1
|
Kumar S, Vishwakarma H, Ghosh G, Singh J, Padaria JC. In planta transformation in wheat: an improved protocol to develop wheat transformants. Mol Biol Rep 2024; 51:407. [PMID: 38460010 DOI: 10.1007/s11033-024-09333-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/07/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Lack of efficient transformation protocol continues to be a major bottleneck for successful genome editing or transgenic development in wheat. An in planta transformation method was developed in Indian bread wheat in earlier study (Vasil et al. in Nat Biotechnol 10:667-674, 1992) which was labour-intensive and time-consuming. In the present study, in planta transformation method was improved to make it simple, efficient, less labour-intensive and time-saving. METHODS AND RESULTS PCR-based screening for generated transformants at T0 stage was introduced in this method. Shoot apical meristem of two days old wheat seedling was inoculated with the routine active culture of Agrobacterium tumefaciens harboring plasmid pCAMBIA1300-Ubi-GFP having gene GFP under the control of Zea mays ubiquitin promoter. PCR analysis at T0 stage confirmed 27 plants to be transgene positive. These 27 plants were only taken to the next generation (T1) and the rest were discarded. At T1 generation 6 plants were analyzed to be PCR positive. Out of them, 4 plants were confirmed to have stable integration of transgene (GFP). Fluorescent microscopy at T1 stage confirmed the 4 Southern hybridization positive plants to be expressing reporter gene GFP. CONCLUSIONS Screening at T0 stage, reduced the load of plants to be taken to T1 generation and their screening thereof at T1 with no overall loss in transformation efficiency. We successfully transformed wheat genotype HD2894 with 3.33% transformation efficiency using a simple, effective method which was less labour-intensive and less time-consuming. This method may be utilized to develop wheat transgenic as well as genome edited lines for desirable traits.
Collapse
Affiliation(s)
- Satish Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Harinder Vishwakarma
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Gourab Ghosh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Jaskirat Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | | |
Collapse
|
2
|
Chauhan S, Rajam MV. Host RNAi-mediated silencing of Fusarium oxysporum f. sp. lycopersici specific-fasciclin-like protein genes provides improved resistance to Fusarium wilt in Solanum lycopersicum. PLANTA 2024; 259:79. [PMID: 38431538 DOI: 10.1007/s00425-024-04360-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
MAIN CONCLUSION Tomato transgenics expressing dsRNA against FoFLPs act as biofungicides and result in enhanced disease resistance upon Fol infection, by downregulating the endogenous gene expression levels of FoFLPs within Fol. Fusarium oxysporum f. sp. lycopersici (Fol) hijacks plant immunity by colonizing within the host and further instigating secondary infection causing vascular wilt disease in tomato that leads to significant yield loss. Here, RNA interference (RNAi) technology was used to determine its potential in enduring resistance against Fusarium wilt in tomato. To gain resistance against Fol infection, host-induced gene silencing (HIGS) of Fol-specific genes encoding for fasciclin-like proteins (FoFLPs) was done by generating tomato transgenics harbouring FoFLP1, FoFLP4 and FoFLP5 RNAi constructs confirmed by southern hybridizations. These tomato transgenics were screened for stable siRNA production in T0 and T1 lines using northern hybridizations. This confirmed stable dsRNAhp expression in tomato transgenics and suggested durable trait heritability in the subsequent progenies. FoFLP-specific siRNAs producing T1 tomato progenies were further selected to ascertain its disease resistance ability using seedling infection assays. We observed a significant reduction in FoFLP1, FoFLP4 and FoFLP5 transcript levels in Fol, upon infecting their respective RNAi tomato transgenic lines. Moreover, tomato transgenic lines, expressing intended siRNA molecules in the T1 generation, exhibit delayed disease onset with improved resistance. Furthermore, reduced fungal colonization was observed in the roots of Fol-infected T1 tomato progenies, without altering the plant photosynthetic efficiency of transgenic plants. These results substantiate the cross-kingdom dsRNA or siRNA delivery from transgenic tomato to Fol, leading to enhanced resistance against Fusarium wilt disease. The results also demonstrated that HIGS is a successful approach in rendering resistance to Fol infection in tomato plants.
Collapse
Affiliation(s)
- Sambhavana Chauhan
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
3
|
Lv QY, Zhao QP, Zhu C, Ding M, Chu FY, Li XK, Cheng K, Zhao X. Hydrogen peroxide mediates high-intensity blue light-induced hypocotyl phototropism of cotton seedlings. STRESS BIOLOGY 2023; 3:27. [PMID: 37676397 PMCID: PMC10442013 DOI: 10.1007/s44154-023-00111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/16/2023] [Indexed: 09/08/2023]
Abstract
Phototropism is a classic adaptive growth response that helps plants to enhance light capture for photosynthesis. It was shown that hydrogen peroxide (H2O2) participates in the regulation of blue light-induced hypocotyl phototropism; however, the underlying mechanism is unclear. In this study, we demonstrate that the unilateral high-intensity blue light (HBL) could induce asymmetric distribution of H2O2 in cotton hypocotyls. Disruption of the HBL-induced asymmetric distribution of H2O2 by applying either H2O2 itself evenly on the hypocotyls or H2O2 scavengers on the lit side of hypocotyls could efficiently inhibit hypocotyl phototropic growth. Consistently, application of H2O2 on the shaded and lit sides of the hypocotyls led to reduced and enhanced hypocotyl phototropism, respectively. Further, we show that H2O2 inhibits hypocotyl elongation of cotton seedlings, thus supporting the repressive role of H2O2 in HBL-induced hypocotyl phototropism. Moreover, our results show that H2O2 interferes with HBL-induced asymmetric distribution of auxin in the cotton hypocotyls. Taken together, our study uncovers that H2O2 changes the asymmetric accumulation of auxin and inhibits hypocotyl cell elongation, thus mediating HBL-induced hypocotyl phototropism.
