1
|
Kuehnel RM, Ganga E, Balestra AC, Suarez C, Wyss M, Klages N, Brusini L, Maco B, Brancucci N, Voss TS, Soldati D, Brochet M. A Plasmodium membrane receptor platform integrates cues for egress and invasion in blood forms and activation of transmission stages. SCIENCE ADVANCES 2023; 9:eadf2161. [PMID: 37327340 PMCID: PMC10275601 DOI: 10.1126/sciadv.adf2161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/11/2023] [Indexed: 06/18/2023]
Abstract
Critical events in the life cycle of malaria-causing parasites depend on cyclic guanosine monophosphate homeostasis by guanylyl cyclases (GCs) and phosphodiesterases, including merozoite egress or invasion of erythrocytes and gametocyte activation. These processes rely on a single GCα, but in the absence of known signaling receptors, how this pathway integrates distinct triggers is unknown. We show that temperature-dependent epistatic interactions between phosphodiesterases counterbalance GCα basal activity preventing gametocyte activation before mosquito blood feed. GCα interacts with two multipass membrane cofactors in schizonts and gametocytes: UGO (unique GC organizer) and SLF (signaling linking factor). While SLF regulates GCα basal activity, UGO is essential for GCα up-regulation in response to natural signals inducing merozoite egress and gametocyte activation. This work identifies a GC membrane receptor platform that senses signals triggering processes specific to an intracellular parasitic lifestyle, including host cell egress and invasion to ensure intraerythrocytic amplification and transmission to mosquitoes.
Collapse
Affiliation(s)
- Ronja Marie Kuehnel
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Emma Ganga
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Aurélia C. Balestra
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Catherine Suarez
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Matthias Wyss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Natacha Klages
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Nicolas Brancucci
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Till S. Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Dominique Soldati
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 12111 Geneva, Switzerland
| |
Collapse
|
2
|
Dash M, Sachdeva S, Bansal A, Sinha A. Gametogenesis in Plasmodium: Delving Deeper to Connect the Dots. Front Cell Infect Microbiol 2022; 12:877907. [PMID: 35782151 PMCID: PMC9241518 DOI: 10.3389/fcimb.2022.877907] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
In the coming decades, eliminating malaria is the foremost goal of many tropical countries. Transmission control, along with an accurate and timely diagnosis of malaria, effective treatment and prevention are the different aspects that need to be met synchronously to accomplish the goal. The current review is focused on one of these aspects i.e., transmission control, by looking deeper into the event called gametogenesis. In the Plasmodium life cycle, gametocytes are the first life forms of the sexual phase. The transmission of the parasite and the disease is critically dependent on the number, viability and sex ratio of mature gametocytes and their further development inside mosquito vectors. Gametogenesis, the process of conversion of gametocytes into viable gametes, takes place inside the mosquito midgut, and is a tightly regulated event with fast and multiple rounds of DNA replication and diverse cellular changes going on within a short period. Interrupting the gametocyte-gamete transition is ought to restrict the successful transmission and progression of the disease and hence an area worth exploring for designing transmission-blocking strategies. This review summarizes an in-depth and up-to-date understanding of the biochemical and physiological mechanism of gametogenesis in Plasmodium, which could be targeted to control parasite and malaria transmission. This review also raises certain key questions regarding gametogenesis biology in Plasmodium and brings out gaps that still accompany in understanding the spectacular process of gametogenesis.
