1
|
Eom KH, Jeong D, Choi JY, Gim GM, Yum SY, Jin S, Bae H, Jang G. MSTN knockout enhances the production of MYOD1-mediated steak-type cultivated meat. J Anim Sci Biotechnol 2025; 16:41. [PMID: 40065420 PMCID: PMC11895244 DOI: 10.1186/s40104-025-01173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND As the global population increases, the demand for protein sources is expected to increase, driving the demand for cell-based cultivated meat. This study aimed to enhance the productivity of cultivated meat through optimization of the cell source and organization process. RESULTS We engineered fibroblasts into myogenic cells via non-viral introduction of the MYOD1 gene, avoiding viral methods for safety. After confirming the stable derivation of myogenic cells, we combined knockout (KO) of MSTN, a negative regulator of myogenesis, with MYOD1-mediated myogenesis to improve cultivated meat production. Primary cells from MSTN KO cattle exhibited enhanced myogenic potential. Additionally, when tested in immortalized fibroblasts, myostatin treatment reduced MYOD1-induced myogenesis in two-dimensional cultures, while MSTN knockout increased it. To achieve muscle-like cell alignment, we employed digital light processing (DLP)-based three-dimensional (3D) bioprinting to organize cells into 3D groove-shaped hydrogels. These bioactive hydrogels supported stable cell proliferation and significantly improved muscle cell alignment. Upon differentiation into myotubes, the cells demonstrated an ordered alignment, particularly the MSTN KO cells, which showed highly efficient differentiation. CONCLUSIONS The integration of genetic modification and advanced DLP 3D bioprinting with groove-patterned hydrogels provides an effective strategy for producing high-quality, muscle-aligned cultivated meat.
Collapse
Affiliation(s)
- Kyeong-Hyeon Eom
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and the Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- LART Bio Inc, 60 Haan-Ro, Gwangmyeong-Si, Gyeonggi-Do, 14322, Republic of Korea
| | - Dayi Jeong
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jae-Yoon Choi
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and the Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Gyeong-Min Gim
- LART Bio Inc, 60 Haan-Ro, Gwangmyeong-Si, Gyeonggi-Do, 14322, Republic of Korea
| | - Soo-Young Yum
- LART Bio Inc, 60 Haan-Ro, Gwangmyeong-Si, Gyeonggi-Do, 14322, Republic of Korea
| | - Sumin Jin
- LART Bio Inc, 60 Haan-Ro, Gwangmyeong-Si, Gyeonggi-Do, 14322, Republic of Korea
| | - Hojae Bae
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul, 05029, Republic of Korea.
- Institute of Advanced Regenerative Science, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Goo Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and the Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
- LART Bio Inc, 60 Haan-Ro, Gwangmyeong-Si, Gyeonggi-Do, 14322, Republic of Korea.
- Comparative Medicine Disease Research Center, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Chen J, Wang J, Zhao H, Tan X, Yan S, Zhang H, Wang T, Tang X. Molecular breeding of pigs in the genome editing era. Genet Sel Evol 2025; 57:12. [PMID: 40065264 PMCID: PMC11892312 DOI: 10.1186/s12711-025-00961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND To address the increasing demand for high-quality pork protein, it is essential to implement strategies that enhance diets and produce pigs with excellent production traits. Selective breeding and crossbreeding are the primary methods used for genetic improvement in modern agriculture. However, these methods face challenges due to long breeding cycles and the necessity for beneficial genetic variation associated with high-quality traits within the population. This limitation restricts the transfer of desirable alleles across different genera and species. This article systematically reviews past and current research advancements in porcine molecular breeding. It discusses the screening of clustered regularly interspaced short palindromic repeats (CRISPR) to identify resistance loci in swine and the challenges and future applications of genetically modified pigs. MAIN BODY The emergence of transgenic and gene editing technologies has prompted researchers to apply these methods to pig breeding. These advancements allow for alterations in the pig genome through various techniques, ranging from random integration into the genome to site-specific insertion and from target gene knockout (KO) to precise base and prime editing. As a result, numerous desirable traits, such as disease resistance, high meat yield, improved feed efficiency, reduced fat deposition, and lower environmental waste, can be achieved easily and effectively by genetic modification. These traits can serve as valuable resources to enhance swine breeding programmes. CONCLUSION In the era of genome editing, molecular breeding of pigs is critical to the future of agriculture. Long-term and multidomain analyses of genetically modified pigs by researchers, related policy development by regulatory agencies, and public awareness and acceptance of their safety are the keys to realizing the transition of genetically modified products from the laboratory to the market.
