1
|
Singh A, Karjagi C, Kaur S, Jeet G, Bhamare D, Gupta S, Kumar S, Das A, Gupta M, Chaudhary DP, Bhushan B, Jat BS, Kumar R, Dagla MC, Kumar M. Characterization of phi112, a Molecular Marker Tightly Linked to the o2 Gene of Maize, and Its Utilization in Multiplex PCR for Differentiating Normal Maize from QPM. Genes (Basel) 2023; 14:531. [PMID: 36833458 PMCID: PMC9957476 DOI: 10.3390/genes14020531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Quality Protein Maize (QPM) contains higher amounts of essential amino acids lysine and tryptophan. The QPM phenotype is based on regulating zein protein synthesis by opaque2 transcription factor. Many gene modifiers act to optimize the amino acid content and agronomic performance. An SSR marker, phi112, is present upstream of the opaque2 DNA gene. Its analysis has shown the presence of transcription factor activity. The functional associations of opaque2 have been determined. The putative transcription factor binding at phi112 marked DNA was identified through computational analysis. The present study is a step towards understanding the intricate network of molecular interactions that fine-tune the QPM genotype to influence maize protein quality. In addition, a multiplex PCR assay for differentiation of QPM from normal maize is shown, which can be used for Quality Control at various stages of the QPM value chain.
Collapse
Affiliation(s)
- Alla Singh
- ICAR-Indian Institute of Maize Research, P.A.U. Campus, Ludhiana 141004, India
| | - Chikkappa Karjagi
- ICAR-Indian Institute of Maize Research, Pusa Campus, Delhi 110012, India
| | - Sehgeet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
| | - Gagan Jeet
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
| | - Deepak Bhamare
- ICAR-Indian Institute of Maize Research, P.A.U. Campus, Ludhiana 141004, India
| | - Sonu Gupta
- ICAR-Indian Institute of Maize Research, P.A.U. Campus, Ludhiana 141004, India
| | - Sunil Kumar
- ICAR-Indian Institute of Maize Research, P.A.U. Campus, Ludhiana 141004, India
| | - Abhijit Das
- ICAR-Indian Institute of Maize Research, P.A.U. Campus, Ludhiana 141004, India
| | - Mamta Gupta
- ICAR-Indian Institute of Maize Research, P.A.U. Campus, Ludhiana 141004, India
| | - D. P. Chaudhary
- ICAR-Indian Institute of Maize Research, P.A.U. Campus, Ludhiana 141004, India
| | - Bharat Bhushan
- ICAR-Indian Institute of Maize Research, P.A.U. Campus, Ludhiana 141004, India
| | - B. S. Jat
- ICAR-Indian Institute of Maize Research, P.A.U. Campus, Ludhiana 141004, India
| | - Ramesh Kumar
- ICAR-Indian Institute of Maize Research, P.A.U. Campus, Ludhiana 141004, India
| | - M. C. Dagla
- ICAR-Indian Institute of Maize Research, P.A.U. Campus, Ludhiana 141004, India
| | - Manoj Kumar
- ICAR—Central Institute for Research on Cotton Technology, Mumbai 400019, India
| |
Collapse
|
2
|
Li C, Ma W, Jin L, Song R, Qi W. Endosperm-specific accumulation of human α-lactalbumin increases seed lysine content in maize. PLANT CELL REPORTS 2022; 41:2023-2035. [PMID: 35918456 DOI: 10.1007/s00299-022-02906-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
This study demonstrated high expression and accumulation of human α-lactalbumin in transgenic maize, and significant improvement of lysine content in maize endosperm. As a high-yield crop, lack of lysine in endosperm storage protein is a major defect of maize (Zea mays L.). Specifically expression of foreign proteins is a potential way to improve lysine content in maize endosperm. Human α-lactalbumin is such a protein with high lysine content and high nutritional value. In this study, the codon-optimized human lactalbumin alpha (LALBA) gene was driven by maize endosperm-specific 27 kD γ-zein promoter, and transformed into maize. Five independent transgenic lines were obtained, and LALBA was highly expressed in endosperm in all these lines. Protein assay indicated that human α-lactalbumin was highly accumulated in maize endosperm. Immuno-localization assay indicated that human α-lactalbumin was mainly deposited into the protein body (PB). Protein interaction assay showed that human α-lactalbumin interacted with 16 kD γ-zein, which might lead to its deposition to the PBs. Amino acid analysis of two independent transgenic lines showed significant increase of lysine contents in transgenic endosperm, with 47.26% and 45.15% increase to their non-transgenic seeds, respectively. We obtained transgenic maize with endosperm-specific accumulation of human α-lactalbumin at high level and increased the lysine content in maize endosperm. This study demonstrated an effective way to improve the nutritional value of maize seeds.