Collapse
Affiliation(s)
- Qian-Yi Lv
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qing-Ping Zhao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
- College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, 473061, Henan, China
| | - Chen Zhu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Meichen Ding
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Fang-Yuan Chu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xing-Kun Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Kai Cheng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiang Zhao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
4
|
Sahab S, Taylor N. Studies on Pure Mlb ® (Multiple Left Border) Technology and Its Impact on Vector Backbone Integration in Transgenic Cassava. FRONTIERS IN PLANT SCIENCE 2022; 13:816323. [PMID: 35185986 PMCID: PMC8855067 DOI: 10.3389/fpls.2022.816323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Imperfect T-DNA processing is common during Agrobacterium-mediated transformation, which integrates vector backbone sequences into the plant genome. However, regulatory restrictions prevent such transgenic plants from being developed for commercial deployment. The binary vector pCAMBIA2300 was modified by incorporating multiple left border (Mlb®) repeats and was tested in BY2 cells, tobacco, and cassava plants to address this issue. PCR analyses confirmed a twofold increase in the vector backbone free events in the presence of triple left borders in all three systems tested. Vector backbone read-through past the LB was reduced significantly; however, the inclusion of Mlbs® did not effectively address the beyond right border read-through. Also, Mlbs® increased the frequency of single-copy and vector backbone free events (clean events) twice compared to a single LB construct. Here, we briefly narrate the strength and limitations of using Mlb® technology and reporter genes in reducing the vector backbone transfer in transgenic events.
Collapse
Affiliation(s)
- Sareena Sahab
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Nigel Taylor
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| |
Collapse
|
5
|
Abstract
There are many methods and techniques that can be used to transfer foreign genes into cells. In plant biotechnology, Agrobacterium-mediated transformation is a widely used traditional method for inserting foreign genes into plant genome and obtaining transgenic plants, particularly for dicot plant species. Agrobacterium-mediated transformation of cotton involves several important and also critical steps, which includes co-culture of cotton explants with Agrobacterium, induction and selection of stable transgenic cell lines, recovery of plants from transgenic cells majorly through somatic embryogenesis, and detection and expression analysis of transgenic plants. In this chapter, we describe a detailed step-by-step protocol for obtaining transgenic cotton plants via Agrobacterium-mediated transformation.
Collapse
|
6
|
Yi C, Hong Y. Estimating the Copy Number of Transgenes in Transformed Cotton by Real-Time Quantitative PCR. Methods Mol Biol 2019; 1902:137-157. [PMID: 30543067 DOI: 10.1007/978-1-4939-8952-2_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Transgenic cotton has been widely employed both in commercial cultivation and basic research. It is essential to determine which plants contain the transgene and in how many copies after transgenic cotton plants are generated. A TaqMan quantitative real-time polymerase chain reaction (Tq RT-PCR) method is described here to examine transgene copy number in transgenic cotton plants. The estimation of two transgene elements, the target gene of green fluorescence protein (GFP) and the selective gene of neomycin phosphotransferase II (NPTII), is used as an example to detail each step in Tq RT-PCR procedure, including endogenous reference gene selection, reference plasmid construction, primer-probe design, DNA extraction, real-time PCR, and data analysis. Comparing with traditional Southern hybridization analysis, this method can be used efficiently in screening large number of seedlings of T0 transgenic cotton at early stage of transformation process as well as in identifying transgene homozygotes in a segregation population.
Collapse
Affiliation(s)
- Chengxin Yi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- JOil (S) Pte Ltd, Singapore, Singapore
| | - Yan Hong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
7
|
Zhang B. Transgenic Cotton: From Biotransformation Methods to Agricultural Application. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2018; 1902:3-16. [PMID: 30543057 DOI: 10.1007/978-1-4939-8952-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transgenic cotton is among the first transgenic plants commercially adopted around the world. Since it was first introduced into the field in the middle of the 1990s, transgenic cotton has been quickly adopted by cotton farmers in many developed and developing countries. Transgenic cotton has offered many important environmental, social, and economic benefits, including reduced usage of pesticides, indirect increase of yield, minimizing environmental pollution, and reducing labor and cost. Agrobacterium-mediated genetic transformation method is the major method for obtaining transgenic cotton. However, pollen tube pathway-mediated method is also used, particularly by scientists in China, to breed commercial transgenic cotton. Although transgenic cotton plants with disease resistance, abiotic stress tolerance, and improved fiber quality have been developed in the past decades, insect-resistant and herbicide-tolerant cottons are the two dominant cottons in transgenic cotton market.
Collapse
Affiliation(s)
- Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
8
|
Investigating Transgene Integration and Organization in Cotton (Gossypium hirsutum L.) Genome. Methods Mol Biol 2018. [PMID: 30543066 DOI: 10.1007/978-1-4939-8952-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In this chapter, we present detailed experimental procedures for investigating integration patterns of transgenes in cotton genome. We use conventional PCR and genomic Southern blot hybridization to characterize integration of T-DNA components and vector backbone fragments. For multiple-copy insertions into the same site (complex loci), transgene/transgene junctions (including canonical and truncated T-DNA and transgene involved vector backbone sequences) are characterized by PCR and sequencing. Inverse PCR and sequencing are used to characterize transgene/cotton genome junctions. Distribution of T-DNA insertion in cotton genome is evaluated by analysis of transgene flanking sequences. The pre-insertion sites can also be cloned and sequenced (based on the flanking sequences) for survey of genomic structure changes brought by transgene integration by comparing a pre-insertion site with corresponding transgene/plant junctions.
