1
|
Lou H, Wang F, Zhang J, Wei G, Wei J, Hu H, Li Y, Wang K, Wang Z, Huang Y, Wu J, Pei D, Huang J, Zhang Q. JrGA20ox1-transformed rootstocks deliver drought response signals to wild-type scions in grafted walnut. HORTICULTURE RESEARCH 2024; 11:uhae143. [PMID: 38988618 PMCID: PMC11233861 DOI: 10.1093/hr/uhae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/13/2024] [Indexed: 07/12/2024]
Abstract
Targeted regulation using transgrafting technology has become a trend. However, the mechanisms of transgene-derived signal communication between rootstocks and scions remain unclear in woody plants. Here, we grafted wild-type (WT) walnut (Juglans regia L.) on WT (WT/WT), JrGA20ox1 (encodes a gibberellin 20-oxidase)-overexpressing (WT/OE), and JrGA20ox1-RNAi transformation (WT/RNAi) walnut in vitro. We aimed to elucidate the mechanisms of JrGA20ox1-derived signal communication under PEG-simulated drought stress between rootstocks and scions in walnut. We demonstrated that JrGA20ox1-OE and JrGA20ox1-RNAi rootstocks could transport active gibberellins (GAs) and JrGA20ox1-RNAi vector-produced sRNAs to WT scions under PEG-simulated drought stress, respectively. The movement of sRNAs further led to a successive decline in JrGA20ox1 expression and active GA content. Meanwhile, unknown mobile signals may move between rootstocks and scions. These mobile signals reduced the expression of a series of GA-responsive and GA-non-responsive genes, and induced ROS production in guard cells and an increase in ABA content, which may contribute to the drought tolerance of WT/RNAi, while the opposite occurred in WT/OE. The findings suggest that JrGA20ox1-derived rootstock-to-scion movement of signals is involved in drought tolerance of scions. Our research will provide a feasible approach for studying signal communication in woody plants.
Collapse
Affiliation(s)
- Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Fengmin Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jiaqi Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Guangli Wei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jingjing Wei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Hengkang Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Ketao Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Youjun Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Qixiang Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
2
|
Cong L, Shi YK, Gao XY, Zhao XF, Zhang HQ, Zhou FL, Zhang HJ, Ma BQ, Zhai R, Yang CQ, Wang ZG, Ma FW, Xu LF. Transcription factor PbNAC71 regulates xylem and vessel development to control plant height. PLANT PHYSIOLOGY 2024; 195:395-409. [PMID: 38198215 DOI: 10.1093/plphys/kiae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Dwarfism is an important agronomic trait in fruit breeding programs. However, the germplasm resources required to generate dwarf pear (Pyrus spp.) varieties are limited. Moreover, the mechanisms underlying dwarfism remain unclear. In this study, "Yunnan" quince (Cydonia oblonga Mill.) had a dwarfing effect on "Zaosu" pear. Additionally, the dwarfism-related NAC transcription factor gene PbNAC71 was isolated from pear trees comprising "Zaosu" (scion) grafted onto "Yunnan" quince (rootstock). Transgenic Nicotiana benthamiana and pear OHF-333 (Pyrus communis) plants overexpressing PbNAC71 exhibited dwarfism, with a substantially smaller xylem and vessel area relative to the wild-type controls. Yeast one-hybrid, dual-luciferase, chromatin immunoprecipitation-qPCR, and electrophoretic mobility shift assays indicated that PbNAC71 downregulates PbWalls are thin 1 expression by binding to NAC-binding elements in its promoter. Yeast two-hybrid assays showed that PbNAC71 interacts with the E3 ubiquitin ligase PbRING finger protein 217 (PbRNF217). Furthermore, PbRNF217 promotes the ubiquitin-mediated degradation of PbNAC71 by the 26S proteasome, thereby regulating plant height as well as xylem and vessel development. Our findings reveal a mechanism underlying pear dwarfism and expand our understanding of the molecular basis of dwarfism in woody plants.
Collapse
Affiliation(s)
- Liu Cong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yi-Ke Shi
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xin-Yi Gao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xiao-Fei Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Hai-Qi Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Feng-Li Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Hong-Juan Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Bai-Quan Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Rui Zhai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Cheng-Quan Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zhi-Gang Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Feng-Wang Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Ling-Fei Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
3
|
Jacobson S, Bondarchuk N, Nguyen TA, Canada A, McCord L, Artlip TS, Welser P, Klocko AL. Apple CRISPR-Cas9-A Recipe for Successful Targeting of AGAMOUS-like Genes in Domestic Apple. PLANTS (BASEL, SWITZERLAND) 2023; 12:3693. [PMID: 37960050 PMCID: PMC10649517 DOI: 10.3390/plants12213693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Fruit trees and other fruiting hardwood perennials are economically valuable, and there is interest in developing improved varieties. Both conventional breeding and biotechnology approaches are being utilized towards the goal of developing advanced cultivars. Increased knowledge of the effectiveness and efficiency of biotechnology approaches can help guide use of the CRISPR gene-editing technology. Here, we examined CRISPR-Cas9-directed genome editing in the valuable commodity fruit tree Malus x domestica (domestic apple). We transformed two cultivars with dual CRISPR-Cas9 constructs designed to target two AGAMOUS-like genes simultaneously. The main goal was to determine the effectiveness of this approach for achieving target gene changes. We obtained 6 Cas9 control and 38 independent CRISPR-Cas9 events. Of the 38 CRISPR-Cas9 events, 34 (89%) had gene edits and 14 (37%) showed changes to all alleles of both target genes. The most common change was large deletions, which were present in 59% of all changed alleles, followed by small deletions (21%), small insertions (12%), and a combination of small insertions and deletions (8%). Overall, a high rate of successful gene alterations was found. Many of these changes are predicted to cause frameshifts and alterations to the predicted peptides. Future work will include monitoring the floral development and floral form.
