1
|
Varničić M, Fellinger TP, Titirici MM, Sundmacher K, Vidaković-Koch T. Rational Design of Enzymatic Electrodes: Impact of Carbon Nanomaterial Types on the Electrode Performance. Molecules 2024; 29:2324. [PMID: 38792185 PMCID: PMC11124491 DOI: 10.3390/molecules29102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
This research focuses on the rational design of porous enzymatic electrodes, using horseradish peroxidase (HRP) as a model biocatalyst. Our goal was to identify the main obstacles to maximizing biocatalyst utilization within complex porous structures and to assess the impact of various carbon nanomaterials on electrode performance. We evaluated as-synthesized carbon nanomaterials, such as Carbon Aerogel, Coral Carbon, and Carbon Hollow Spheres, against the commercially available Vulcan XC72 carbon nanomaterial. The 3D electrodes were constructed using gelatin as a binder, which was cross-linked with glutaraldehyde. The bioelectrodes were characterized electrochemically in the absence and presence of 3 mM of hydrogen peroxide. The capacitive behavior observed was in accordance with the BET surface area of the materials under study. The catalytic activity towards hydrogen peroxide reduction was partially linked to the capacitive behavior trend in the absence of hydrogen peroxide. Notably, the Coral Carbon electrode demonstrated large capacitive currents but low catalytic currents, an exception to the observed trend. Microscopic analysis of the electrodes indicated suboptimal gelatin distribution in the Coral Carbon electrode. This study also highlighted the challenges in transferring the preparation procedure from one carbon nanomaterial to another, emphasizing the importance of binder quantity, which appears to depend on particle size and quantity and warrants further studies. Under conditions of the present study, Vulcan XC72 with a catalytic current of ca. 300 µA cm-2 in the presence of 3 mM of hydrogen peroxide was found to be the most optimal biocatalyst support.
Collapse
Affiliation(s)
- Miroslava Varničić
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr 1, 39106 Magdeburg, Germany; (M.V.); (K.S.)
- Department of Electrochemistry, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Tim-Patrick Fellinger
- Division 3.6 Electrochemical Energy Materials, Bundesanstalt für Materialforschung und -Prüfung, Unter den Eichen 44-46, 12203 Berlin, Germany;
| | - Maria-Magdalena Titirici
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7, UK;
| | - Kai Sundmacher
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr 1, 39106 Magdeburg, Germany; (M.V.); (K.S.)
- Process Systems Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Tanja Vidaković-Koch
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr 1, 39106 Magdeburg, Germany; (M.V.); (K.S.)
| |
Collapse
|
2
|
Synthesis of Peroxidase-Like V2O5 Nanoparticles for Dye Removal from Aqueous Solutions. Top Catal 2022. [DOI: 10.1007/s11244-021-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Xia L, Han M, Zhou L, Huang A, Yang Z, Wang T, Li F, Yu L, Tian C, Zang Z, Yang Q, Liu C, Hong W, Lu Y, Alfonta L, Wang J. S‐Click Reaction for Isotropic Orientation of Oxidases on Electrodes to Promote Electron Transfer at Low Potentials. Angew Chem Int Ed Engl 2019; 58:16480-16484. [DOI: 10.1002/anie.201909203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/26/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Lin Xia
- Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences 1068 Xueyuan Ave Shenzhen China
| | - Ming‐Jie Han
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin China
| | - Lu Zhou
- Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences 1068 Xueyuan Ave Shenzhen China
| | - Aiping Huang
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin China
| | - Zhaoya Yang
- Institute of BiophysicsChinese Academy of Science Chaoyang District Beijing China
| | - Tianyuan Wang
- Institute of BiophysicsChinese Academy of Science Chaoyang District Beijing China
| | - Fahui Li
- Institute of BiophysicsChinese Academy of Science Chaoyang District Beijing China
| | - Lu Yu
- High Magnetic Field LaboratoryChinese Academy of Sciences Hefei China
| | - Changlin Tian
- High Magnetic Field LaboratoryChinese Academy of Sciences Hefei China
- Hefei National Laboratory of Physical Sciences at Microscale and School of Life SciencesUniversity of Science and Technology of China Hefei China
| | - Zhongsheng Zang
- Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences 1068 Xueyuan Ave Shenzhen China
- Institute of BiophysicsChinese Academy of Science Chaoyang District Beijing China
| | | | - Chenli Liu
- Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences 1068 Xueyuan Ave Shenzhen China
| | - Wenxu Hong
- Shenzhen Institute of Transfusion MedicineShenzhen Blood Center Shenzhen China
| | - Yi Lu
- Department of ChemistryUniversity of Illinois Urbana-Champaign IL 61801 USA
| | - Lital Alfonta
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the Negev Beer-Sheva Israel
| | - Jiangyun Wang
- Institute of BiophysicsChinese Academy of Science Chaoyang District Beijing China
| |
Collapse
|
4
|
Xia L, Han M, Zhou L, Huang A, Yang Z, Wang T, Li F, Yu L, Tian C, Zang Z, Yang Q, Liu C, Hong W, Lu Y, Alfonta L, Wang J. S‐Click Reaction for Isotropic Orientation of Oxidases on Electrodes to Promote Electron Transfer at Low Potentials. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lin Xia
- Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences 1068 Xueyuan Ave Shenzhen China
| | - Ming‐Jie Han
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin China
| | - Lu Zhou
- Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences 1068 Xueyuan Ave Shenzhen China
| | - Aiping Huang
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences Tianjin China
| | - Zhaoya Yang
- Institute of BiophysicsChinese Academy of Science Chaoyang District Beijing China
| | - Tianyuan Wang
- Institute of BiophysicsChinese Academy of Science Chaoyang District Beijing China
| | - Fahui Li
- Institute of BiophysicsChinese Academy of Science Chaoyang District Beijing China
| | - Lu Yu
- High Magnetic Field LaboratoryChinese Academy of Sciences Hefei China
| | - Changlin Tian
- High Magnetic Field LaboratoryChinese Academy of Sciences Hefei China
- Hefei National Laboratory of Physical Sciences at Microscale and School of Life SciencesUniversity of Science and Technology of China Hefei China
| | - Zhongsheng Zang
- Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences 1068 Xueyuan Ave Shenzhen China
- Institute of BiophysicsChinese Academy of Science Chaoyang District Beijing China
| | | | - Chenli Liu
- Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of Sciences 1068 Xueyuan Ave Shenzhen China
| | - Wenxu Hong
- Shenzhen Institute of Transfusion MedicineShenzhen Blood Center Shenzhen China
| | - Yi Lu
- Department of ChemistryUniversity of Illinois Urbana-Champaign IL 61801 USA
| | - Lital Alfonta
- Department of Life Sciences and Ilse Katz Institute for Nanoscale Science and TechnologyBen-Gurion University of the Negev Beer-Sheva Israel
| | - Jiangyun Wang
- Institute of BiophysicsChinese Academy of Science Chaoyang District Beijing China
| |
Collapse
|
5
|
Jiang Z, Zhang D, Zhou L, Deng D, Duan M, Liu Y. Enhanced catalytic capability of electroactive biofilm modified with different kinds of carbon nanotubes. Anal Chim Acta 2018; 1035:51-59. [DOI: 10.1016/j.aca.2018.06.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/14/2018] [Accepted: 06/29/2018] [Indexed: 11/28/2022]
|
6
|
Abstract
Self-powered electrochemical biosensors utilize biofuel cells as a simultaneous power source and biosensor, which simplifies the biosensor system, because it no longer requires a potentiostat, power for the potentiostat, and/or power for the signaling device. This review article is focused on detailing the advances in the field of self-powered biosensors and discussing their advantages and limitations compared to other types of electrochemical biosensors. The review will discuss self-powered biosensors formed from enzymatic biofuel cells, organelle-based biofuel cells, and microbial fuel cells. It also discusses the different mechanisms of sensing, including utilizing the analyte being the substrate/fuel for the biocatalyst, the analyte binding the biocatalyst to the electrode surface, the analyte being an inhibitor of the biocatalyst, the analyte resulting in the blocking of the bioelectrocatalytic response, the analyte reactivating the biocatalyst, Boolean logic gates, and combining affinity-based biorecognition elements with bioelectrocatalytic power generation. The final section of this review details areas of future investigation that are needed in the field, as well as problems that still need to be addressed by the field.
Collapse
Affiliation(s)
- Matteo Grattieri
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Departments of Chemistry and Materials Science & Engineering, University of Utah, 315 S 1400 E Rm 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
7
|
Narvaez Villarrubia CW, Soavi F, Santoro C, Arbizzani C, Serov A, Rojas-Carbonell S, Gupta G, Atanassov P. Self-feeding paper based biofuel cell/self-powered hybrid μ-supercapacitor integrated system. Biosens Bioelectron 2016; 86:459-465. [DOI: 10.1016/j.bios.2016.06.084] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/16/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
8
|
Single layer of graphene/Prussian blue nano-grid as the low-potential biosensors with high electrocatalysis. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.09.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Wen D, Eychmüller A. Enzymatic Biofuel Cells on Porous Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4649-4661. [PMID: 27377976 DOI: 10.1002/smll.201600906] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/20/2016] [Indexed: 06/06/2023]
Abstract
Biofuel cells (BFCs) that utilize enzymes as catalysts represent a new sustainable and renewable energy technology. Numerous efforts have been directed to improve the performance of the enzymatic BFCs (EBFCs) with respect to power output and operational stability for further applications in portable power sources, self-powered electrochemical sensing, implantable medical devices, etc. The latest advances in EBFCs based on porous nanoarchitectures over the past 5 years are detailed here. Porous matrices from carbon, noble metals, and polymers promote the development of EBFCs through the electron transfer and mass transport benefits. Some key issues regarding how these nanostructured porous media improve the performance of EBFCs are also discussed.