Collapse
|
9
|
The Mechanism of T-DNA Integration: Some Major Unresolved Questions. Curr Top Microbiol Immunol 2018; 418:287-317. [DOI: 10.1007/82_2018_98] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
An Insight into T-DNA Integration Events in Medicago sativa. Int J Mol Sci 2017; 18:ijms18091951. [PMID: 28895894 PMCID: PMC5618600 DOI: 10.3390/ijms18091951] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 11/16/2022] Open
Abstract
The molecular mechanisms of transferred DNA (T-DNA) integration into the plant genome are still not completely understood. A large number of integration events have been analyzed in different species, shedding light on the molecular mechanisms involved, and on the frequent transfer of vector sequences outside the T-DNA borders, the so-called vector backbone (VB) sequences. In this work, we characterized 46 transgenic alfalfa (Medicago sativa L.) plants (events), generated in previous works, for the presence of VB tracts, and sequenced several T-DNA/genomic DNA (gDNA) junctions. We observed that about 29% of the transgenic events contained VB sequences, within the range reported in other species. Sequence analysis of the T-DNA/gDNA junctions evidenced larger deletions at LBs compared to RBs and insertions probably originated by different integration mechanisms. Overall, our findings in alfalfa are consistent with those in other plant species. This work extends the knowledge on the molecular events of T-DNA integration and can help to design better transformation protocols for alfalfa.
Collapse
|
11
|
Orbegozo J, Solorzano D, Cuellar WJ, Bartolini I, Roman ML, Ghislain M, Kreuze J. Marker-free PLRV resistant potato mediated by Cre-loxP excision and RNAi. Transgenic Res 2016; 25:813-828. [PMID: 27544267 PMCID: PMC5104775 DOI: 10.1007/s11248-016-9976-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/05/2016] [Indexed: 11/17/2022]
Abstract
An inverted repeat construct corresponding to a segment of the potato leaf roll virus coat protein gene was created under control of a constitutive promoter and transferred into a transformation vector with a heat inducible Cre-loxP system to excise the nptII antibiotic resistance marker gene. Fifty-eight transgenic events were evaluated for resistance to PLRV by greenhouse inoculations, which lead to the identification of 7 highly resistant events, of which 4 were extremely resistant. This resistance was also highly effective against accumulation in subsequent tuber generations from inoculated plants, which has not been reported before. Northern blot analysis showed correlation of PLRV specific siRNA accumulation with the level of PLRV resistance. Heat mediated excision of the nptII antibiotic resistance gene in PLRV resistant events was highly efficient in one event with full excision in 71 % of treated explants. On the other hand 8 out of 10 analyzed events showed truncated T-DNA insertions lacking one of the two loxP sites as determined by PCR and confirmed by sequencing flanking regions in 2 events, suggesting cryptic LB sites in the non-coding region between the nptII gene and the flanking loxP site. Accordingly, it is proposed to modify the Cre-loxP vector by reducing the 1 kb size of the region between nptII, loxP, and the LB.
Collapse
Affiliation(s)
- Jeanette Orbegozo
- International Potato Center (CIP), P.O. Box 1558, Lima 12, Peru
- West University Av. C/O Veterinary Service, El Paso, TX, 79968, USA
| | - Dennis Solorzano
- International Potato Center (CIP), P.O. Box 1558, Lima 12, Peru
- Dirección de Salud (DISA) II, Ministerio de Salud, Lima 04, Peru
| | - Wilmer J Cuellar
- International Potato Center (CIP), P.O. Box 1558, Lima 12, Peru
- International Center for Tropical Agriculture (CIAT), Palmira, Colombia
| | - Ida Bartolini
- International Potato Center (CIP), P.O. Box 1558, Lima 12, Peru
- Servicio Nacional de Sanidad Agraria (SENASA), Lima, Peru
| | | | - Marc Ghislain
- International Potato Center (CIP), P.O. Box 1558, Lima 12, Peru
- CIP, P.O. Box 25171, Nairobi, 00603, Kenya
| | - Jan Kreuze
- International Potato Center (CIP), P.O. Box 1558, Lima 12, Peru.
| |
Collapse
|
12
|
Drozd SF, Surkov SA, Glazkov MV. Some characteristics of transgenic clones of mouse R1 line embryonic stem cells. BIOL BULL+ 2016. [DOI: 10.1134/s1062359016030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Wei FJ, Kuang LY, Oung HM, Cheng SY, Wu HP, Huang LT, Tseng YT, Chiou WY, Hsieh-Feng V, Chung CH, Yu SM, Lee LY, Gelvin SB, Hsing YIC. Somaclonal variation does not preclude the use of rice transformants for genetic screening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:648-59. [PMID: 26833589 DOI: 10.1111/tpj.13132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/21/2015] [Accepted: 01/20/2016] [Indexed: 05/07/2023]
Abstract
Rice (Oryza sativa) is one of the world's most important crops. Rice researchers make extensive use of insertional mutants for the study of gene function. Approximately half a million flanking sequence tags from rice insertional mutant libraries are publicly available. However, the relationship between genotype and phenotype is very weak. Transgenic plant assays have been used frequently for complementation, overexpression or antisense analysis, but sequence changes caused by callus growth, Agrobacterium incubation medium, virulence genes, transformation and selection conditions are unknown. We used high-throughput sequencing of DNA from rice lines derived from Tainung 67 to analyze non-transformed and transgenic rice plants for mutations caused by these parameters. For comparison, we also analyzed sequence changes for two additional rice varieties and four T-DNA tagged transformants from the Taiwan Rice Insertional Mutant resource. We identified single-nucleotide polymorphisms, small indels, large deletions, chromosome doubling and chromosome translocations in these lines. Using standard rice regeneration/transformation procedures, the mutation rates of regenerants and transformants were relatively low, with no significant differences among eight tested treatments in the Tainung 67 background and in the cultivars Taikeng 9 and IR64. Thus, we could not conclusively detect sequence changes resulting from Agrobacterium-mediated transformation in addition to those caused by tissue culture-induced somaclonal variation. However, the mutation frequencies within the two publically available tagged mutant populations, including TRIM transformants or Tos17 lines, were about 10-fold higher than the frequency of standard transformants, probably because mass production of embryogenic calli and longer callus growth periods were required to generate these large libraries.