Collapse
Affiliation(s)
- Jiahuan Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Jiaqi Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Haoran Zhao
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Xiao Tan
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Shihan Yan
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Huanyu Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Tiefeng Wang
- College of Life Science, Baicheng Normal University, Baicheng, 137000, China.
| | - Xiaochun Tang
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
3
|
Elashry MI, Schneider VC, Heimann M, Wenisch S, Arnhold S. CRISPR/Cas9-Targeted Myostatin Deletion Improves the Myogenic Differentiation Parameters for Muscle-Derived Stem Cells in Mice. J Dev Biol 2025; 13:5. [PMID: 39982358 PMCID: PMC11843916 DOI: 10.3390/jdb13010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/25/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Skeletal muscle plays a pivotal role in physical activity, protein storage and energy utilization. Skeletal muscle wasting due to immobilization, aging, muscular dystrophy and cancer cachexia has negative impacts on the quality of life. The deletion of myostatin, a growth and differentiation factor-8 (GDF-8) augments muscle mass through hyperplasia and hypertrophy of muscle fibers. The present study examines the impact of myostatin deletion using CRISPR/Cas9 editing on the myogenic differentiation (MD) of C2C12 muscle stem cells. A total of five myostatin loci were targeted using guided RNAs that had been previously cloned into a vector. The clones were transfected in C2C12 cells via electroporation. The cell viability and MD of myostatin-edited clones (Mstn-/-) were compared with C2C12 (Mstn+/+) using a series of assays, including MTT, sulforhodamine B, immunocytochemistry, morphometric analysis and RT-qPCR. The clones sequenced showed evidence of nucleotides deletion in Mstn-/- cells. Mstn-/- cells demonstrated a normal physiological performance and lack of cytotoxicity. Myostatin depletion promoted the myogenic commitment as evidenced by upregulated MyoD and myogenin expression. The number of MyoD-positive cells was increased in the differentiated Mstn-/- clones. The Mstn-/- editing upregulates both mTOR and MyH expression, as well as increasing the size of myotubes. The differentiation of Mstn-/- cells upregulates ActRIIb; in contrast, it downregulates decorin expression. The data provide evidence of successful CRISPR/Cas9-mediated myostatin deletion. In addition, targeting myostatin could be a beneficial therapeutic strategy to promote MD and to restore muscle loss. In conclusion, the data suggest that myostatin editing using CRISPR/Cas9 could be a potential therapeutic manipulation to improve the regenerative capacity of muscle stem cells before in vivo application.
Collapse
Affiliation(s)
- Mohamed I. Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (V.C.S.); (M.H.); (S.A.)
| | - Victoria C. Schneider
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (V.C.S.); (M.H.); (S.A.)
| | - Manuela Heimann
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (V.C.S.); (M.H.); (S.A.)
| | - Sabine Wenisch
- Clinic of Small Animals, Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany;
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany; (V.C.S.); (M.H.); (S.A.)
| |
Collapse
|
4
|
Wang Y, Zhang D, Liu Y. Research Progress on the Regulating Factors of Muscle Fiber Heterogeneity in Livestock: A Review. Animals (Basel) 2024; 14:2225. [PMID: 39123750 PMCID: PMC11311112 DOI: 10.3390/ani14152225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The type of muscle fiber plays a crucial role in the growth, development, and dynamic plasticity of animals' skeletal muscle. Additionally, it is a primary determinant of the quality of both fresh and processed meat. Therefore, understanding the regulatory factors that contribute to muscle fibers' heterogeneity is of paramount importance. Recent advances in sequencing and omics technologies have enabled comprehensive cross-verification of research on the factors affecting the types of muscle fiber across multiple levels, including the genome, transcriptome, proteome, and metabolome. These advancements have facilitated deeper exploration into the related biological questions. This review focused on the impact of individual characteristics, feeding patterns, and genetic regulation on the proportion and interconversion of different muscle fibers. The findings indicated that individual characteristics and feeding patterns significantly influence the type of muscle fiber, which can effectively enhance the type and distribution of muscle fibers in livestock. Furthermore, non-coding RNA, genes and signaling pathways between complicated regulatory mechanisms and interactions have a certain degree of impact on muscle fibers' heterogeneity. This, in turn, changes muscle fiber profile in living animals through genetic selection or environmental factors, and has the potential to modulate the quality of fresh meat. Collectively, we briefly reviewed the structure of skeletal muscle tissue and then attempted to review the inevitable connection between the quality of fresh meat and the type of muscle fiber, with particular attention to potential events involved in regulating muscle fibers' heterogeneity.