Collapse
Affiliation(s)
- Chenwanli Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Wen Ma
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lifang Jin
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Sanya Institute of China Agricultural University, Sanya, 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
3
|
The SV, Snyder R, Tegeder M. Targeting Nitrogen Metabolism and Transport Processes to Improve Plant Nitrogen Use Efficiency. FRONTIERS IN PLANT SCIENCE 2021; 11:628366. [PMID: 33732269 PMCID: PMC7957077 DOI: 10.3389/fpls.2020.628366] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/31/2020] [Indexed: 05/22/2023]
Abstract
In agricultural cropping systems, relatively large amounts of nitrogen (N) are applied for plant growth and development, and to achieve high yields. However, with increasing N application, plant N use efficiency generally decreases, which results in losses of N into the environment and subsequently detrimental consequences for both ecosystems and human health. A strategy for reducing N input and environmental losses while maintaining or increasing plant performance is the development of crops that effectively obtain, distribute, and utilize the available N. Generally, N is acquired from the soil in the inorganic forms of nitrate or ammonium and assimilated in roots or leaves as amino acids. The amino acids may be used within the source organs, but they are also the principal N compounds transported from source to sink in support of metabolism and growth. N uptake, synthesis of amino acids, and their partitioning within sources and toward sinks, as well as N utilization within sinks represent potential bottlenecks in the effective use of N for vegetative and reproductive growth. This review addresses recent discoveries in N metabolism and transport and their relevance for improving N use efficiency under high and low N conditions.
Collapse
Affiliation(s)
| | | | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
4
|
Hasan MM, Rima R. Genetic engineering to improve essential and conditionally essential amino acids in maize: transporter engineering as a reference. Transgenic Res 2021; 30:207-220. [PMID: 33583006 DOI: 10.1007/s11248-021-00235-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/21/2021] [Indexed: 11/27/2022]
Abstract
Ruminants and humans are unable to synthesize essential amino acids (EAAs) and conditionally essential amino acids (CEAAs) under normal conditions and need to acquire them from plant sources. Maize plays, as a major crop, a central role in global food security. However, maize is deficient in several EAAs and CEAAs. Genetic engineering has been successfully used to enrich the EAA content of maize to some extent, including the content of Lys, Trp, and Met. However, research on other EAAs is lacking. Genetic engineering provides several viable approaches for increasing the EAA content in maize, including transformation of a single gene, transformation of multiple genes in a single cassette, overexpression of putative amino acid transporters, engineering the amino acid biosynthesis pathway including silencing of feedback inhibition enzymes, and overexpression of major enzymes in this pathway. These challenging processes require a deep understanding of the biosynthetic and metabolic pathways of individual amino acids, and the interaction of individual amino acids with other metabolic pathways.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
- The Key Laboratory of Plant-Soil Interactions, Ministry of Education, Center for Resources, Environment and Food Security, Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China.