Collapse
Affiliation(s)
- Manoswini Dash
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
- Central Molecular Laboratory, Govind Ballabh (GB) Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Sherry Sachdeva
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhinav Sinha
- Parasite Host Biology, Indian Council of Medical Research (ICMR)-National Institute of Malaria Research, New Delhi, India
- *Correspondence: Abhinav Sinha,
| |
Collapse
|
3
|
Pascini TV, Jeong YJ, Huang W, Pala ZR, Sá JM, Wells MB, Kizito C, Sweeney B, Alves E Silva TL, Andrew DJ, Jacobs-Lorena M, Vega-Rodríguez J. Transgenic Anopheles mosquitoes expressing human PAI-1 impair malaria transmission. Nat Commun 2022; 13:2949. [PMID: 35618711 PMCID: PMC9135733 DOI: 10.1038/s41467-022-30606-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
In mammals, the serine protease plasmin degrades extracellular proteins during blood clot removal, tissue remodeling, and cell migration. The zymogen plasminogen is activated into plasmin by two serine proteases: tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), a process regulated by plasminogen activator inhibitor 1 (PAI-1), a serine protease inhibitor that specifically inhibits tPA and uPA. Plasmodium gametes and sporozoites use tPA and uPA to activate plasminogen and parasite-bound plasmin degrades extracellular matrices, facilitating parasite motility in the mosquito and the mammalian host. Furthermore, inhibition of plasminogen activation by PAI-1 strongly blocks infection in both hosts. To block parasite utilization of plasmin, we engineered Anopheles stephensi transgenic mosquitoes constitutively secreting human PAI-1 (huPAI-1) in the midgut lumen, in the saliva, or both. Mosquitoes expressing huPAI-1 strongly reduced rodent and human Plasmodium parasite transmission to mosquitoes, showing that co-opting plasmin for mosquito infection is a conserved mechanism among Plasmodium species. huPAI-1 expression in saliva induced salivary gland deformation which affects sporozoite invasion and P. berghei transmission to mice, resulting in significant levels of protection from malaria. Targeting the interaction of malaria parasites with the fibrinolytic system using genetically engineered mosquitoes could be developed as an intervention to control malaria transmission.
Collapse
Affiliation(s)
- Tales V Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Yeong Je Jeong
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Wei Huang
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Zarna R Pala
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Michael B Wells
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, G10 Hunterian, Baltimore, MD, 21205, USA
- Department of Biomedical Sciences, Idaho College of Osteopathic Medicine, Meridian, ID, 83642, USA
| | - Christopher Kizito
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Brendan Sweeney
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Thiago L Alves E Silva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, G10 Hunterian, Baltimore, MD, 21205, USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Joel Vega-Rodríguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA.
| |
Collapse
|
4
|
Bottino-Rojas V, Ferreira-Almeida I, Nunes RD, Feng X, Pham TB, Kelsey A, Carballar-Lejarazú R, Gantz V, Oliveira PL, James AA. Beyond the eye: Kynurenine pathway impairment causes midgut homeostasis dysfunction and survival and reproductive costs in blood-feeding mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103720. [PMID: 34999199 PMCID: PMC11055609 DOI: 10.1016/j.ibmb.2022.103720] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Insect ommochrome biosynthesis pathways metabolize tryptophan to generate eye-color pigments and wild-type alleles of pathway genes are useful phenotypic markers in transgenesis studies. Pleiotropic effects of mutations in some genes exert a load on both survival and reproductive success in blood-feeding species. Here, we investigated the challenges imposed on mosquitoes by the increase of tryptophan metabolites resulting from blood meal digestion and the impact of disruptions of the ommochrome biosynthesis pathway. Female mosquitoes with spontaneous and induced mutations in the orthologs of the genes encoding kynurenine hydroxylase in Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus exhibited impaired survival and reproductive phenotypes that varied in type and severity among the species. A compromised midgut permeability barrier function was also observed in An. stephensi. Surprisingly, mutant mosquitoes displayed an increase in microbiota compared to controls that was not accompanied by a general induction of immune genes. Antibiotic treatment rescued some deleterious traits implicating a role for the kynurenine pathway (KP) in midgut homeostasis. Supplemental xanthurenic acid, a KP end-product, rescued lethality and limited microbiota proliferation in Ae. aegypti. These data implicate the KP in the regulation of the host/microbiota interface. These pleiotropic effects on mosquito physiology are important in the development of genetic strategies targeting vector mosquitoes.
Collapse
Affiliation(s)
- Vanessa Bottino-Rojas
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, USA
| | - Igor Ferreira-Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rodrigo D Nunes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Xuechun Feng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Thai Binh Pham
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, USA
| | - Adam Kelsey
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, USA
| | | | - Valentino Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil.