Collapse
Affiliation(s)
- Seth Jacobson
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Natalie Bondarchuk
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Thy Anh Nguyen
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Allison Canada
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Logan McCord
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| | - Timothy S. Artlip
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), The Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA;
| | - Philipp Welser
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS), The Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV 25430, USA;
| | - Amy L. Klocko
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
| |
Collapse
|
4
|
Bashir T, Ul Haq SA, Masoom S, Ibdah M, Husaini AM. Quality trait improvement in horticultural crops: OMICS and modern biotechnological approaches. Mol Biol Rep 2023; 50:8729-8742. [PMID: 37642759 DOI: 10.1007/s11033-023-08728-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Horticultural crops are an essential part of food and nutritional security. Moreover, these form an integral part of the agricultural economy and have enormous economic potential. They are a rich source of nutrients that are beneficial to human health. Plant breeding of horticultural crops has focussed primarily on increasing the productivity and related traits of these crops. However, fruit and vegetable quality is paramount to their perishability, marketability, and consumer acceptance. The improved nutritional value is beneficial to underprivileged and undernourished communities. Due to a declining genetic base, conventional plant breeding does not contribute much to quality improvement as the existing natural allelic variations and crossing barriers between cultivated and wild species limit it. Over the past two decades, 'omics' and modern biotechnological approaches have made it possible to decode the complex genomes of crop plants, assign functions to the otherwise many unknown genes, and develop genome-wide DNA markers. Genetic engineering has enabled the validation of these genes and the introduction of crucial agronomic traits influencing various quality parameters directly or indirectly. This review discusses the significant advances in the quality improvement of horticultural crops, including shelf life, aroma, browning, nutritional value, colour, and many other related traits.
Collapse
Affiliation(s)
- Tanzeel Bashir
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Syed Anam Ul Haq
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Salsabeel Masoom
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Mwafaq Ibdah
- Newe Yaar Research Center, Agricultural Research Organization, Ramat Yishay, 30095, Israel
| | - Amjad M Husaini
- Genome Engineering and Societal Biotechnology Lab, Division of Plant Biotechnology, SKUAST-K, Shalimar, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
5
|
Chen Y, Zhang M, Wang X, Shao Y, Hu X, Cheng J, Zheng X, Tan B, Ye X, Wang W, Li J, Li M, Zhang L, Feng J. Peach DELLA Protein PpeDGYLA Is Not Degraded in the Presence of Active GA and Causes Dwarfism When Overexpressed in Poplar and Arabidopsis. Int J Mol Sci 2023; 24:ijms24076789. [PMID: 37047773 PMCID: PMC10095214 DOI: 10.3390/ijms24076789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Controlling the tree size of fruit species such as peach can reduce the amount of labor and input needed for orchard management. The phytohormone gibberellin (GA) positively regulates tree size by inducing degradation of the GA signaling repressor DELLA. The N-terminal DELLA domain in this protein is critical for its GA-dependent interaction with the GA receptor GID1 and the resulting degradation of the DELLA protein, which allows for growth-promoting GA signaling. In this study, a DELLA family member, PpeDGYLA, contains a DELLA domain but has amino acid changes in three conserved motifs (DELLA into DGYLA, LEQLE into LERLE, and TVHYNP into AVLYNP). In the absence or presence of GA3, the PpeDGYLA protein did not interact with PpeGID1c and was stable in 35S-PpeDGYLA peach transgenic callus. The overexpression of PpeDGYLA in both polar and Arabidopsis showed an extremely dwarfed phenotype, and these transgenic plants were insensitive to GA3 treatment. PpeDGYLA could interact with PpeARF6-1 and -2, supposed growth-promoting factors. It is suggested that the changes in the DELLA domain of PpeDGYLA may, to some extent, account for the severe dwarf phenotype of poplar and Arabidopsis transgenic plants. In addition, our study showed that the DELLA family contained three clades (DELLA-like, DELLA, and DGLLA). PpeDGYLA clustered into the DGLLA clade and was expressed in all of the analyzed tissues. These results lay the foundation for the further study of the repression of tree size by PpeDGYLA.
Collapse
Affiliation(s)
- Yun Chen
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Mengmeng Zhang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Xiaofei Wang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Yun Shao
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Xinyue Hu
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Jidong Li
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Ming Li
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Langlang Zhang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
| |
Collapse
|
6
|
Yan T, Mei C, Song H, Shan D, Sun Y, Hu Z, Wang L, Zhang T, Wang J, Kong J. Potential roles of melatonin and ABA on apple dwarfing in semi-arid area of Xinjiang China. PeerJ 2022; 10:e13008. [PMID: 35382008 PMCID: PMC8977067 DOI: 10.7717/peerj.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/04/2022] [Indexed: 01/11/2023] Open
Abstract
Dwarfing is a typic breeding trait for mechanical strengthening and relatively high yield in modern apple orchards. Clarification of the mechanisms associated with dwarfing is important for use of molecular technology to breed apple. Herein, we identified four dwarfing apple germplasms in semi-arid area of Xinjiang, China. The internodal distance of these four germplasms were significantly shorter than non-dwarfing control. Their high melatonin (MT) contents are negatively associated with their malondialdehyde (MDA) levels and oxidative damage. In addition, among the detected hormones including auxin (IAA), gibberellin (GA), brassinolide (BR), zeatin-riboside (ZR), and abscisic acid (ABA), only ABA and ZR levels were in good correlation with the dwarfing phenotype. The qPCR results showed that the expression of melatonin synthetic enzyme genes MdASMT1 and MdSNAT5, ABA synthetic enzyme gene MdAAO3 and degradative gene MdCYP707A, ZR synthetic enzyme gene MdIPT5 all correlated well with the enhanced levels of MT, ABA and the reduced level of of ZR in the dwarfing germplasms. Furthermore, the significantly higher expression of ABA marker genes (MdRD22 and MdRD29) and the lower expression of ZR marker genes (MdRR1 and MdRR2) in all the four dwarf germplasms were consistent with the ABA and ZR levels. Considering the yearly long-term drought occurring in Xinjiang, China, it seems that dwarfing with high contents of MT and ABA may be a good strategy for these germplasms to survive against drought stress. This trait of dwarfing may also benefit apple production and breeding in this semi-arid area.