| | - Rima Rima
- Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
5
|
Kumar K, Gambhir G, Dass A, Tripathi AK, Singh A, Jha AK, Yadava P, Choudhary M, Rakshit S. Genetically modified crops: current status and future prospects. PLANTA 2020; 251:91. [PMID: 32236850 DOI: 10.1007/s00425-020-03372-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 02/28/2020] [Indexed: 05/20/2023]
Abstract
While transgenic technology has heralded a new era in crop improvement, several concerns have precluded their widespread acceptance. Alternative technologies, such as cisgenesis and genome-editing may address many of such issues and facilitate the development of genetically engineered crop varieties with multiple favourable traits. Genetic engineering and plant transformation have played a pivotal role in crop improvement via introducing beneficial foreign gene(s) or silencing the expression of endogenous gene(s) in crop plants. Genetically modified crops possess one or more useful traits, such as, herbicide tolerance, insect resistance, abiotic stress tolerance, disease resistance, and nutritional improvement. To date, nearly 525 different transgenic events in 32 crops have been approved for cultivation in different parts of the world. The adoption of transgenic technology has been shown to increase crop yields, reduce pesticide and insecticide use, reduce CO2 emissions, and decrease the cost of crop production. However, widespread adoption of transgenic crops carrying foreign genes faces roadblocks due to concerns of potential toxicity and allergenicity to human beings, potential environmental risks, such as chances of gene flow, adverse effects on non-target organisms, evolution of resistance in weeds and insects etc. These concerns have prompted the adoption of alternative technologies like cisgenesis, intragenesis, and most recently, genome editing. Some of these alternative technologies can be utilized to develop crop plants that are free from any foreign gene hence, it is expected that such crops might achieve higher consumer acceptance as compared to the transgenic crops and would get faster regulatory approvals. In this review, we present a comprehensive update on the current status of the genetically modified (GM) crops under cultivation. We also discuss the issues affecting widespread adoption of transgenic GM crops and comment upon the recent tools and techniques developed to address some of these concerns.
Collapse
Affiliation(s)
- Krishan Kumar
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India.
| | - Geetika Gambhir
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Abhishek Dass
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Amit Kumar Tripathi
- National Institute for Research in Environmental Health, Bhopal, 462001, India
| | - Alla Singh
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004, India
| | - Abhishek Kumar Jha
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Pranjal Yadava
- ICAR-Indian Institute of Maize Research, Pusa Campus, New Delhi, 110012, India
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004, India
| | - Sujay Rakshit
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004, India
| |
Collapse
|
6
|
Abstract
Promoters regulate gene expression, and are essential biotechnology tools. Since its introduction in the mid-1990s, biotechnology has greatly enhanced maize productivity primarily through the development of insect control and herbicide tolerance traits. Additional biotechnology applications include improving seed nutrient composition, industrial protein production, therapeutic production, disease resistance, abiotic stress resistance, and yield enhancement. Biotechnology has also greatly expanded basic research into important mechanisms that govern plant growth and reproduction. Many novel promoters have been developed to facilitate this work, but only a few are widely used. Transgene optimization includes a variety of strategies some of which effect promoter structure. Recent reviews examine the state of the art with respect to transgene design for biotechnology applications. This chapter examines the use of transgene technology in maize, focusing on the way promoters are selected and used. The impact of new developments in genomic technology on promoter structure is also discussed.
Collapse
|
7
|
Liu C, Li S, Yue J, Xiao W, Zhao Q, Zhu D, Yu J. Microtubule-Associated Protein SBgLR Facilitates Storage Protein Deposition and Its Expression Leads to Lysine Content Increase in Transgenic Maize Endosperm. Int J Mol Sci 2015; 16:29772-86. [PMID: 26703573 PMCID: PMC4691142 DOI: 10.3390/ijms161226199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 11/16/2022] Open
Abstract
Maize (Zea mays) seed is deficient in protein and lysine content. Many studies have been made to improve the nutritional quality of maize seeds. Previously, we reported the role of a natural lysine-rich protein gene SBgLR in increasing protein and lysine content. However, how the SBgLR improves lysine and protein content remains unclear. Here, the reasons and possible mechanism for SBgLR in protein and lysine improvement have been analyzed and discussed. Through seed-specific expression of SBgLR, we obtained transgenic maize with the simultaneously increased lysine and protein contents. High-protein and high-lysine characters were stably inherited across generations. The expression of SBgLR in maize kernels increased the accumulation of both zeins and non-zein proteins. Transmission electron microscopy showed that the number of protein bodies (PBs) was increased obviously in SBgLR transgenic immature endosperms with the morphology and structure of PBs unchanged. The proteinaceous matrix was more abundant in transgenic mature endosperms under scanning electron microscopy. The stabilities of zein and lysine-rich non-zein genes were also increased in transgenic endosperms. Finally, the potential application of SBgLR in maize nutrient improvement was evaluated. This study shows that a cytoskeleton-associated protein has potential applicable value in crop nutrient improving, and provided a feasible strategy for improvement of maize grain quality.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory for Agro-Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China.