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, USA; Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
5
|
Kirti A, Sharma M, Rani K, Bansal A. CRISPRing protozoan parasites to better understand the biology of diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 180:21-68. [PMID: 33934837 DOI: 10.1016/bs.pmbts.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Precise gene editing techniques are paramount to gain deeper insights into the biological processes such as host-parasite interactions, drug resistance mechanisms, and gene-function relationships. Discovery of CRISPR-Cas9 system has spearheaded mechanistic understanding of protozoan parasite biology as evident from the number of reports in the last decade. Here, we have described the use of CRISPR-Cas9 in understanding the biology of medically important protozoan parasites such as Plasmodium, Leishmania, Trypanosoma, Babesia and Trichomonas. In spite of intrinsic difficulties in genome editing in these protozoan parasites, CRISPR-Cas9 has acted as a catalyst for faster generation of desired transgenic parasites. Modifications in the CRISPR-Cas9 system for improving the efficiency have been useful in better understanding the molecular mechanisms associated with repair of double strand breaks in the parasites. Moreover, improvement in reagents used for CRISPR mediated gene editing have been instrumental in addressing the issue of non-specificity and toxicity for therapeutic use. These application-based modifications may help in further increasing the efficiency of gene editing in protozoan parasites.
Collapse
Affiliation(s)
- Apurva Kirti
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manish Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Komal Rani
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
6
|
The evolution and history of gene editing technologies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 178:1-62. [PMID: 33685594 DOI: 10.1016/bs.pmbts.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Scientific enquiry must be the driving force of research. This sentiment is manifested as the profound impact gene editing technologies are having in our current world. There exist three main gene editing technologies today: Zinc Finger Nucleases, TALENs and the CRISPR-Cas system. When these systems were being uncovered, none of the scientists set out to design tools to engineer genomes. They were simply trying to understand the mechanisms existing in nature. If it was not for this simple sense of wonder, we probably would not have these breakthrough technologies. In this chapter, we will discuss the history, applications and ethical issues surrounding these technologies, focusing on the now predominant CRISPR-Cas technology. Gene editing technologies, as we know them now, are poised to have an overwhelming impact on our world. However, it is impossible to predict the route they will take in the future or to comprehend the full impact of its repercussions.
Collapse
|
7
|
Brochet M, Balestra AC, Brusini L. cGMP homeostasis in malaria parasites-The key to perceiving and integrating environmental changes during transmission to the mosquito. Mol Microbiol 2020; 115:829-838. [PMID: 33112460 DOI: 10.1111/mmi.14633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
Malaria-causing parasites are transmitted from humans to mosquitoes when developmentally arrested gametocytes are taken up by a female Anopheles during a blood meal. The changes in environment from human to mosquito activate gametogenesis, including a drop in temperature, a rise in pH, and a mosquito-derived molecule, xanthurenic acid. Signaling receptors have not been identified in malaria parasites but mounting evidence indicates that cGMP homeostasis is key to sensing extracellular cues in gametocytes. Low levels of cGMP maintained by phosphodiesterases prevent precocious activation of gametocytes in the human blood. Upon ingestion, initiation of gametogenesis depends on the activation of a hybrid guanylyl cyclase/P4-ATPase. Elevated cGMP levels lead to the rapid mobilization of intracellular calcium that relies upon the activation of both cGMP-dependent protein kinase and phosphoinositide phospholipase C. Once calcium is released, a cascade of phosphorylation events mediated by calcium-dependent protein kinases and phosphatases regulates the cellular processes required for gamete formation. cGMP signaling also triggers timely egress from the host cell at other life cycle stages of malaria parasites and in Toxoplasma gondii, a related apicomplexan parasite. This suggests that cGMP signaling is a versatile platform transducing external cues into calcium signals at important decision points in the life cycle of apicomplexan parasites.