Collapse
Affiliation(s)
- Tianci Yan
- College of Horticulture, China Agricultural University, Beijing, China,Sanya Institute of China Agricultural University, Sanya, Hainan, China
| | - Chuang Mei
- Scientific Observing and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture, Urumqi, Xinjiang Uygur Autonomous Region, China,Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Handong Song
- College of Horticulture, China Agricultural University, Beijing, China
| | - Dongqian Shan
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yanzhao Sun
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zehui Hu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Lin Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Tong Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jixun Wang
- Scientific Observing and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture, Urumqi, Xinjiang Uygur Autonomous Region, China,Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing, China,Sanya Institute of China Agricultural University, Sanya, Hainan, China
| |
Collapse
|
7
|
Habibi F, Liu T, Folta K, Sarkhosh A. Physiological, biochemical, and molecular aspects of grafting in fruit trees. HORTICULTURE RESEARCH 2022; 9:uhac032. [PMID: 35184166 PMCID: PMC8976691 DOI: 10.1093/hr/uhac032] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 05/27/2023]
Abstract
Grafting is a widely used practice for asexual propagation of fruit trees. Many physiological, biochemical, and molecular changes occur upon grafting that can influence important horticultural traits. This technology has many advantages, including avoidance of juvenility, modifying the scion architecture, improving productivity, adapting scion cultivars to unfavourable environmental conditions, and developing traits in resistance to insect pests, bacterial and fungal diseases. A limitation of grafting is scion-rootstock incompatibility. It may be caused by many factors, including insufficient genetic proximity, physiological or biochemical factors, lignification at the graft union, poor graft architecture, insufficient cell recognition between union tissues, and metabolic differences in the scion and the rootstock. Plant hormones, like auxin, ethylene (ET), cytokinin (CK), gibberellin (GA), abscisic acid (ABA), and jasmonic acid (JA) orchestrate several crucial physiological and biochemical processes happening at the site of the graft union. Additionally, epigenetic changes at the union affect chromatin architecture by DNA methylation, histone modification, and the action of small RNA molecules. The mechanism triggering these effects likely is affected by hormonal crosstalk, protein and small molecules movement, nutrients uptake, and transport in the grafted trees. This review provides an overview of the basis of physiological, biochemical, and molecular aspects of fruit tree grafting between scion and rootstock.
Collapse
Affiliation(s)
- Fariborz Habibi
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| | - Tie Liu
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| | - Kevin Folta
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
8
|
Hezema YS, Shukla MR, Goel A, Ayyanath MM, Sherif SM, Saxena PK. Rootstocks Overexpressing StNPR1 and StDREB1 Improve Osmotic Stress Tolerance of Wild-Type Scion in Transgrafted Tobacco Plants. Int J Mol Sci 2021; 22:8398. [PMID: 34445105 PMCID: PMC8395105 DOI: 10.3390/ijms22168398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
In grafted plants, the movement of long-distance signals from rootstocks can modulate the development and function of the scion. To understand the mechanisms by which tolerant rootstocks improve scion responses to osmotic stress (OS) conditions, mRNA transport of osmotic responsive genes (ORGs) was evaluated in a tomato/potato heterograft system. In this system, Solanum tuberosum was used as a rootstock and Solanum lycopersicum as a scion. We detected changes in the gene expression levels of 13 out of the 21 ORGs tested in the osmotically stressed plants; of these, only NPR1 transcripts were transported across the graft union under both normal and OS conditions. Importantly, OS increased the abundance of StNPR1 transcripts in the tomato scion. To examine mRNA mobility in transgrafted plants, StNPR1 and StDREB1 genes representing the mobile and non-mobile transcripts, respectively, were overexpressed in tobacco (Nicotiana tabacum). The evaluation of transgenic tobacco plants indicated that overexpression of these genes enhanced the growth and improved the physiological status of transgenic plants growing under OS conditions induced by NaCl, mannitol and polyethylene glycol (PEG). We also found that transgenic tobacco rootstocks increased the OS tolerance of the WT-scion. Indeed, WT scions on transgenic rootstocks had higher ORGs transcript levels than their counterparts on non-transgenic rootstocks. However, neither StNPR1 nor StDREB1 transcripts were transported from the transgenic rootstock to the wild-type (WT) tobacco scion, suggesting that other long-distance signals downstream these transgenes could have moved across the graft union leading to OS tolerance. Overall, our results signify the importance of StNPR1 and StDREB1 as two anticipated candidates for the development of stress-resilient crops through transgrafting technology.
Collapse
Affiliation(s)
- Yasmine S. Hezema
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
- Department of Horticulture, Damanhour University, Damanhour 22713, El-Beheira, Egypt
| | - Mukund R. Shukla
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
| | - Alok Goel
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
| | - Murali M. Ayyanath
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
| | - Sherif M. Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA
| | - Praveen K. Saxena
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.S.H.); (M.R.S.); (A.G.); (M.M.A.)
| |
Collapse
|
9
|
Lobato-Gómez M, Hewitt S, Capell T, Christou P, Dhingra A, Girón-Calva PS. Transgenic and genome-edited fruits: background, constraints, benefits, and commercial opportunities. HORTICULTURE RESEARCH 2021; 8:166. [PMID: 34274949 PMCID: PMC8286259 DOI: 10.1038/s41438-021-00601-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/14/2021] [Accepted: 05/20/2021] [Indexed: 05/14/2023]
Abstract
Breeding has been used successfully for many years in the fruit industry, giving rise to most of today's commercial fruit cultivars. More recently, new molecular breeding techniques have addressed some of the constraints of conventional breeding. However, the development and commercial introduction of such novel fruits has been slow and limited with only five genetically engineered fruits currently produced as commercial varieties-virus-resistant papaya and squash were commercialized 25 years ago, whereas insect-resistant eggplant, non-browning apple, and pink-fleshed pineapple have been approved for commercialization within the last 6 years and production continues to increase every year. Advances in molecular genetics, particularly the new wave of genome editing technologies, provide opportunities to develop new fruit cultivars more rapidly. Our review, emphasizes the socioeconomic impact of current commercial fruit cultivars developed by genetic engineering and the potential impact of genome editing on the development of improved cultivars at an accelerated rate.