| | - Shixue Li
- State Key Laboratory for Agro-Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Jing Yue
- State Key Laboratory for Agro-Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Wenhan Xiao
- State Key Laboratory for Agro-Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Qian Zhao
- State Key Laboratory for Agro-Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Dengyun Zhu
- State Key Laboratory for Agro-Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Jingjuan Yu
- State Key Laboratory for Agro-Biotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
8
|
Schmidt D, Rizzi V, Gaziola SA, Medici LO, Vincze E, Kozak M, Lea PJ, Azevedo RA. Lysine metabolism in antisense C-hordein barley grains. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 87:73-83. [PMID: 25559386 DOI: 10.1016/j.plaphy.2014.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
The grain proteins of barley are deficient in lysine and threonine due to their low concentrations in the major storage protein class, the hordeins, especially in the C-hordein subgroup. Previously produced antisense C-hordein transgenic barley lines have an improved amino acid composition, with increased lysine, methionine and threonine contents. The objective of the study was to investigate the possible changes in the regulation of key enzymes of the aspartate metabolic pathway and the contents of aspartate-derived amino acids in the nontransgenic line (Hordeum vulgare L. cv. Golden Promise) and five antisense C-hordein transgenic barley lines. Considering the amounts of soluble and protein-bound aspartate-derived amino acids together with the analysis of key enzymes of aspartate metabolic pathway, we suggest that the C-hordein suppression did not only alter the metabolism of at least one aspartate-derived amino acid (threonine), but major changes were also detected in the metabolism of lysine and methionine. Modifications in the activities and regulation of aspartate kinase, dihydrodipicolinate synthase and homoserine dehydrogenase were observed in most transgenic lines. Furthermore the activities of lysine α-ketoglutarate reductase and saccharopine dehydrogenase were also altered, although the extent varied among the transgenic lines.
Collapse
Affiliation(s)
- Daiana Schmidt
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba CEP 13418-900, Brazil
| | - Vanessa Rizzi
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba CEP 13418-900, Brazil
| | - Salete A Gaziola
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba CEP 13418-900, Brazil
| | - Leonardo O Medici
- Departamento de Ciências Fisiológicas, Universidade Federal Rural do Rio de Janeiro, Seropédica CEP 23890-000, Brazil
| | - Eva Vincze
- Faculty of Agricultural Sciences, Department of Genetics and Biotechnology, Research Centre Flakkebjerg, University of Aarhus, Forsoegsvej 1, DK-4200 Slagelse, Denmark
| | - Marcin Kozak
- Department of Botany, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-766 Warsaw, Poland
| | - Peter J Lea
- Lancaster Environment Centre, University of Lancaster, Lancaster LA1 4YQ, United Kingdom
| | - Ricardo A Azevedo
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba CEP 13418-900, Brazil.
| |
Collapse
|
9
|
Abstract
Abiotic stresses such as drought, salinity, waterlogging, and high temperature cause a myriad of changes in the metabolism of plants, and there is a lot of overlap in these changes in plants in response to different stresses such as drought and salinity. These stress-induced metabolic changes cause impaired crop growth thereby resulting in poor yield. The metabolic changes taking place in several plant species due to a particular abiotic stress have been revealed from the whole plant to the molecular level by researchers, but most studies have focused on organs such as leaf, stem, and root. Information on such stress-induced changes in seed or grains is infrequent in the literature. From the information that is available, it is now evident that abiotic stress can induce considerable changes in the composition and quality of cereal grains including those of wheat, the premier staple food crop in the world. Thus, the present review discusses how far different types of stresses, mainly salinity, drought, high temperature, and waterlogging, can alter the wheat grain composition and quality. By fully uncovering the stress-induced changes in the nutritional values of wheat grains it would be possible to establish whether balanced supplies of essential nutrients are available to the human population from the wheat crop grown on stress-affected areas.