Collapse
Affiliation(s)
- Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélia C Balestra
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Adedeji EO, Ogunlana OO, Fatumo S, Beder T, Ajamma Y, Koenig R, Adebiyi E. Anopheles metabolic proteins in malaria transmission, prevention and control: a review. Parasit Vectors 2020; 13:465. [PMID: 32912275 PMCID: PMC7488410 DOI: 10.1186/s13071-020-04342-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
The increasing resistance to currently available insecticides in the malaria vector, Anopheles mosquitoes, hampers their use as an effective vector control strategy for the prevention of malaria transmission. Therefore, there is need for new insecticides and/or alternative vector control strategies, the development of which relies on the identification of possible targets in Anopheles. Some known and promising targets for the prevention or control of malaria transmission exist among Anopheles metabolic proteins. This review aims to elucidate the current and potential contribution of Anopheles metabolic proteins to malaria transmission and control. Highlighted are the roles of metabolic proteins as insecticide targets, in blood digestion and immune response as well as their contribution to insecticide resistance and Plasmodium parasite development. Furthermore, strategies by which these metabolic proteins can be utilized for vector control are described. Inhibitors of Anopheles metabolic proteins that are designed based on target specificity can yield insecticides with no significant toxicity to non-target species. These metabolic modulators combined with each other or with synergists, sterilants, and transmission-blocking agents in a single product, can yield potent malaria intervention strategies. These combinations can provide multiple means of controlling the vector. Also, they can help to slow down the development of insecticide resistance. Moreover, some metabolic proteins can be modulated for mosquito population replacement or suppression strategies, which will significantly help to curb malaria transmission.
Collapse
Affiliation(s)
- Eunice Oluwatobiloba Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Olubanke Olujoke Ogunlana
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Segun Fatumo
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, UK
| | - Thomas Beder
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Yvonne Ajamma
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
| | - Rainer Koenig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Computer and Information Sciences, Covenant University, Ota, Ogun State Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), G200, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
PfMAP-2 is essential for male gametogenesis in the malaria parasite Plasmodium falciparum. Sci Rep 2020; 10:11930. [PMID: 32681115 PMCID: PMC7368081 DOI: 10.1038/s41598-020-68717-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
In malaria parasites, male gametogenesis is a proliferative stage essential for parasite transmission to the mosquito vector. It is a rapid process involving three rounds of genome replication alternating with closed endomitoses, and assembly of axonemes to produce eight flagellated motile microgametes. Studies in Plasmodium berghei have highlighted tight regulation of gametogenesis by a network of kinases. The P. berghei MAPK homologue PbMAP-2 is dispensable for asexual development but important at the induction of axoneme motility. However, in P. falciparum, causing the most severe form of human malaria, PfMAP-2 was suggested to be essential for asexual proliferation indicating distinct functions for MAP-2 in these two Plasmodium species. We here show that PfMAP-2 is dispensable for asexual growth but important for male gametogenesis in vitro. Similar to PbMAP-2, PfMAP-2 is required for initiating axonemal beating but not for prior DNA replication or axoneme formation. In addition, single and double null mutants of PfMAP-2 and the second P. falciparum MAPK homologue PfMAP-1 show no defect in asexual proliferation, sexual commitment or gametocytogenesis. Our results suggest that MAPK activity plays no major role in the biology of both asexual and sexual blood stage parasites up until the point of male gametogenesis.
Collapse
|
10
|
Experimental population modification of the malaria vector mosquito, Anopheles stephensi. PLoS Genet 2019; 15:e1008440. [PMID: 31856182 PMCID: PMC6922335 DOI: 10.1371/journal.pgen.1008440] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Small laboratory cage trials of non-drive and gene-drive strains of the Asian malaria vector mosquito, Anopheles stephensi, were used to investigate release ratios and other strain properties for their impact on transgene spread during simulated population modification. We evaluated the effects of transgenes on survival, male contributions to next-generation populations, female reproductive success and the impact of accumulation of gene drive-resistant genomic target sites resulting from nonhomologous end-joining (NHEJ) mutagenesis during Cas9, guide RNA-mediated cleavage. Experiments with a non-drive, autosomally-linked malaria-resistance gene cassette showed ‘full introduction’ (100% of the insects have at least one copy of the transgene) within 8 weeks (≤ 3 generations) following weekly releases of 10:1 transgenic:wild-type males in an overlapping generation trial design. Male release ratios of 1:1 resulted in cages where mosquitoes with at least one copy of the transgene fluctuated around 50%. In comparison, two of three cages in which the malaria-resistance genes were linked to a gene-drive system in an overlapping generation, single 1:1 release reached full introduction in 6–8 generations