Collapse
Affiliation(s)
- Maria Lobato-Gómez
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio CERCA Center, Lleida, 25198, Spain
| | - Seanna Hewitt
- Department of Horticulture, Washington State University, PO Box, 646414, Pullman, WA, USA
| | - Teresa Capell
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio CERCA Center, Lleida, 25198, Spain
| | - Paul Christou
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio CERCA Center, Lleida, 25198, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, 08010, Barcelona, Spain
| | - Amit Dhingra
- Department of Horticulture, Washington State University, PO Box, 646414, Pullman, WA, USA
| | - Patricia Sarai Girón-Calva
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio CERCA Center, Lleida, 25198, Spain.
| |
Collapse
|
10
|
Sidorova T, Miroshnichenko D, Kirov I, Pushin A, Dolgov S. Effect of Grafting on Viral Resistance of Non-transgenic Plum Scion Combined With Transgenic PPV-Resistant Rootstock. FRONTIERS IN PLANT SCIENCE 2021; 12:621954. [PMID: 33597963 PMCID: PMC7882617 DOI: 10.3389/fpls.2021.621954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/08/2021] [Indexed: 05/03/2023]
Abstract
In stone fruit trees, resistance to Plum pox virus (PPV) can be achieved through the specific degradation of viral RNA by the mechanism of RNA interference (RNAi). Transgenic virus-resistant plants, however, raise serious biosafety concerns due to the insertion and expression of hairpin constructs that usually contain various selective foreign genes. Since a mature stone tree represents a combination of scion and rootstock, grafting commercial varieties onto transgenic virus-tolerant rootstocks is a possible approach to mitigate biosafety problems. The present study was aimed at answering the following question: To what extent are molecular RNAi silencing signals transmitted across graft junctions in transgrafted plum trees and how much does it affect PPV resistance in genetically modified (GM)/non-transgenic (NT) counterparts? Two combinations, NT:GM and GM:NT (scion:rootstock), were studied, with an emphasis on the first transgrafting scenario. Viral inoculation was carried out on either the scion or the rootstock. The interspecific rootstock "Elita" [(Prunus pumila L. × P. salicina Lindl.) × (P. cerasifera Ehrh.)] was combined with cv. "Startovaya" (Prunus domestica L.) as a scion. Transgenic plum lines of both cultivars were transformed with a PPV-coat protein (CP)-derived intron-separate hairpin-RNA construct and displayed substantial viral resistance. High-throughput sequence data of small RNA (sRNA) pools indicated that the accumulation of construct-specific small interfering RNA (siRNA) in transgenic plum rootstock reached over 2%. The elevated siRNA level enabled the resistance to PPV and blocked the movement of the virus through the GM tissues into the NT partner when the transgenic tissues were inoculated. At the same time, the mobile siRNA signal was not moved from the GM rootstock to the target NT tissue to a level sufficient to trigger silencing of PPV transcripts and provide reliable viral resistance. The lack of mobility of transgene-derived siRNA molecules was accompanied by the transfer of various endogenous rootstock-specific sRNAs into the NT scion, indicating the exceptional transitivity failure of the studied RNAi signal. The results presented here indicate that transgrafting in woody fruit trees remains an unpredictable practice and needs further in-depth examination to deliver molecular silencing signals.
Collapse
Affiliation(s)
- Tatiana Sidorova
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Pushchino, Russia
- *Correspondence: Tatiana Sidorova,
| | - Dmitry Miroshnichenko
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Pushchino, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Science, Moscow, Russia
| | - Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Science, Moscow, Russia
| | - Alexander Pushin
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Pushchino, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Science, Moscow, Russia
| | - Sergey Dolgov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Pushchino, Russia
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Science, Moscow, Russia
- Federal Horticulture Center for Breeding, Agrotechnology and Nursery, Moscow, Russia
| |
Collapse
|
11
|
Deletion in the Promoter of PcPIN-L Affects the Polar Auxin Transport in Dwarf Pear (Pyrus communis L.). Sci Rep 2019; 9:18645. [PMID: 31819123 PMCID: PMC6901534 DOI: 10.1038/s41598-019-55195-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
Dwarf cultivars or dwarfing rootstocks enable high-density planting and are therefore highly desirable in modern pear production. Previously, we found that the dwarf growth habit of pear is controlled by a single dominant gene PcDw. In this study, PcPIN-L (PCP021016) was cloned from dwarf-type and standard-type pears. PcPIN-L expression was significantly lower in the dwarf-type pears than in standard-type pears, which was caused by the CT repeat deletion in the promoter of dwarf-type pears. PcPIN-L overexpression in tobacco plants enhanced the growth of the stems and the roots. Notably, the indole acetic acid (IAA) content decreased in the shoot tips and increased in the stems of transgenic lines compared with wild type, which is consistent with the greater IAA content in the shoot tips and lower IAA content in the stems of dwarf-type pears than in standard-type pears. The CT repeat deletion in the promoter that causes a decrease in promoter activity is associated with lower PcPIN-L expression in the dwarf-type pears, which might limit the polar auxin transport and in turn result in the dwarf phenotype. Taken together, the results provide a novel dwarfing molecular mechanism in perennial woody plants.
Collapse
|
12
|
Cheng J, Zhang M, Tan B, Jiang Y, Zheng X, Ye X, Guo Z, Xiong T, Wang W, Li J, Feng J. A single nucleotide mutation in GID1c disrupts its interaction with DELLA1 and causes a GA-insensitive dwarf phenotype in peach. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1723-1735. [PMID: 30776191 PMCID: PMC6686139 DOI: 10.1111/pbi.13094] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 05/20/2023]
Abstract
Plant stature is one important factor that affects the productivity of peach orchards. However, little is known about the molecular mechanism(s) underlying the dwarf phenotype of peach tree. Here, we report a dwarfing mechanism in the peach cv. FenHuaShouXingTao (FHSXT). The dwarf phenotype of 'FHSXT' was caused by shorter cell length compared to the standard cv. QiuMiHong (QMH). 'FHSXT' contained higher endogenous GA levels than did 'QMH' and did not response to exogenous GA treatment (internode elongation). These results indicated that 'FHSXT' is a GA-insensitive dwarf mutant. A dwarf phenotype-related single nucleotide mutation in the gibberellic acid receptor GID1 was identified in 'FHSXT' (GID1cS191F ), which was also cosegregated with dwarf phenotype in 30 tested cultivars. GID1cS191F was unable to interact with the growth-repressor DELLA1 even in the presence of GA. 'FHSXT' accumulated a higher level of DELLA1, the degradation of which is normally induced by its interaction with GID1. The DELLA1 protein level was almost undetectable in 'QMH', but not reduced in 'FHSXT' after GA3 treatment. Our results suggested that a nonsynonymous single nucleotide mutation in GID1c disrupts its interaction with DELLA1 resulting in a GA-insensitive dwarf phenotype in peach.