Collapse
Affiliation(s)
- M Ashraf
- a University College of Agriculture, University of Sargodha , Sargodha , 40100 , Pakistan
| |
Collapse
|
10
|
Yue J, Li C, Zhao Q, Zhu D, Yu J. Seed-specific expression of a lysine-rich protein gene, GhLRP, from cotton significantly increases the lysine content in maize seeds. Int J Mol Sci 2014; 15:5350-65. [PMID: 24681583 PMCID: PMC4013568 DOI: 10.3390/ijms15045350] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/10/2014] [Accepted: 03/13/2014] [Indexed: 11/16/2022] Open
Abstract
Maize seed storage proteins are a major source of human and livestock consumption. However, these proteins have poor nutritional value, because they are deficient in lysine and tryptophan. Much research has been done to elevate the lysine content by reducing zein content or regulating the activities of key enzymes in lysine metabolism. Using the naturally lysine-rich protein genes, sb401 and SBgLR, from potato, we previously increased the lysine and protein contents of maize seeds. Here, we examined another natural lysine-rich protein gene, GhLRP, from cotton, which increased the lysine content of transgenic maize seeds at levels varying from 16.2% to 65.0% relative to the wild-type. The total protein content was not distinctly different, except in the six transgenic lines. The lipid and starch levels did not differ substantially in Gossypium hirsutum L. lysine-rich protein (GhLRP) transgenic kernels when compared to wild-type. The agronomic characteristics of all the transgenic maize were also normal. GhLRP is a high-lysine protein candidate gene for increasing the lysine content of maize. This study provided a valuable model system for improving maize lysine content.
Collapse
Affiliation(s)
- Jing Yue
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Cong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Qian Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Dengyun Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Wang M, Liu C, Li S, Zhu D, Zhao Q, Yu J. Improved nutritive quality and salt resistance in transgenic maize by simultaneously overexpression of a natural lysine-rich protein gene, SBgLR, and an ERF transcription factor gene, TSRF1. Int J Mol Sci 2013; 14:9459-74. [PMID: 23629675 PMCID: PMC3676793 DOI: 10.3390/ijms14059459] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 04/16/2013] [Accepted: 04/16/2013] [Indexed: 11/26/2022] Open
Abstract
Maize (Zea mays L.), as one of the most important crops in the world, is deficient in lysine and tryptophan. Environmental conditions greatly impact plant growth, development and productivity. In this study, we used particle bombardment mediated co-transformation to obtain marker-free transgenic maize inbred X178 lines harboring a lysine-rich protein gene SBgLR from potato and an ethylene responsive factor (ERF) transcription factor gene, TSRF1, from tomato. Both of the target genes were successfully expressed and showed various expression levels in different transgenic lines. Analysis showed that the protein and lysine content in T1 transgenic maize seeds increased significantly. Compared to non-transformed maize, the protein and lysine content increased by 7.7% to 24.38% and 8.70% to 30.43%, respectively. Moreover, transgenic maize exhibited more tolerance to salt stress. When treated with 200 mM NaCl for 48 h, both non-transformed and transgenic plant leaves displayed wilting and losing green symptoms and dramatic increase of the free proline contents. However, the degree of control seedlings was much more serious than that of transgenic lines and much more increases of the free proline contents in the transgenic lines than that in the control seedlings were observed. Meanwhile, lower extent decreases of the chlorophyll contents were detected in the transgenic seedlings. Quantitative RT-PCR was performed to analyze the expression of ten stress-related genes, including stress responsive transcription factor genes, ZmMYB59 and ZmMYC1, proline synthesis related genes, ZmP5CS1 and ZmP5CS2, photosynthesis-related genes, ZmELIP, ZmPSI-N, ZmOEE, Zmrbcs and ZmPLAS, and one ABA biosynthesis related gene, ZmSDR. The results showed that with the exception of ZmP5CS1 and ZmP5CS2 in line 9-10 and 19-11, ZmMYC1 in line 19-11 and ZmSDR in line 19-11, the expression of other stress-related genes were inhibited in transgenic lines under normal conditions. After salt treatment, the expressions of the ten stress-related genes were significantly induced in both wild-type (WT) and transgenic lines. However, compared to WT, the increases of ZmP5CS1 in all these three transgenic lines and ZmP5CS2 in line 9-10 were less than WT plants. This study provides an effective approach of maize genetic engineering for improved nutritive quality and salt tolerance.
Collapse
Affiliation(s)
- Meizhen Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; E-Mails: (M.W.); (C.L.); (S.L.); (D.Z.); (Q.Z.)
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Chen Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; E-Mails: (M.W.); (C.L.); (S.L.); (D.Z.); (Q.Z.)
| | - Shixue Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; E-Mails: (M.W.); (C.L.); (S.L.); (D.Z.); (Q.Z.)
| | - Dengyun Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; E-Mails: (M.W.); (C.L.); (S.L.); (D.Z.); (Q.Z.)
| | - Qian Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; E-Mails: (M.W.); (C.L.); (S.L.); (D.Z.); (Q.Z.)