Collapse
Affiliation(s)
- Fu-Jin Wei
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Lin-Yun Kuang
- Transgenic Plant Core Facility, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Hui-Min Oung
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Sin-Yuan Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Hshin-Ping Wu
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Lin-Tzu Huang
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Yi-Tzu Tseng
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
- Institute of Plant Biology, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Wan-Yi Chiou
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Vicki Hsieh-Feng
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Cheng-Han Chung
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Lan-Ying Lee
- Department of Biological Sciences, Purdue University, 201 South University St., West Lafayette, IN, 47907-1392, USA
| | - Stanton B Gelvin
- Department of Biological Sciences, Purdue University, 201 South University St., West Lafayette, IN, 47907-1392, USA
| | - Yue-Ie C Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| |
Collapse
|
14
|
Koul B, Srivastava S, Sanyal I, Tripathi B, Sharma V, Amla DV. Transgenic tomato line expressing modified Bacillus thuringiensis cry1Ab gene showing complete resistance to two lepidopteran pests. SPRINGERPLUS 2014; 3:84. [PMID: 24600542 PMCID: PMC3937457 DOI: 10.1186/2193-1801-3-84] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/05/2014] [Indexed: 11/24/2022]
Abstract
The modified truncated Bt-cry1Ab gene of Bacillus thuringiensis has been used for the development and selection of over expressing transgenic events in a commercially important variety of tomato (Solanum lycopersicum L.) by Agrobacterium-mediated leaf-disc transformation procedure. The integration and inheritance of cry1Ab gene in T0 transgenic plants and their progenies were determined by PCR, RT-PCR and Southern blot hybridization analysis. The toxin expression was monitored by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). The transgenic line Ab25 E, expressing 0.47 ± 0.01% Cry1Ab toxin of total soluble protein (TSP) was finally selected in the T4 generation from the segregating population, showing 100% mortality to the second instar larvae of H. armigera and S. litura and minimal damages to leaves and fruits. Southern blot analysis data revealed single copy introgression of cry1Ab gene in highly-expressing Ab25 E transgenic line and expression of Cry1Ab toxin of molecular mass ~65 kDa was evident in Western blot analyses in transgenic plants of T4, T5 and T6 generation. Receptor binding assay performed with partially purified Cry1Ab protein from Ab25 E transgenic tomato line, confirmed efficient protein-protein interaction of Cry1Ab toxin with receptor(s) of both the insects. The higher level of Cry1Ab toxin (≈ 0.47 ± 0.01% TSP) did not affect the normal in vitro regeneration, plant development and fruit yield in this transgenic line. This high expressing Cry1Ab homozygous transgenic line can be a useful candidate in tomato breeding programmes for introgression of important agronomical traits.
Collapse
Affiliation(s)
- Bhupendra Koul
- Plant Transgenic Lab, CSIR-National Botanical Research Institute, Rana Pratap Marg, P.O. Box 436, Lucknow, 226 001 India
| | - Sugandha Srivastava
- Department of Microbiology, King George's Medical University (KGMU), Lucknow, 226 003 India
| | - Indraneel Sanyal
- Plant Transgenic Lab, CSIR-National Botanical Research Institute, Rana Pratap Marg, P.O. Box 436, Lucknow, 226 001 India
| | - Bhuminath Tripathi
- Department of Botany, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495 009 Chhattisgarh India
| | - Vinay Sharma
- Department of Biosciences & Biotechnology, Banasthali Vidyapith, P.O. Banasthali, Tonk Road, Rajasthan, 304 022 India
| | - Devindra Vijay Amla
- Plant Transgenic Lab, CSIR-National Botanical Research Institute, Rana Pratap Marg, P.O. Box 436, Lucknow, 226 001 India
| |
Collapse
|
15
|
Analysis of T-DNA/Host-Plant DNA Junction Sequences in Single-Copy Transgenic Barley Lines. BIOLOGY 2014; 3:39-55. [PMID: 24833334 PMCID: PMC4009757 DOI: 10.3390/biology3010039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 01/19/2023]
Abstract
Sequencing across the junction between an integrated transfer DNA (T-DNA) and a host plant genome provides two important pieces of information. The junctions themselves provide information regarding the proportion of T-DNA which has integrated into the host plant genome, whilst the transgene flanking sequences can be used to study the local genetic environment of the integrated transgene. In addition, this information is important in the safety assessment of GM crops and essential for GM traceability. In this study, a detailed analysis was carried out on the right-border T-DNA junction sequences of single-copy independent transgenic barley lines. T-DNA truncations at the right-border were found to be relatively common and affected 33.3% of the lines. In addition, 14.3% of lines had rearranged construct sequence after the right border break-point. An in depth analysis of the host-plant flanking sequences revealed that a significant proportion of the T-DNAs integrated into or close to known repetitive elements. However, this integration into repetitive DNA did not have a negative effect on transgene expression.