Collapse
Affiliation(s)
- Jun Cheng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Mengmeng Zhang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Bin Tan
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Yajun Jiang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Xianbo Zheng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Xia Ye
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Zijing Guo
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Tingting Xiong
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Wei Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Jidong Li
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| | - Jiancan Feng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
13
|
Lebedev V. The Rooting of Stem Cuttings and the Stability of uidA Gene Expression in Generative and Vegetative Progeny of Transgenic Pear Rootstock in the Field. PLANTS (BASEL, SWITZERLAND) 2019; 8:E291. [PMID: 31430873 PMCID: PMC6724118 DOI: 10.3390/plants8080291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/12/2019] [Accepted: 08/16/2019] [Indexed: 05/07/2023]
Abstract
Adventitious rooting plays an important role in the commercial vegetative propagation of trees. Adventitious root formation is a complex biological process, but knowledge of the possible unintended effects induced by both the integration/expression of transgenes and in vitro conditions on the rooting is limited. The long-term stability of transgene expression is important both for original transformants of woody plants and its progeny. In this study, we used field-grown pear rootstock GP217 trees transformed with the reporter ß-glucuronidase (uidA) genes with and without intron and re-transformed with the herbicide resistance bar gene as model systems. We assessed the unintended effects on rooting of pear semi-hardwood cuttings and evaluated the stability of transgene expression in progeny produced by generative (seedlings) and vegetative (grafting, cutting) means up to four years. Our investigation revealed that: (1) The single and repeated transformations of clonal pear rootstocks did not result in unintended effects on adventitious root formation in cuttings; (2) stability of the transgene expression was confirmed on both generative and vegetative progeny, and no silenced transgenic plants were detected; (3) yearly variation in the gene expressions was observed and expression levels were decreased in extremely hot and dry summer; (4) the intron enhanced the expression of uidA gene in pear plants approximately two-fold compared to gene without intron. The current study provides useful information on transgene expression in progeny of fruit trees under natural environmental conditions.
Collapse
Affiliation(s)
- Vadim Lebedev
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Science avenue 6, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
14
|
Wang S, Wang S, Zhang W, Zhang Q, Hao L, Zhang Y, Xu C, Yu Y, Wang B, Li T, Jiang F. PbTTG1 forms a ribonucleoprotein complex with polypyrimidine tract-binding protein PbPTB3 to facilitate the long-distance trafficking of PbWoxT1 mRNA. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:424-432. [PMID: 30824022 DOI: 10.1016/j.plantsci.2019.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
The grafting of horticultural crops enables breeders to induce phenotypic changes in rootstocks and scions. A number of signaling molecules, including RNAs and proteins, were recently shown to underlie these changes; however, little is known about the composition of ribonucleoprotein (RNP) complexes or how these macromolecules are transported. Here, we used a polypyrimidine tract-binding protein, PbPTB3, as a bait to screen a library of phloem cDNA from a pear variety 'Du Li' (Pyrus betulaefolia). We identified a new protein constituent of the RNP complex, TRANSPARENT TESTA GLABRA1 (PbTTG1), a WD40 protein that interacts with PbPTB3 to facilitate its transport with PbWoxT1 mRNA through the phloem. Overexpression experiments indicated that PbTTG1 binds to PbPTB3, facilitating its transmission from the leaf through the petiole, while silencing of PbTTG1 expression prevented their translocation. Heterografting experiments also showed that silencing of PbTTG1 prevented the transport of PbPTB3 from the rootstock to the scion. Collectively, these findings established that PbTTG1 binds to PbPTB3 and PbWoxT1 to form an RNP complex, which facilitates their long-distance movement.
Collapse
Affiliation(s)
- Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wenna Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Li Hao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yi Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chaoran Xu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yunfei Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Baoan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| | - Feng Jiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
15
|
Song GQ, Prieto H, Orbovic V. Agrobacterium-Mediated Transformation of Tree Fruit Crops: Methods, Progress, and Challenges. FRONTIERS IN PLANT SCIENCE 2019; 10:226. [PMID: 30881368 PMCID: PMC6405644 DOI: 10.3389/fpls.2019.00226] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/11/2019] [Indexed: 05/18/2023]
Abstract
Genetic engineering based on Agrobacterium-mediated transformation has been a desirable tool to manipulate single or multiple genes of existing genotypes of woody fruit crops, for which conventional breeding is a difficult and lengthy process due to heterozygosity, sexual incompatibility, juvenility, or a lack of natural sources. To date, successful transformation has been reported for many fruit crops. We review the major progress in genetic transformation of these fruit crops made in the past 5 years, emphasizing reproducible transformation protocols as well as the strategies that have been tested in fruit crops. While direct transformation of scion cultivars was mostly used for fruit quality improvement, biotic and abiotic tolerance, and functional gene analysis, transgrafting on genetically modified (GM) rootstocks showed a potential to produce non-GM fruit products. More recently, genome editing technology has demonstrated a potential for gene(s) manipulation of several fruit crops. However, substantial efforts are still needed to produce plants from gene-edited cells, for which tremendous challenge remains in the context of either cell's recalcitrance to regeneration or inefficient gene-editing due to their polyploidy. We propose that effective transient transformation and efficient regeneration are the key for future utilization of genome editing technologies for improvement of fruit crops.
Collapse
Affiliation(s)
- Guo-qing Song
- Department of Horticulture, Plant Biotechnology Resource and Outreach Center, Michigan State University, East Lansing, MI, United States
| | - Humberto Prieto
- Biotechnology Laboratory, La Platina Station, Instituto de Investigaciones Agropecuarias, Santiago de Chile, Chile
| | - Vladimir Orbovic
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, FL, United States
| |
Collapse
|
16
|
Paolis AD, Frugis G, Giannino D, Iannelli MA, Mele G, Rugini E, Silvestri C, Sparvoli F, Testone G, Mauro ML, Nicolodi C, Caretto S. Plant Cellular and Molecular Biotechnology: Following Mariotti's Steps. PLANTS (BASEL, SWITZERLAND) 2019; 8:E18. [PMID: 30634627 PMCID: PMC6359066 DOI: 10.3390/plants8010018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/30/2018] [Accepted: 01/07/2019] [Indexed: 01/19/2023]
Abstract
This review is dedicated to the memory of Prof. Domenico Mariotti, who significantly contributed to establishing the Italian research community in Agricultural Genetics and carried out the first experiments of Agrobacterium-mediated plant genetic transformation and regeneration in Italy during the 1980s. Following his scientific interests as guiding principles, this review summarizes the recent advances obtained in plant biotechnology and fundamental research aiming to: (i) Exploit in vitro plant cell and tissue cultures to induce genetic variability and to produce useful metabolites; (ii) gain new insights into the biochemical function of Agrobacterium rhizogenes rol genes and their application to metabolite production, fruit tree transformation, and reverse genetics; (iii) improve genetic transformation in legume species, most of them recalcitrant to regeneration; (iv) untangle the potential of KNOTTED1-like homeobox (KNOX) transcription factors in plant morphogenesis as key regulators of hormonal homeostasis; and (v) elucidate the molecular mechanisms of the transition from juvenility to the adult phase in Prunus tree species.