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; E-Mails: (M.W.); (C.L.); (S.L.); (D.Z.); (Q.Z.)
| |
Collapse
|
12
|
Pérez-Massot E, Banakar R, Gómez-Galera S, Zorrilla-López U, Sanahuja G, Arjó G, Miralpeix B, Vamvaka E, Farré G, Rivera SM, Dashevskaya S, Berman J, Sabalza M, Yuan D, Bai C, Bassie L, Twyman RM, Capell T, Christou P, Zhu C. The contribution of transgenic plants to better health through improved nutrition: opportunities and constraints. GENES & NUTRITION 2013; 8:29-41. [PMID: 22926437 PMCID: PMC3534993 DOI: 10.1007/s12263-012-0315-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
Abstract
Malnutrition is a prevalent and entrenched global socioeconomic challenge that reflects the combined impact of poverty, poor access to food, inefficient food distribution infrastructure, and an over-reliance on subsistence mono-agriculture. The dependence on staple cereals lacking many essential nutrients means that malnutrition is endemic in developing countries. Most individuals lack diverse diets and are therefore exposed to nutrient deficiencies. Plant biotechnology could play a major role in combating malnutrition through the engineering of nutritionally enhanced crops. In this article, we discuss different approaches that can enhance the nutritional content of staple crops by genetic engineering (GE) as well as the functionality and safety assessments required before nutritionally enhanced GE crops can be deployed in the field. We also consider major constraints that hinder the adoption of GE technology at different levels and suggest policies that could be adopted to accelerate the deployment of nutritionally enhanced GE crops within a multicomponent strategy to combat malnutrition.
Collapse
Affiliation(s)
- Eduard Pérez-Massot
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Raviraj Banakar
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Sonia Gómez-Galera
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Uxue Zorrilla-López
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Georgina Sanahuja
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Gemma Arjó
- />Department of Medicine, University of Lleida, Lleida, Spain
| | - Bruna Miralpeix
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Evangelia Vamvaka
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Gemma Farré
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Sol Maiam Rivera
- />Chemistry Department, ETSEA, University of Lleida, 25198 Lleida, Spain
| | - Svetlana Dashevskaya
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Judit Berman
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Maite Sabalza
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Dawei Yuan
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Chao Bai
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Ludovic Bassie
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Richard M. Twyman
- />Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL UK
| | - Teresa Capell
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Paul Christou
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
- />Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Changfu Zhu
- />Department of Plant Production and Forestry Science, ETSEA, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| |
Collapse
|
13
|
Ma X, Zhang P, Song G, Chen Y, Wang Z, Yin Y, Kong D, Zhang S, Zhao Z, Ouyang H, Tang B, Li Z. The construction and expression of lysine-rich gene in the mammary gland of transgenic mice. DNA Cell Biol 2012; 31:1372-83. [PMID: 22577831 DOI: 10.1089/dna.2011.1599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lysine is the limiting amino acid in cereal grains, which represent a major source of human food and animal feed worldwide, and is considered the most important of the essential amino acids. In this study, β-casein, αS2-casein, and lactotransferrin cDNA clone fragments encoding lysine-rich peptides were fused together to generate a lysine-rich (LR) gene and the mammary gland-specific expression vector pBC1-LR-NEO(r) was constructed. Transgenic mice were generated by pronuclear microinjection of the linearized expression vectors harboring the LR transgene. The transgenic mice and their offspring were examined using multiplex polymerase chain reaction (PCR), Southern blotting, reverse transcriptase-PCR, in situ hybridization, and Western blotting techniques. Our results showed that the LR gene was successfully integrated into the mouse genome and was transmitted stably. The specific LR gene expression was restricted to the mammary gland, active alveoli of the transgenic female mice during lactation. The lysine level of the two transgenic lines was significantly higher than that of nontransgenic controls (p<0.05). In addition, the growth performance of transgenic pups was enhanced by directly feeding them the LR protein-enriched transgenic milk. Our results demonstrated that lysine-rich gene was successfully constructed and expressed in mammary gland of transgenic mice. This study will provide a better understanding of how mammary gland expression systems that increase the lysine content of milk can be applied to other mammals, such as cows.