Collapse
|
16
|
Chen Y, Rivlin A, Lange A, Ye X, Vaghchhipawala Z, Eisinger E, Dersch E, Paris M, Martinell B, Wan Y. High throughput Agrobacterium tumefaciens-mediated germline transformation of mechanically isolated meristem explants of cotton (Gossypium hirsutum L.). PLANT CELL REPORTS 2014; 33:153-64. [PMID: 24129847 DOI: 10.1007/s00299-013-1519-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 05/03/2023]
Abstract
Agrobacterium tumefaciens mediates high frequency of germline transformation of cotton meristem explants. The meristem transformation system we developed is rapid, high throughput and genotype-flexible. We have developed a high throughput cotton transformation system based on direct Agrobacterium inoculation of mechanically isolated meristem explants of cotton (Gossypium hirsutum L.). The explants were inoculated with a disarmed A. tumefaciens strain, AB33 harboring a 2 T-DNA binary vector pMON114908. This vector contained a gene of interest, an intron-disrupted β-glucuronidase gene in one T-DNA, and a selectable marker gene, aadA in the other T-DNA. Critical factors, such as method of co-culture, culture temperature during selection, composition of selection medium, and selection scheme were found to influence transformation frequency. The cycle time from initial inoculation to the transplanting of transgenic plants to soil was 7-8 weeks. Stable integration of transgenes and their transmission to progeny were confirmed by molecular and genetic analyses. Transgenes segregated in the expected Mendelian fashion in the T1 generation for most of the transgenic events. It was possible to recover marker-free events in the T1 generation when utilizing a binary vector that contained the selectable marker and gene of interest expression cassettes on independent T-DNAs. The procedure presented here has been used to regenerate thousands of independent transgenic events from multiple varieties with numerous constructs, and we believe it represents a major step forward in cotton transformation technology.
Collapse
Affiliation(s)
- Yurong Chen
- Monsanto Company, Agracetus Campus, 8520 University Green, P. O. Box 620999, Middleton, WI, 53562, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yi C, Hong Y. Estimating the copy number of transgenes in transformed cotton by real-time quantitative PCR. Methods Mol Biol 2013; 958:109-30. [PMID: 23143487 DOI: 10.1007/978-1-62703-212-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Transgenic cotton has widely been employed both in commercial cultivation and basic research. It is essential to determine which plants contain the transgene and in how many copies after transgenic cotton plants are generated. A TaqMan quantitative real-time polymerase chain reaction (Tq RT-PCR) method is described here to examine transgene copy number in transgenic cotton plants. The estimation of two transgene elements, the target gene of green fluorescence protein (GFP) and the selective gene of neomycin phosphotransferase II (NPTII), is used as an example to detail each step in Tq RT-PCR procedure, including endogenous reference gene selection, reference plasmid construction, primer-probe design, DNA extraction, real-time PCR, and data analysis. Comparing with traditional approach-Southern hybridization -analysis, this method can be used efficiently in screening large number of T0 transgenic cotton plants at early stage of transformation process as well as identifying transgene homozygotes in a segregation population.
Collapse
Affiliation(s)
- Chengxin Yi
- JOil (S) Pte Ltd, 1 Research Link, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
18
|
Zhang J, Hong Y. Investigating transgene integration and organization in cotton (Gossypium hirsutum L.) genome. Methods Mol Biol 2013; 958:95-107. [PMID: 23143486 DOI: 10.1007/978-1-62703-212-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this chapter, we present detailed experimental procedures for investigating integration patterns of transgenes in cotton genome. We use conventional PCR and genomic Southern blot hybridization to characterize integration of T-DNA components and vector backbone fragments. For multiple copy insertions into the same site (complex loci), transgene/transgene junctions (including canonical and truncated T-DNA and transgene involved vector backbone sequences) are characterized by PCR and sequencing. Inverse PCR (see Note 1) and sequencing is used to characterize transgene/cotton genome junctions. Distribution of T-DNA insertion in cotton genome is evaluated by analysis of transgene flanking sequences. The pre-insertion sites can also be cloned and sequenced (based on the flanking sequences) for survey of genomic structure changes brought by transgene integration by comparing a pre-insertion site with corresponding transgene/plant junctions.
Collapse
Affiliation(s)
- Jun Zhang
- Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong, PR China
| | | |
Collapse
|
19
|
Abstract
There are many methods and techniques that can be used to transfer foreign genes into cells. In plant biotechnology, Agrobacterium-mediated transformation is a widely used traditional method for inserting foreign genes into plant genome and obtaining transgenic plants, particularly for dicot plant species. Agrobacterium-mediated transformation of cotton involves several important and also critical steps, which includes coculture of cotton explants with Agrobacterium, induction and selection of stable transgenic cell lines, recovery of plants from transgenic cells majorly through somatic embryogenesis, and detection and expression analysis of transgenic plants. In this chapter, we describe a detailed step-by-step protocol for obtaining transgenic cotton plants via Agrobacterium-mediated transformation.
Collapse
Affiliation(s)
- Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
20
|
Zhang B. Transgenic cotton: from biotransformation methods to agricultural application. Methods Mol Biol 2013; 958:3-15. [PMID: 23143479 DOI: 10.1007/978-1-62703-212-4_1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transgenic cotton is among the first transgenic plants commercially adopted around the world. Since it was first introduced into the field in the middle of 1990s, transgenic cotton has been quickly adopted by cotton farmers in many developed and developing countries. Transgenic cotton has offered many important environmental, social, and economic benefits, including reduced usage of pesticides, indirect increase of yield, minimizing environmental pollution, and reducing labor and cost. Agrobacterium-mediated genetic transformation method is the major method for obtaining transgenic cotton. However, pollen tube pathway-mediated method is also used, particularly by scientists in China, to breed commercial transgenic cotton. Although transgenic cotton plants with disease-resistance, abiotic stress tolerance, and improved fiber quality have been developed in the past decades, insect-resistant and herbicide-tolerant cotton are the two dominant transgenic cottons in the transgenic cotton market.