Collapse
Affiliation(s)
- Angelo De Paolis
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Via Monteroni, 73100 Lecce, Italy.
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Donato Giannino
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Maria Adelaide Iannelli
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Giovanni Mele
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Eddo Rugini
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Via San Camillo De Lellis S.N.C., 01100 Viterbo, Italy.
| | - Cristian Silvestri
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Via San Camillo De Lellis S.N.C., 01100 Viterbo, Italy.
| | - Francesca Sparvoli
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Consiglio Nazionale delle Ricerche (CNR), Via Bassini 15, 20133 Milano, Italy.
| | - Giulio Testone
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Maria Luisa Mauro
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, P.le A. Moro 5, 00185 Roma, Italy.
| | - Chiara Nicolodi
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Sofia Caretto
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
17
|
Zheng X, Zhao Y, Shan D, Shi K, Wang L, Li Q, Wang N, Zhou J, Yao J, Xue Y, Fang S, Chu J, Guo Y, Kong J. MdWRKY9 overexpression confers intensive dwarfing in the M26 rootstock of apple by directly inhibiting brassinosteroid synthetase MdDWF4 expression. THE NEW PHYTOLOGIST 2018; 217:1086-1098. [PMID: 29165808 DOI: 10.1111/nph.14891] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/12/2017] [Indexed: 05/07/2023]
Abstract
Dwarfing rootstocks enable high-density planting and are therefore highly desirable in modern apple (Malus domestica) production. M26 is a semi-dwarfing rootstock that is used worldwide, but identifying intensive dwarfing rootstock is a major goal of apple breeding programs. Herein, we show that MdWRKY9 mediates dwarfing by directly inhibiting the transcription of the brassinosteroid (BR) rate-limiting synthetase MdDWF4 and reducing BR production. We found that the transcriptional factor MdWRKY9 is highly expressed in all tested dwarfing rootstocks. Transgenic lines of M26 rootstock overexpressing MdWRKY9 exhibit further dwarfing, which resulted from the reduced BR levels and was reversed via exogenous brassinolide treatment. Both an in vivo chromatin immunoprecipitation (ChIP) analysis and an in vitro electrophoretic mobility shift assay (EMSA) indicated that MdWRKY9 binds to the promoter of MdDWF4. Furthermore, MdWRKY9 repressed MdDWF4 expression in stable transgenic apple plants as determined by quantitative PCR. In addition, RNA-interfered expression of MdWRKY9 in transiently transformed apple calli led to a significant increase of MdDWF4, suggesting MdWRKY9 plays a critical role in regulating the expression of MdDWF4. We report a novel dwarfing mechanism in perennial woody plants that involves WRKY-controlled BR production, and present a new dwarfing M26 rootstock for potential applications in apple production.
Collapse
Affiliation(s)
- Xiaodong Zheng
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yu Zhao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Dongqian Shan
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kun Shi
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lin Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qingtian Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Na Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jingzhe Zhou
- Beijing Soil and Fertilizer Work Station, Beijing, 100029, China
| | - Junzhu Yao
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yuan Xue
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuang Fang
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Guo
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
18
|
Alburquerque N, Faize L, Burgos L. Silencing of Agrobacterium tumefaciens oncogenes ipt and iaaM induces resistance to crown gall disease in plum but not in apricot. PEST MANAGEMENT SCIENCE 2017; 73:2163-2173. [PMID: 28449201 DOI: 10.1002/ps.4600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/05/2017] [Accepted: 04/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND In this study, two vectors with short-length chimeric transgenes were used to produce Prunus rootstocks resistant to crown gall disease through RNA-interference-mediated gene silencing of the Agrobacterium tumefaciens oncogenes ipt and iaaM. RESULTS Transgenic plum and apricot lines were produced with efficiencies of up to 7.7 and 1.1% respectively. An in vitro evaluation method allowed identification of susceptible lines and reduction in the number of lines to be evaluated in the greenhouse. Five transgenic plum lines, expressing transgene-derived small interfering RNA (siRNA) and low levels of transgene hairpin RNA (hpRNA), showed a significant reduction in the development of the disease after infection with Agrobacterium strains C58 and A281 under greenhouse conditions. However, unexpectedly, all transgenic apricot lines were gall susceptible. The infection of apricot plants with a binary vector containing only the 6b oncogene demonstrated that the expression of this gene is involved in the induction of tumours in the apricot species. CONCLUSION RNAi-mediated gene silencing can be used for inducing crown gall resistance in plum rootstocks. These could be used to graft non-genetically modified commercial fruit cultivars reducing, or eliminating, the disease symptoms. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nuria Alburquerque
- Grupo de Biotecnología de Frutales, Departamento de Mejora Vegetal, CEBAS-CSIC, Murcia, Spain
| | - Lydia Faize
- Grupo de Biotecnología de Frutales, Departamento de Mejora Vegetal, CEBAS-CSIC, Murcia, Spain
| | - Lorenzo Burgos
- Grupo de Biotecnología de Frutales, Departamento de Mejora Vegetal, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
19
|
Limera C, Sabbadini S, Sweet JB, Mezzetti B. New Biotechnological Tools for the Genetic Improvement of Major Woody Fruit Species. FRONTIERS IN PLANT SCIENCE 2017; 8:1418. [PMID: 28861099 PMCID: PMC5559511 DOI: 10.3389/fpls.2017.01418] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/31/2017] [Indexed: 05/09/2023]
Abstract
The improvement of woody fruit species by traditional plant breeding techniques has several limitations mainly caused by their high degree of heterozygosity, the length of their juvenile phase and auto-incompatibility. The development of new biotechnological tools (NBTs), such as RNA interference (RNAi), trans-grafting, cisgenesis/intragenesis, and genome editing tools, like zinc-finger and CRISPR/Cas9, has introduced the possibility of more precise and faster genetic modifications of plants. This aspect is of particular importance for the introduction or modification of specific traits in woody fruit species while maintaining unchanged general characteristics of a selected cultivar. Moreover, some of these new tools give the possibility to obtain transgene-free modified fruit tree genomes, which should increase consumer's acceptance. Over the decades biotechnological tools have undergone rapid development and there is a continuous addition of new and valuable techniques for plant breeders. This makes it possible to create desirable woody fruit varieties in a fast and more efficient way to meet the demand for sustainable agricultural productivity. Although, NBTs have a common goal i.e., precise, fast, and efficient crop improvement, individually they are markedly different in approach and characteristics from each other. In this review we describe in detail their mechanisms and applications for the improvement of fruit trees and consider the relationship between these biotechnological tools and the EU biosafety regulations applied to the plants and products obtained through these techniques.