Collapse
Affiliation(s)
- Xin Ma
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, The Center for Animal Embryo Engineering of Jilin Province, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang J, Chen L, Liu QQ, Sun SSM, Sokolov V, Wang YP. Transformation of LRP gene into Brassica napus mediated by agrobacterium tumefaciens to enhance lysine content in seeds. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411120167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Naqvi S, Ramessar K, Farré G, Sabalza M, Miralpeix B, Twyman RM, Capell T, Zhu C, Christou P. High-value products from transgenic maize. Biotechnol Adv 2011; 29:40-53. [PMID: 20816943 DOI: 10.1016/j.biotechadv.2010.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 08/17/2010] [Accepted: 08/17/2010] [Indexed: 11/19/2022]
Abstract
Maize (also known as corn) is a domesticated cereal grain that has been grown as food and animal feed for tens of thousands of years. It is currently the most widely grown crop in the world, and is used not only for food/feed but also to produce ethanol, industrial starches and oils. Maize is now at the beginning of a new agricultural revolution, where the grains are used as factories to synthesize high-value molecules. In this article we look at the diversity of high-value products from maize, recent technological advances in the field and the emerging regulatory framework that governs how transgenic maize plants and their products are grown, used and traded.
Collapse
Affiliation(s)
- Shaista Naqvi
- Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, Av. Alcalde Rovira Roure, 191, Lleida, 25198, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Anderson OD, Coleman-Derr D, Gu YQ, Heath S. Structural and transcriptional analysis of plant genes encoding the bifunctional lysine ketoglutarate reductase saccharopine dehydrogenase enzyme. BMC PLANT BIOLOGY 2010; 10:113. [PMID: 20565711 PMCID: PMC3017810 DOI: 10.1186/1471-2229-10-113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 06/16/2010] [Indexed: 05/14/2023]
Abstract
BACKGROUND Among the dietary essential amino acids, the most severely limiting in the cereals is lysine. Since cereals make up half of the human diet, lysine limitation has quality/nutritional consequences. The breakdown of lysine is controlled mainly by the catabolic bifunctional enzyme lysine ketoglutarate reductase - saccharopine dehydrogenase (LKR/SDH). The LKR/SDH gene has been reported to produce transcripts for the bifunctional enzyme and separate monofunctional transcripts. In addition to lysine metabolism, this gene has been implicated in a number of metabolic and developmental pathways, which along with its production of multiple transcript types and complex exon/intron structure suggest an important node in plant metabolism. Understanding more about the LKR/SDH gene is thus interesting both from applied standpoint and for basic plant metabolism. RESULTS The current report describes a wheat genomic fragment containing an LKR/SDH gene and adjacent genes. The wheat LKR/SDH genomic segment was found to originate from the A-genome of wheat, and EST analysis indicates all three LKR/SDH genes in hexaploid wheat are transcriptionally active. A comparison of a set of plant LKR/SDH genes suggests regions of greater sequence conservation likely related to critical enzymatic functions and metabolic controls. Although most plants contain only a single LKR/SDH gene per genome, poplar contains at least two functional bifunctional genes in addition to a monofunctional LKR gene. Analysis of ESTs finds evidence for monofunctional LKR transcripts in switchgrass, and monofunctional SDH transcripts in wheat, Brachypodium, and poplar. CONCLUSIONS The analysis of a wheat LKR/SDH gene and comparative structural and functional analyses among available plant genes provides new information on this important gene. Both the structure of the LKR/SDH gene and the immediately adjacent genes show lineage-specific differences between monocots and dicots, and findings suggest variation in activity of LKR/SDH genes among plants. Although most plant genomes seem to contain a single conserved LKR/SDH gene per genome, poplar possesses multiple contiguous genes. A preponderance of SDH transcripts suggests the LKR region may be more rate-limiting. Only switchgrass has EST evidence for LKR monofunctional transcripts. Evidence for monofunctional SDH transcripts shows a novel intron in wheat, Brachypodium, and poplar.