Collapse
Affiliation(s)
- Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
21
|
Mehrotra S, Goyal V. Evaluation of designer crops for biosafety--a scientist's perspective. Gene 2012; 515:241-8. [PMID: 23266812 DOI: 10.1016/j.gene.2012.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/26/2012] [Accepted: 12/04/2012] [Indexed: 01/16/2023]
Abstract
With the advent of transgenic technology, it has become possible to mobilize and express foreign genes into plants and to design crop varieties with better agronomic attributes and adaptability to challenging environmental conditions. Recent advances in transgenic technology have led to concerns about safety of transgenic crops to human and animal health and environment. Biosafety focuses on preventing, minimizing and eliminating risks associated with the research, production, and use of transgenic crops. Food biosafety involves studies of substantial equivalence related to compositional analysis, toxicity and allergenicity. Environmental biosafety involves glasshouse and field trials and study of unintended effects on non-target organisms. Transgenics are characterized at phenotypic and molecular levels for understanding the location of transgene insertion site, ploidy level, copy number, integrated vector sequences, protein expression and stability of the transgene. Various techniques employed for transgene characterization include flow cytometry, southern, northern and western analyses, real-time (qRT) PCR, competitive PCR, FISH, fiber-FISH, DNA micro-arrays, mRNA profiling, 2DE-MS, iTRAQ, FT-MS, NMR, GC-MS, CE-MS and biosensor-based approaches. Evaluation of transgene expression involves the application of integrated phenomics, transcriptomics, proteomics and metabolomics approaches. However, the relevance and application of these approaches may vary in different cases. The elaborate analysis of transgenic crops will facilitate the safety assessment and commercialization of transgenics and lead to global food security for the future.
Collapse
Affiliation(s)
- Shweta Mehrotra
- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi-110012, India.
| | | |
Collapse
|
22
|
Kemski MM, Stevens B, Rappleye CA. Spectrum of T-DNA integrations for insertional mutagenesis of Histoplasma capsulatum. Fungal Biol 2012; 117:41-51. [PMID: 23332832 DOI: 10.1016/j.funbio.2012.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 10/27/2022]
Abstract
Agrobacterium-mediated transformation is being increasingly used for insertional mutagenesis of fungi. To better evaluate its effectiveness as a mutagen for the fungal pathogen Histoplasma capsulatum, we analyzed a collection of randomly selected T-DNA insertion mutants. Testing of different T-DNA element vectors engineered for transformation of fungi showed that pBHt2 provides the highest transformation efficiency and the lowest rate of vector backbone carryover. Sixty-eight individual T-DNA integrations were characterized by recovery of T-DNA ends and flanking genomic sequences. The right border (RB) end of the T-DNA is largely preserved whereas the left border (LB) end is frequently truncated. Analysis of T-DNA insertion sites confirms the lack of any integration hotspots in the Histoplasma genome. Relative to genes, T-DNA integrations show significant bias towards promoter regions at the expense of coding sequences. With consideration for potential promoter interruption and the demonstrated efficacy of intronic insertions, 61 % of mapped T-DNA insertions should impair gene expression or function. Mapping of T-DNA flanking sequences demonstrates 67 % of T-DNA integrations are integrations at a single chromosomal site and 31 % of T-DNA integrations are associated with large-scale chromosomal rearrangements. This characterization of T-DNA insertions in mutants selected without regard to phenotype supports application of Agrobacterium-mediated transformation as an insertional mutagen for genome-based screens and functional discovery of genes in Histoplasma.
Collapse
Affiliation(s)
- Megan M Kemski
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
23
|
Singer K, Shiboleth YM, Li J, Tzfira T. Formation of complex extrachromosomal T-DNA structures in Agrobacterium tumefaciens-infected plants. PLANT PHYSIOLOGY 2012; 160:511-22. [PMID: 22797657 PMCID: PMC3440224 DOI: 10.1104/pp.112.200212] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 07/12/2012] [Indexed: 05/09/2023]
Abstract
Agrobacterium tumefaciens is a unique plant pathogenic bacterium renowned for its ability to transform plants. The integration of transferred DNA (T-DNA) and the formation of complex insertions in the genome of transgenic plants during A. tumefaciens-mediated transformation are still poorly understood. Here, we show that complex extrachromosomal T-DNA structures form in A. tumefaciens-infected plants immediately after infection. Furthermore, these extrachromosomal complex DNA molecules can circularize in planta. We recovered circular T-DNA molecules (T-circles) using a novel plasmid-rescue method. Sequencing analysis of the T-circles revealed patterns similar to the insertion patterns commonly found in transgenic plants. The patterns include illegitimate DNA end joining, T-DNA truncations, T-DNA repeats, binary vector sequences, and other unknown "filler" sequences. Our data suggest that prior to T-DNA integration, a transferred single-stranded T-DNA is converted into a double-stranded form. We propose that termini of linear double-stranded T-DNAs are recognized and repaired by the plant's DNA double-strand break-repair machinery. This can lead to circularization, integration, or the formation of extrachromosomal complex T-DNA structures that subsequently may integrate.