Collapse
Affiliation(s)
- Cecilia Limera
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle MarcheAncona, Italy
| | - Silvia Sabbadini
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle MarcheAncona, Italy
| | - Jeremy B. Sweet
- J. T. Environmental Consultants LtdCambridge, United Kingdom
| | - Bruno Mezzetti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle MarcheAncona, Italy
| |
Collapse
|
20
|
Liu X, Walawage SL, Leslie CA, Dandekar AM, Tricoli DM, Hu H, Huang Y, Zhang J, Xv C, Huang J, Zhang Q. In vitro gene expression and mRNA translocation from transformed walnut (Juglans regia) rootstocks expressing DsRED fluorescent protein to wild-type scions. PLANT CELL REPORTS 2017; 36:877-885. [PMID: 28243724 DOI: 10.1007/s00299-017-2116-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/07/2017] [Indexed: 05/19/2023]
Abstract
An in vitro grafting method was developed for examining gene translocation from rootstock to scion in walnut. Results showed the DsRED gene itself was not translocated but expressed mRNA was. Grafting is widely used in plants, especially in fruit and nut crops. Selected rootstocks can control scion growth and physiological traits, including shortening of the juvenile phase and controlling tree size. Rootstocks also can provide improved soil adaptation and pathogen resistance. Development of genetically modified (GM) fruit crops has progressed recently, but commercial cultivation is still limited due to the time required for evaluation and issues with deregulation. In this study, we evaluated the stability of DsRED marker gene expression in in vitro walnut shoots and examined translocation of the gene and its mRNA from transformed rootstock to wild-type scion. Results show that DsRED was expressed uniformly in transformed tissue-cultured shoots. When used as in vitro rootstocks, these had good graft affinity with wild-type control scion. PCR and qRT-PCR analysis showed that the DsRED gene was not transported from rootstock to scion, but the transcribed mRNA was translocated. This result provides further evidence of gene signal transport from rootstock to scion in fruit and nut crops.
Collapse
Affiliation(s)
- Xiaochen Liu
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| | - Sriema L Walawage
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Charles A Leslie
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - David M Tricoli
- Department of Plant Sciences, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Hengkang Hu
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| | - Youjun Huang
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| | - Jiaqi Zhang
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| | - Chuanmei Xv
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| | - Jianqin Huang
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China
| | - Qixiang Zhang
- School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China.
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China.
| |
Collapse
|
21
|
Warschefsky EJ, Klein LL, Frank MH, Chitwood DH, Londo JP, von Wettberg EJB, Miller AJ. Rootstocks: Diversity, Domestication, and Impacts on Shoot Phenotypes. TRENDS IN PLANT SCIENCE 2016; 21:418-437. [PMID: 26698413 DOI: 10.1016/j.tplants.2015.11.008] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/16/2015] [Accepted: 11/11/2015] [Indexed: 05/18/2023]
Abstract
Grafting is an ancient agricultural practice that joins the root system (rootstock) of one plant to the shoot (scion) of another. It is most commonly employed in woody perennial crops to indirectly manipulate scion phenotype. While recent research has focused on scions, here we investigate rootstocks, the lesser-known half of the perennial crop equation. We review natural grafting, grafting in agriculture, rootstock diversity and domestication, and developing areas of rootstock research, including molecular interactions and rootstock microbiomes. With growing interest in perennial crops as valuable components of sustainable agriculture, rootstocks provide one mechanism by which to improve and expand woody perennial cultivation in a range of environmental conditions.
Collapse
Affiliation(s)
- Emily J Warschefsky
- Florida International University, Department of Biological Sciences, 11200 Southwest 8th Street, Miami, FL 33199-2156, USA; Fairchild Tropical Botanic Garden, Kushlan Tropical Science Institute, 10901 Old Cutler Road, Coral Gables, FL 33156-4233, USA
| | - Laura L Klein
- Saint Louis University, Department of Biology, 3507 Laclede Avenue, St. Louis, MO 63103-2010, USA; Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO 63110-2226, USA
| | - Margaret H Frank
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132-2918, USA
| | - Daniel H Chitwood
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132-2918, USA
| | - Jason P Londo
- United States Department of Agriculture, Agriculture Research Service: Grape Genetics Research Unit, 630 West North Street, Geneva, NY 14456-1371, USA
| | - Eric J B von Wettberg
- Florida International University, Department of Biological Sciences, 11200 Southwest 8th Street, Miami, FL 33199-2156, USA; Fairchild Tropical Botanic Garden, Kushlan Tropical Science Institute, 10901 Old Cutler Road, Coral Gables, FL 33156-4233, USA; Florida International University, International Center for Tropical Botany, 11200 Southwest 8th Street, Miami, FL 33199-2156, USA
| | - Allison J Miller
- Saint Louis University, Department of Biology, 3507 Laclede Avenue, St. Louis, MO 63103-2010, USA; Missouri Botanical Garden, 4344 Shaw Boulevard, St. Louis, MO 63110-2226, USA.