Collapse
Affiliation(s)
- Dan Wen
- Physical Chemistry, TU Dresden, Bergstrasse 66b, 01062, Dresden, Germany
| | | |
Collapse
|
10
|
Rasmussen M, Abdellaoui S, Minteer SD. Enzymatic biofuel cells: 30 years of critical advancements. Biosens Bioelectron 2016; 76:91-102. [DOI: 10.1016/j.bios.2015.06.029] [Citation(s) in RCA: 373] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/05/2015] [Accepted: 06/15/2015] [Indexed: 12/14/2022]
|
11
|
Development of a fast and simple test system for the semiquantitative protein detection in cerebrospinal liquids based on gold nanoparticles. Talanta 2016; 146:49-54. [DOI: 10.1016/j.talanta.2015.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/04/2015] [Accepted: 08/07/2015] [Indexed: 02/08/2023]
|
12
|
Etienne M, Zhang L, Vilà N, Walcarius A. Mesoporous Materials-Based Electrochemical Enzymatic Biosensors. ELECTROANAL 2015. [DOI: 10.1002/elan.201500172] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Pankratov D, Blum Z, Suyatin DB, Popov VO, Shleev S. Self-Charging Electrochemical Biocapacitor. ChemElectroChem 2013. [DOI: 10.1002/celc.201300142] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Andoralov V, Falk M, Suyatin DB, Granmo M, Sotres J, Ludwig R, Popov VO, Schouenborg J, Blum Z, Shleev S. Biofuel cell based on microscale nanostructured electrodes with inductive coupling to rat brain neurons. Sci Rep 2013; 3:3270. [PMID: 24253492 PMCID: PMC3834879 DOI: 10.1038/srep03270] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/31/2013] [Indexed: 01/18/2023] Open
Abstract
Miniature, self-contained biodevices powered by biofuel cells may enable a new generation of implantable, wireless, minimally invasive neural interfaces for neurophysiological in vivo studies and for clinical applications. Here we report on the fabrication of a direct electron transfer based glucose/oxygen enzymatic fuel cell (EFC) from genuinely three-dimensional (3D) nanostructured microscale gold electrodes, modified with suitable biocatalysts. We show that the process underlying the simple fabrication method of 3D nanostructured electrodes is based on an electrochemically driven transformation of physically deposited gold nanoparticles. We experimentally demonstrate that mediator-, cofactor-, and membrane-less EFCs do operate in cerebrospinal fluid and in the brain of a rat, producing amounts of electrical power sufficient to drive a self-contained biodevice, viz. 7 μW cm−2in vitro and 2 μW cm−2in vivo at an operating voltage of 0.4 V. Last but not least, we also demonstrate an inductive coupling between 3D nanobioelectrodes and living neurons.
Collapse
Affiliation(s)
- Viktor Andoralov
- 1] Biomedical Sciences, Health & Society, Malmö University, 205 06 Malmö, Sweden [2]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Falk M, Narváez Villarrubia CW, Babanova S, Atanassov P, Shleev S. Biofuel cells for biomedical applications: colonizing the animal kingdom. Chemphyschem 2013; 14:2045-58. [PMID: 23460490 DOI: 10.1002/cphc.201300044] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Indexed: 11/11/2022]
Abstract
Interdisciplinary research has combined the efforts of many scientists and engineers to gain an understanding of biotic and abiotic electrochemical processes, materials properties, biomedical, and engineering approaches for the development of alternative power-generating and/or energy-harvesting devices, aiming to solve health-related issues and to improve the quality of human life. This review intends to recapitulate the principles of biofuel cell development and the progress over the years, thanks to the contribution of cross-disciplinary researchers that have combined knowledge and innovative ideas to the field. The emergence of biofuel cells, as a response to the demand of electrical power devices that can operate under physiological conditions, are reviewed. Implantable biofuel cells operating inside living organisms have been envisioned for over fifty years, but few reports of implanted devices have existed up until very recently. The very first report of an implanted biofuel cell (implanted in a grape) was published only in 2003 by Adam Heller and his coworkers. This work was a result of earlier scientific efforts of this group to "wire" enzymes to the electrode surface. The last couple of years have, however, seen a multitude of biofuel cells being implanted and operating in different living organisms, including mammals. Herein, the evolution of the biofuel concept, the understanding and employment of catalyst and biocatalyst processes to mimic biological processes, are explored. These potentially green technology biodevices are designed to be applied for biomedical applications to power nano- and microelectronic devices, drug delivery systems, biosensors, and many more.
Collapse
Affiliation(s)
- Magnus Falk
- Department of Biomedical Sciences, Malmö University, 205 06 Malmö, Sweden
| | | | | | | | | |
Collapse
|
16
|
Walcarius A, Minteer SD, Wang J, Lin Y, Merkoçi A. Nanomaterials for bio-functionalized electrodes: recent trends. J Mater Chem B 2013; 1:4878-4908. [DOI: 10.1039/c3tb20881h] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|