Collapse
MESH Headings
- Agrobacterium tumefaciens/pathogenicity
- Ampicillin/pharmacology
- Cloning, Molecular
- DNA End-Joining Repair
- DNA, Bacterial/genetics
- DNA, Circular/genetics
- DNA, Single-Stranded/genetics
- Drug Resistance, Bacterial
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Genetic Vectors/genetics
- Plant Diseases/microbiology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/microbiology
- Plasmids/genetics
- Sequence Analysis, DNA/methods
- Nicotiana/genetics
- Nicotiana/metabolism
- Nicotiana/microbiology
- Transformation, Genetic
Collapse
Affiliation(s)
- Kamy Singer
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA.
| | | | | | | |
Collapse
|
24
|
Kim JS, Kim J, Lee TH, Jun KM, Kim TH, Kim YH, Park HM, Jeon JS, An G, Yoon UH, Nahm BH, Kim YK. FSTVAL: a new web tool to validate bulk flanking sequence tags. PLANT METHODS 2012; 8:19. [PMID: 22709793 PMCID: PMC3439307 DOI: 10.1186/1746-4811-8-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/18/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Information about a transgene locus is one of the major concerns in transgenic research because expression of the transgene or a gene interrupted by the integration event could be affected. Thus, the flanking sequences obtained from transgenic plants need to be analyzed in terms of genomic context, such as genic and intergenic regions. This process may consist of several steps: 1) elimination of a vector sequence from the flanking sequence, 2) finding the locations in the target genome, and 3) statistics of the integration sites. These steps could be automated for flanking sequences from several dozens of transgenic plants generated in an ordinary targeted gene expression strategy. It would be indispensable in a genome-wide mutagenesis screen using T-DNA or transposons because these projects often generate several thousands of transgenic lines and just as many loci of the transgene among the transgenic plants. RESULTS We present an open access web tool, flanking sequence tags validator (FSTVAL), to manage bulk flanking sequence tags (FSTs). FSTVAL automatically evaluates the FSTs and finds the best mapping positions of the FST against a known genome sequence. The statistics, in terms of genic and intergenic regions, are presented as a table, a distribution map, and a frequency graph along the chromosomes. Currently, 17 plant genome sequences, including Arabidopsis thaliana, Oryza sativa, and Glycine max, are available as reference genomes. We evaluated the utility and accuracy of the tool with 5,144 rice FSTs. The whole process, from uploading the sequences to generating tables of insertions, required a few minutes, with less than 4 clicks in the web environment. CONCLUSIONS Run for 1 year and tested over 1,000 times, we have confirmed FSTVAL efficiently handles bulk FSTs. FSTVAL is freely available without login at http://bioinfo.mju.ac.kr/fstval/.
Collapse
Affiliation(s)
- Joung Sug Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyonggido, 449-728, South Korea
| | - Jiye Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyonggido, 449-728, South Korea
| | - Tae-Ho Lee
- Genomics Genetics Institute, GreenGene BioTech Inc. Yongin, Yongin, Kyonggido, 449-728, South Korea
| | - Kyong Mi Jun
- Genomics Genetics Institute, GreenGene BioTech Inc. Yongin, Yongin, Kyonggido, 449-728, South Korea
| | - Tea Hoon Kim
- Genomics Genetics Institute, GreenGene BioTech Inc. Yongin, Yongin, Kyonggido, 449-728, South Korea
| | - Yul-Ho Kim
- Upland Crop Research division, National Institute of Crop Science, Suwon, 441-857, South Korea
| | - Hyang-Mi Park
- Upland Crop Research division, National Institute of Crop Science, Suwon, 441-857, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, South Korea
| | - Gynheung An
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, South Korea
| | - Ung-Han Yoon
- National Academy of Agricultural Science, Rural Development Administration, Suwon, 441-707, South Korea
| | - Baek Hie Nahm
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyonggido, 449-728, South Korea
- Genomics Genetics Institute, GreenGene BioTech Inc. Yongin, Yongin, Kyonggido, 449-728, South Korea
| | - Yeon-Ki Kim
- Genomics Genetics Institute, GreenGene BioTech Inc. Yongin, Yongin, Kyonggido, 449-728, South Korea
| |
Collapse
|
25
|
Yang L, Fu FL, Fu FL, Li WC. [T-DNA integration patterns in transgenic plants mediated by Agrobacterium tumefaciens]. YI CHUAN = HEREDITAS 2011; 33:1327-1334. [PMID: 22207378 DOI: 10.3724/sp.j.1005.2011.01327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The genetic transformation mediated by Agrobacterium tumefaciens has been widely applied to research of transgenic plants. As the vector of the exotic genes, the integration patterns of T-DNA fragments affects not only transformation efficiency and stability, but also expression properties of the transgenes. This review summaries the two major patterns and the rules of T-DNA integration in Agrobacterim-mediated transformation, rules of T-DNA mediated by Agrobacterium tumefaciens, as well as research tools for flanking sequence amplification. It is attempted to provide references for researches on transformation and T-DNA integration mutation mediated by Agrobacterium tumefaciens.
Collapse
Affiliation(s)
- Lin Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China.
| | | | | | | |
Collapse
|
26
|
Rawat P, Singh AK, Ray K, Chaudhary B, Kumar S, Gautam T, Kanoria S, Kaur G, Kumar P, Pental D, Burma PK. Detrimental effect of expression of Bt endotoxin Cry1Ac on in vitro regeneration, in vivo growth and development of tobacco and cotton transgenics. J Biosci 2011; 36:363-76. [PMID: 21654089 DOI: 10.1007/s12038-011-9074-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
High levels of expression of the cry1Ac gene from Bacillus thuringiensis cannot be routinely achieved in transgenic plants despite modifications made in the gene to improve its expression. This has been attributed to the instability of the transcript in a few reports. In the present study, based on the genetic transformation of cotton and tobacco, we show that the expression of the Cry1Ac endotoxin has detrimental effects on both the in vitro and in vivo growth and development of transgenic plants. A number of experiments on developing transgenics in cotton with different versions of cry1Ac gene showed that the majority of the plants did not express any Cry1Ac protein. Based on Southern blot analysis, it was also observed that a substantial number of lines did not contain the cry1Ac gene cassette although they contained the marker gene nptII. More significantly, all the lines that showed appreciable levels of expression were found to be phenotypically abnormal. Experiments on transformation of tobacco with different constructs expressing the cry1Ac gene showed that in vitro regeneration was inhibited by the encoded protein. Further, out of a total of 145 independent events generated with the different cry1Ac gene constructs in tobacco, only 21 showed expression of the Cry1Ac protein, confirming observations made in cotton that regenerants that express high levels of the Cry1Ac protein are selected against during regeneration of transformed events. This problem was circumvented by targeting the Cry1Ac protein to the chloroplast, which also significantly improved the expression of the protein.
