (S.F.); (J.G.)
| | - Araci M. R. Rondon
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.M.R.R.); (H.H.V.)
| | - John Greenman
- Biomedical Section, University of Hull, Cottingham Road, Hull HU6 7RX, UK; (S.F.); (J.G.)
| | - Henri H. Versteeg
- Einthoven Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.M.R.R.); (H.H.V.)
| | - Anthony Maraveyas
- Division of Cancer-Hull York Medical School, University of Hull, Cottingham Road, Hull HU6 7RX, UK;
| |
Collapse
|