| |
Collapse
|
22
|
Igarashi M, Hatsuyama Y, Harada T, Fukasawa-Akada T. Biotechnology and apple breeding in Japan. BREEDING SCIENCE 2016; 66:18-33. [PMID: 27069388 PMCID: PMC4780799 DOI: 10.1270/jsbbs.66.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/23/2015] [Indexed: 05/11/2023]
Abstract
Apple is a fruit crop of significant economic importance, and breeders world wide continue to develop novel cultivars with improved characteristics. The lengthy juvenile period and the large field space required to grow apple populations have imposed major limitations on breeding. Various molecular biological techniques have been employed to make apple breeding easier. Transgenic technology has facilitated the development of apples with resistance to fungal or bacterial diseases, improved fruit quality, or root stocks with better rooting or dwarfing ability. DNA markers for disease resistance (scab, powdery mildew, fire-blight, Alternaria blotch) and fruit skin color have also been developed, and marker-assisted selection (MAS) has been employed in breeding programs. In the last decade, genomic sequences and chromosome maps of various cultivars have become available, allowing the development of large SNP arrays, enabling efficient QTL mapping and genomic selection (GS). In recent years, new technologies for genetic improvement, such as trans-grafting, virus vectors, and genome-editing, have emerged. Using these techniques, no foreign genes are present in the final product, and some of them show considerable promise for application to apple breeding.
Collapse
Affiliation(s)
- Megumi Igarashi
- Hirosaki Industrial Research Institute, Aomori Prefectural Industrial Technology Research Center,
Ogimachi 1-1-8, Hirosaki, Aomori 036-8104,
Japan
| | - Yoshimichi Hatsuyama
- Apple Research Institute, Aomori Prefectural Industrial Technology Research Center,
Fukutami 24, Botandaira, Kuroishi, Aomori 036-0332,
Japan
| | - Takeo Harada
- Department of Agriculture and Life Science, Hirosaki University,
Bunkyouchou 3, Hirosaki, Aomori 036-8563,
Japan
| | - Tomoko Fukasawa-Akada
- Hirosaki Industrial Research Institute, Aomori Prefectural Industrial Technology Research Center,
Ogimachi 1-1-8, Hirosaki, Aomori 036-8104,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
23
|
Hollender CA, Dardick C. Molecular basis of angiosperm tree architecture. THE NEW PHYTOLOGIST 2015; 206:541-56. [PMID: 25483362 DOI: 10.1111/nph.13204] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/30/2014] [Indexed: 05/24/2023]
Abstract
The architecture of trees greatly impacts the productivity of orchards and forestry plantations. Amassing greater knowledge on the molecular genetics that underlie tree form can benefit these industries, as well as contribute to basic knowledge of plant developmental biology. This review describes the fundamental components of branch architecture, a prominent aspect of tree structure, as well as genetic and hormonal influences inferred from studies in model plant systems and from trees with non-standard architectures. The bulk of the molecular and genetic data described here is from studies of fruit trees and poplar, as these species have been the primary subjects of investigation in this field of science.
Collapse
Affiliation(s)
- Courtney A Hollender
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, 2217 Wiltshire Rd, Kearnysville, WV, 25430, USA
| | | |
Collapse
|
24
|
Rai MK, Shekhawat NS. Recent advances in genetic engineering for improvement of fruit crops. PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC) 2014; 116:1-15. [PMID: 0 DOI: 10.1007/s11240-013-0389-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/30/2013] [Indexed: 05/24/2023]
|
25
|
Song GQ, Sink KC, Walworth AE, Cook MA, Allison RF, Lang GA. Engineering cherry rootstocks with resistance to Prunus necrotic ring spot virus through RNAi-mediated silencing. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:702-8. [PMID: 23521804 DOI: 10.1111/pbi.12060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 01/18/2013] [Accepted: 01/29/2013] [Indexed: 05/03/2023]
Abstract
Prunus necrotic ringspot virus (PNRSV) is a major pollen-disseminated ilarvirus that adversely affects many Prunus species. In this study, an RNA interference (RNAi) vector pART27-PNRSV containing an inverted repeat (IR) region of PNRSV was transformed into two hybrid (triploid) cherry rootstocks, 'Gisela 6' (GI 148-1) and 'Gisela 7'(GI 148-8)', which are tolerant and sensitive, respectively, to PNRSV infection. One year after inoculation with PNRSV plus Prune Dwarf Virus, nontransgenic 'Gisela 6' exhibited no symptoms but a significant PNRSV titre, while the transgenic 'Gisela 6' had no symptoms and minimal PNRSV titre. The nontransgenic 'Gisela 7' trees died, while the transgenic 'Gisela 7' trees survived. These results demonstrate the RNAi strategy is useful for developing viral resistance in fruit rootstocks, and such transgenic rootstocks may have potential to enhance production of standard, nongenetically modified fruit varieties while avoiding concerns about transgene flow and exogenous protein production that are inherent for transformed fruiting genotypes.
Collapse
Affiliation(s)
- Guo-qing Song
- Department of Horticulture, Plant Biotechnology Resource and Outreach Center, Michigan State University, East Lansing, MI, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Genetic transformation has emerged as a powerful tool for genetic improvement of fruit trees hindered by their reproductive biology and their high levels of heterozygosity. For years, genetic engineering of fruit trees has focussed principally on enhancing disease resistance (against viruses, fungi, and bacteria), although there are few examples of field cultivation and commercial application of these transgenic plants. In addition, over the years much work has been performed to enhance abiotic stress tolerance, to induce modifications of plant growth and habit, to produce marker-free transgenic plants and to improve fruit quality by modification of genes that are crucially important in the production of specific plant components. Recently, with the release of several genome sequences, studies of functional genomics are becoming increasingly important: by modification (overexpression or silencing) of genes involved in the production of specific plant components is possible to uncover regulatory mechanisms associated with the biosynthesis and catabolism of metabolites in plants. This review focuses on the main advances, in recent years, in genetic transformation of the most important species of fruit trees, devoting particular attention to functional genomics approaches and possible future challenges of genetic engineering for these species in the post-genomic era.
Collapse
|
27
|
Gambino G, Gribaudo I. Genetic transformation of fruit trees: current status and remaining challenges. Transgenic Res 2012; 21:1163-81. [DOI: 10.1007/s11248-012-9602-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/14/2012] [Indexed: 12/22/2022]
|