with a third cage at ~80% within the same time. Release ratios of 0.1:1 failed to establish the transgenes. A non-overlapping generation, single-release trial of the same gene-drive strain resulted in two of three cages reaching 100% introduction within 6–12 generations following a 1:1 transgenic:wild-type male release. Two of three cages with 0.33:1 transgenic:wild-type male single releases achieved full introduction in 13–16 generations. All populations exhibiting full introduction went extinct within three generations due to a significant load on females having disruptions of both copies of the target gene, kynurenine hydroxylase. While repeated releases of high-ratio (10:1) non-drive constructs could achieve full introduction, results from the 1:1 release ratios across all experimental designs favor the use of gene drive, both for efficiency and anticipated cost of the control programs. The experimental introduction of manipulated genes into insect species has a long history in basic genetics. Recent advances in genome editing technologies have spurred considerable effort to exploit these methodologies to provide genetic solutions to some of the worst medical and agricultural problems caused by insects. Insect population suppression and population modification approaches have been proposed to control transmission of vector-borne diseases, including malaria. We used small cage trials to explore the efficacy of non-drive and gene-drive releases to deliver anti-malarial effector genes to a vector mosquito, Anopheles stephensi. We show that both approaches can work to introduce genes to high percentages, but as expected, the gene-drive approaches were more efficient in that they needed only a single release with a much lower number of released insects. The gene-drive females in our studies exhibited a significant load that resulted in some cage populations going to extinction. Furthermore, the accumulation of drive-resistant target genes prevented full introduction of the transgenes in those cages that did not go extinct. While none of the strains evaluated here are proposed for open release, these laboratory cage trials reveal features that can be used to improve next-generation gene-drive strains for population modification.
Collapse
|
11
|
Anderson ME, Mavica J, Shackleford L, Flis I, Fochler S, Basu S, Alphey L. CRISPR/Cas9 gene editing in the West Nile Virus vector, Culex quinquefasciatus Say. PLoS One 2019; 14:e0224857. [PMID: 31714905 PMCID: PMC6850532 DOI: 10.1371/journal.pone.0224857] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Culex quinquefasciatus Say is an opportunistic blood feeder with a wide geographic distribution which is also a major vector for a range of diseases of both animals and humans. CRISPR/Cas technologies have been applied to a wide variety of organisms for both applied and basic research purposes. CRISPR/Cas methods open new possibilities for genetic research in non-model organisms of public health importance. In this work we have adapted microinjection techniques commonly used in other mosquito species to Culex quinquefasciatus, and have shown these to be effective at generating homozygous knock-out mutations of a target gene in one generation. This is the first description of the kmo gene and mutant phenotype in this species.
Collapse
Affiliation(s)
- Michelle E. Anderson
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking, England, United Kingdom
| | - Jessica Mavica
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking, England, United Kingdom
| | - Lewis Shackleford
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking, England, United Kingdom
| | - Ilona Flis
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking, England, United Kingdom
| | - Sophia Fochler
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking, England, United Kingdom
| | - Sanjay Basu
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking, England, United Kingdom
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright, Woking, England, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Study of Anopheles gambiae 3-hydroxykynurenine transaminase activity and inhibition by LC-MS/MS method. J Pharm Biomed Anal 2019; 173:154-161. [DOI: 10.1016/j.jpba.2019.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 12/17/2022]
|
13
|
Adolfi A, Lycett GJ. Opening the toolkit for genetic analysis and control of Anopheles mosquito vectors. CURRENT OPINION IN INSECT SCIENCE 2018; 30:8-18. [PMID: 30553490 DOI: 10.1016/j.cois.2018.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/24/2018] [Indexed: 06/09/2023]
Abstract
Anopheles is the only genus of mosquitoes that transmit human malaria and consequently the focus of large scale genome and transcriptome-wide association studies. Genetic tools to define the function of the candidate genes arising from these analyses are vital. Moreover, genome editing offers the potential to modify Anopheles population structure at local and global scale to provide complementary tools towards the ultimate goal of malaria elimination. Major breakthroughs in Anopheles genetic analysis came with the development of germline transformation and RNA interference technology. Yet, the field has been revolutionised again by precise genome editing now possible through site-specific nucleases. Here we review the components of the current genetic toolkit available to study Anopheles, focusing particularly on how these technical advances are used to gain insight into malaria transmission and the design of genetic methods to control Anopheles vectors.
Collapse
Affiliation(s)
- Adriana Adolfi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697-4500, USA
| | - Gareth John Lycett
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|