Collapse
Affiliation(s)
| | | | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611134, China; (Y.W.); (D.Z.)
| |
Collapse
|
5
|
Zhang J, Gao Y, Yan J. Roles of Myokines and Muscle-Derived Extracellular Vesicles in Musculoskeletal Deterioration under Disuse Conditions. Metabolites 2024; 14:88. [PMID: 38392980 PMCID: PMC10891558 DOI: 10.3390/metabo14020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Prolonged inactivity and disuse conditions, such as those experienced during spaceflight and prolonged bedrest, are frequently accompanied by detrimental effects on the motor system, including skeletal muscle atrophy and bone loss, which greatly increase the risk of osteoporosis and fractures. Moreover, the decrease in glucose and lipid utilization in skeletal muscles, a consequence of muscle atrophy, also contributes to the development of metabolic syndrome. Clarifying the mechanisms involved in disuse-induced musculoskeletal deterioration is important, providing therapeutic targets and a scientific foundation for the treatment of musculoskeletal disorders under disuse conditions. Skeletal muscle, as a powerful endocrine organ, participates in the regulation of physiological and biochemical functions of local or distal tissues and organs, including itself, in endocrine, autocrine, or paracrine manners. As a motor organ adjacent to muscle, bone tissue exhibits a relative lag in degenerative changes compared to skeletal muscle under disuse conditions. Based on this phenomenon, roles and mechanisms involved in the communication between skeletal muscle and bone, especially from muscle to bone, under disuse conditions have attracted widespread attention. In this review, we summarize the roles and regulatory mechanisms of muscle-derived myokines and extracellular vesicles (EVs) in the occurrence of muscle atrophy and bone loss under disuse conditions, as well as discuss future perspectives based on existing research.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Special Medicine, Shanxi Medical University, Jinzhong 030619, China;
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jiangwei Yan
- Institute of Special Medicine, Shanxi Medical University, Jinzhong 030619, China;
| |
Collapse
|
6
|
Giovannini S, Strillacci MG, Bagnato A, Albertini E, Sarti FM. Genetic and Phenotypic Characteristics of Belted Pig Breeds: A Review. Animals (Basel) 2023; 13:3072. [PMID: 37835678 PMCID: PMC10571877 DOI: 10.3390/ani13193072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Belted pig breeds have unique, distinguishing phenotypic characteristics. This review summarises the current knowledge on pig breeds displaying a belted coat pattern. Belts of different widths and positions around the animal's trunk characterise specific pig breeds from all around the world. All the breeds included in the present paper have been searched through the FAO domestic animal diversity information system (DAD-IS), Every country was checked to identify all breeds described as having black or red piebald coat pattern variations. Advances in genomic technologies have made it possible to identify the specific genes and genetic markers associated with the belted phenotype and explore the genetic relationships between different local breeds. Thus, the origin, history, and production traits of these breeds, together with all the genomic information related to the mechanism of skin pigmentation, are discussed. By increasing our understanding of these breeds, we can appreciate the richness of our biological and cultural heritage and work to preserve the biodiversity of the world's animals.
Collapse
Affiliation(s)
- Samira Giovannini
- Department of Agricultural, Food and Environmental Sciences, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (E.A.); (F.M.S.)
| | - Maria Giuseppina Strillacci
- Department of Veterinary and Animal Science, Università degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (M.G.S.); (A.B.)
| | - Alessandro Bagnato
- Department of Veterinary and Animal Science, Università degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (M.G.S.); (A.B.)
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (E.A.); (F.M.S.)
| | - Francesca Maria Sarti
- Department of Agricultural, Food and Environmental Sciences, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy; (E.A.); (F.M.S.)