Collapse
Affiliation(s)
- Olin D Anderson
- Genomics and Gene Discovery Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| | - Devin Coleman-Derr
- Genomics and Gene Discovery Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
- Department of Plant Sciences, University of California, Berkeley, CA 94720, USA
| | - Yong Q Gu
- Genomics and Gene Discovery Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
| | - Sekou Heath
- Genomics and Gene Discovery Research Unit, Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA
- 783 Euclid Avenue, Berkeley, CA 94708, USA
| |
Collapse
|
17
|
Genetic engineering to enhance crop-based phytonutrients (nutraceuticals) to alleviate diet-related diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 698:122-43. [PMID: 21520708 DOI: 10.1007/978-1-4419-7347-4_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Nutrition studies have provided unambiguous evidence that a number of human health maladies including chronic coronary artery, hypertension, diabetes, osteoporosis, cancer and age- and lifestyle-related diseases are associated with the diet. Several favorable and a few deleterious natural dietary ingredients have been identified that predispose human populations to various genetic and epigenetic based disorders. Media dissemination of this information has greatly raised public awareness of the beneficial effects due to increased consumption of fruit, vegetables and whole grain cereals-foods rich in phytonutrients, protein and fiber. However, the presence of intrinsically low levels of the beneficial phytonutrients in the available genotypes of crop plants is not always at par with the recommended daily allowance (RDA) for different phytonutrients (nutraceuticals). Molecular engineering of crop plants has offered a number of tools to markedly enhance intracellular concentrations of some of the beneficial nutrients, levels that, in some cases, are closer to the RDA threshold. This review brings together literature on various strategies utilized for bioengineering both major and minor crops to increase the levels of desirable phytonutrients while also decreasing the concentrations of deleterious metabolites. Some of these include increases in: protein level in potato; lysine in corn and rice; methionine in alfalfa; carotenoids (beta-carotene, phytoene, lycopene, zeaxanthin and lutein) in rice, potato, canola, tomato; choline in tomato; folates in rice, corn, tomato and lettuce; vitamin C in corn and lettuce; polyphenolics such as flavonol, isoflavone, resveratrol, chlorogenic acid and other flavonoids in tomato; anthocyanin levels in tomato and potato; alpha-tocopherol in soybean, oil seed, lettuce and potato; iron and zinc in transgenic rice. Also, molecular engineering has succeeded in considerably reducing the levels of the offending protein glutelin in rice, offering proof of concept and a new beginning for the development of super-low glutelin cereals for celiac disease patients.
Collapse
|
18
|
Alderborn A, Sundström J, Soeria-Atmadja D, Sandberg M, Andersson HC, Hammerling U. Genetically modified plants for non-food or non-feed purposes: straightforward screening for their appearance in food and feed. Food Chem Toxicol 2009; 48:453-64. [PMID: 20004226 DOI: 10.1016/j.fct.2009.10.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 10/06/2009] [Accepted: 10/30/2009] [Indexed: 01/17/2023]
Abstract
Genetically modified (GM) plants aimed at producing food/feed are part of regular agriculture in many areas of the World. Commodity plants have also found application as bioreactors, designated non-food/non-feed GM (NFGM) plants, thereby making raw material for further refinement to industrial, diagnostic or pharmaceutical preparations. Many among them may pose health challenge to consumers or livestock animals, if occurring in food/feed. NFGM plants are typically released into the environment, but are grown under special oversight and any among several containment practices, none of which provide full protection against accidental dispersal. Adventitious admixture with food or feed can occur either through distributional mismanagement or as a consequence of gene flow to plant relatives. To facilitate NFGM surveillance we propose a new mandatory tagging of essentially all such plants, prior to cultivation or marketing in the European Union. The suggested tag--Plant-Made Industrial or Pharmaceutical Products Tag (PMIP-T)--is envisaged to occur as a transgenic silent DNA identifier in host plants and designed to enable technically simple identification and characterisation of any NFGM. Implementation of PMIP-T would permit inexpensive, reliable and high-throughput screening for NFGM specifically. The paper outlines key NFGM prospects and challenges as well as the PMIP-T concept.
Collapse
Affiliation(s)
- A Alderborn
- Dept. of Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The analysis of transgene inheritance is an important step in the molecular and genetic characterization of transgenes. In this manuscript, two approaches to characterize the inheritance of transgenes are described. The first approach is based on the expression of the transgene phenotype and the second is based on the analysis of transgene DNA. Instructions on how to make crosses and develop breeding populations are outlined and the importance of these breeding populations in the analysis of transgene inheritance is explained. The number of individuals needed to determine segregation ratios and the statistic used to test these ratios are described. Examples of inheritance patterns that deviate from known expectations are provided and the possible causes of these deviations are discussed.
Collapse
|