Collapse
Affiliation(s)
- Preeti Rawat
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
La Paz JL, Vicient C, Puigdomènech P, Pla M. Characterization of polyadenylated cryIA(b) transcripts in maize MON810 commercial varieties. Anal Bioanal Chem 2009; 396:2125-33. [PMID: 19841912 DOI: 10.1007/s00216-009-3176-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/18/2009] [Accepted: 09/20/2009] [Indexed: 01/22/2023]
Abstract
The Zea mays L. event MON810 is one of the major commercialized genetically modified crops. The inserted expression cassette has a 3' truncation partially affecting the cryIA(b) coding sequence, resulting in the lack of the NOS terminator, with transcription of the transgene reported to read-through 3'-past the truncation site. Here, we demonstrate that the cryIA(b) transgene gives rise to a variety of polyadenylated transcripts of different sizes that extend to around 1 kbp downstream the truncation site. A Stop codon at position +7 downstream the truncation site indicates the production of a transgenic protein with two additional amino acids; which is compatible with the reported size of the CryIA(b) protein in MON810. There is no evidence of the existence of other translated products. Several main 3' transcription termination regions were detected close to the truncation site and in the transgene 3' flanking sequence. Next to these main termination sites, we identified some sequence motifs that could potentially act as 3'-end-processing elements and drive termination of the transgene transcripts. The MON810 transgene has been introduced into different commercial varieties through breeding programs. Here, we demonstrate that there are no significant differences among the levels of transgene mRNA accumulation, major transcript sizes and 3' termini profiles comparing a number of MON810 commercial varieties grown under similar environmental conditions. Commercial varieties of this event appear to be stable in terms of transgene expression.
Collapse
Affiliation(s)
- José Luis La Paz
- Departament Genètica Molecular, Centre de Recerca en Agrigenòmica, CSIC-IRTA-UAB, Jordi Girona, 18, 08034 Barcelona, Spain.
| | | | | | | |
Collapse
|
28
|
Rawat P, Kumar S, Pental D, Burma PK. Inactivation of a transgene due to transposition of insertion sequence (IS136) of Agrobacterium tumefaciens. J Biosci 2009; 34:199-202. [PMID: 19550035 DOI: 10.1007/s12038-009-0023-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Agrobacterium strains harbour insertion sequences, which are known to transpose into genomes as well as into Ti plasmids. In this study we report the inactivation of a transgene due to transposition of the A. tumefaciens insertion sequence IS136. The transposition was discovered following transformation of plant tissues, although the fidelity of the binary vector was confirmed following transformation into Agrobacterium. Such transpositions are rare but can occur and it is thus important to check the fidelity of the binary vector at different times of Agrobacterium growth in order to avoid failure in achieving transgene expression.
Collapse
Affiliation(s)
- Preeti Rawat
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | | | | | | |
Collapse
|
29
|
Sandhu S, Altpeter F. Co-integration, co-expression and inheritance of unlinked minimal transgene expression cassettes in an apomictic turf and forage grass (Paspalum notatum Flugge). PLANT CELL REPORTS 2008; 27:1755-65. [PMID: 18758782 DOI: 10.1007/s00299-008-0599-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 08/11/2008] [Accepted: 08/18/2008] [Indexed: 05/05/2023]
Abstract
Bahiagrass (Paspalum notatum Flugge) is an important turf and forage grass in the southeastern United States and other subtropical regions. Biolistic co-transfer of two unlinked, minimal, linear transgene expression cassettes (MCs) into the apomictic bahiagrass cv. Argentine was carried out to evaluate co-integration, quantify co-expression and analyze inheritance to apomictic seed progeny. Gold projectiles were coated with minimal unlinked nptII and bar expression cassettes in a 1:2 molar ratio. Complexity of transgene loci correlated with the amount of DNA used during gene transfer. Transgenic plants displayed a simple nptII integration pattern with 1-4 hybridization signals compared to the non-selected bar gene with 2 to more than 5 hybridization signals per transgenic line. Co-expression of unlinked nptII and bar genes occurred in 19 of the 20 co-transformed lines (95% co-expression frequency). Protein quantification revealed that several lines with complex integration patterns displayed a higher transgene expression than lines with simple transgene integration patterns. Several transgenic lines displayed hybridization signals indicative of concatemerization. Concatemers were confirmed following PCR amplification and sequence analysis of transgene loci. The obligate apomictic bahiagrass cv. Argentine produced uniform seed progeny without segregation of simple or complex transgene loci. NPTII- and PAT-ELISA, as well as herbicide application, confirmed stable expression of the nptII and bar gene at levels similar to the primary transformants. These results demonstrate that biolistic transfer of MCs support stable and high level co-expression of transgenes in bahiagrass.
Collapse
Affiliation(s)
- Sukhpreet Sandhu
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL, USA
| | | |
Collapse
|