| |
Collapse
|
7
|
Guo R, Wang H, Meng C, Gui H, Li Y, Chen F, Zhang C, Zhang H, Ding Q, Zhang J, Zhang J, Qian Y, Zhong J, Cao S. Efficient and Specific Generation of MSTN-Edited Hu Sheep Using C-CRISPR. Genes (Basel) 2023; 14:1216. [PMID: 37372396 DOI: 10.3390/genes14061216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Hu sheep, an indigenous breed in China known for its high fecundity, are being studied to improve their growth and carcass traits. MSTN is a negative regulator of muscle development, and its inactivation results in muscularity. The C-CRISPR system, utilizing multiple neighboring sgRNAs targeting a key exon, has been successfully used to generate genes for complete knockout (KO) monkeys and mice in one step. In this study, the C-CRISPR system was used to generate MSTN-edited Hu sheep; 70 embryos injected with Cas9 mRNA and four sgRNAs targeting exon 3 of sheep MSTN were transferred to 13 recipients. Out of 10 lambs born from five recipients after full-term pregnancies, nine had complete MSTN KO with various mutations. No off-target effects were found. These MSTN-KO Hu sheep showed a double-muscled (DM) phenotype, characterized by a higher body weight at 3 and 4 months old, prominent muscular protrusion, clearly visible intermuscular groves, and muscle hypertrophy. The molecular analysis indicated enhanced AKT and suppressed ERK1/2 signaling in the gluteus muscle of the edited Hu sheep. In conclusion, MSTN complete KO Hu sheep with a DM phenotype were efficiently and specifically generated using C-CRISPR, and the C-CRISPR method is a promising tool for farm animal breeding.
Collapse
Affiliation(s)
- Rihong Guo
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huili Wang
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chunhua Meng
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongbing Gui
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
| | - Yinxia Li
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fang Chen
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chenjian Zhang
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
| | - Han Zhang
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
| | - Qiang Ding
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianli Zhang
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jun Zhang
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yong Qian
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jifeng Zhong
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shaoxian Cao
- Jiangsu Provincial Engineering Research Center for Precision Animal Breeding, Nanjing 210014, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| |
Collapse
|
8
|
Yang SP, Zhu XX, Qu ZX, Chen CY, Wu YB, Wu Y, Luo ZD, Wang XY, He CY, Fang JW, Wang LQ, Hong GL, Zheng ST, Zeng JM, Yan AF, Feng J, Liu L, Zhang XL, Zhang LG, Miao K, Tang DS. Production of MSTN knockout porcine cells using adenine base-editing-mediated exon skipping. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00763-5. [PMID: 37099179 DOI: 10.1007/s11626-023-00763-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/24/2023] [Indexed: 04/27/2023]
Abstract
Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9 and cytosine base editing (CBE) technologies, adenine base editing (ABE) shows better safety and accuracy in gene modification. However, because of the characteristics of gene sequences, the ABE system cannot be widely used in gene knockout. Alternative splicing of mRNA is an important biological mechanism in eukaryotes for the formation of proteins with different functional activities. The splicing apparatus recognizes conserved sequences of the 5' end splice donor and 3' end splice acceptor motifs of introns in pre-mRNA that can trigger exon skipping, leading to the production of new functional proteins, or causing gene inactivation through frameshift mutations. This study aimed to construct a MSTN knockout pig by inducing exon skipping with the aid of the ABE system to expand the application of the ABE system for the preparation of knockout pigs. In this study, first, we constructed ABEmaxAW and ABE8eV106W plasmid vectors and found that their editing efficiencies at the targets were at least sixfold and even 260-fold higher than that of ABEmaxAW by contrasting the editing efficiencies at the gene targets of endogenous CD163, IGF2, and MSTN in pigs. Subsequently, we used the ABE8eV106W system to realize adenine base (the base of the antisense strand is thymine) editing of the conserved splice donor sequence (5'-GT) of intron 2 of the porcine MSTN gene. A porcine single-cell clone carrying a homozygous mutation (5'-GC) in the conserved sequence (5'-GT) of the intron 2 splice donor of the MSTN gene was successfully generated after drug selection. Unfortunately, the MSTN gene was not expressed and, therefore, could not be characterized at this level. No detectable genomic off-target edits were identified by Sanger sequencing. In this study, we verified that the ABE8eV106W vector had higher editing efficiency and could expand the editing scope of ABE. Additionally, we successfully achieved the precise modification of the alternative splice acceptor of intron 2 of the porcine MSTN gene, which may provide a new strategy for gene knockout in pigs.
Collapse
Affiliation(s)
- Shuai-Peng Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, 528225, China
| | - Xiang-Xing Zhu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, 528225, China.
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China.
| | - Zi-Xiao Qu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, 528225, China
| | - Cai-Yue Chen
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Yao-Bing Wu
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Yue Wu
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Zi-Dan Luo
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Xin-Yi Wang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Chu-Yu He
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Jia-Wen Fang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Ling-Qi Wang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Guang-Long Hong
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Shu-Tao Zheng
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Jie-Mei Zeng
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Ai-Fen Yan
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Juan Feng
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Lian Liu
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Xiao-Li Zhang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Li-Gang Zhang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Kai Miao
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| | - Dong-Sheng Tang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, 528225, China.
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China.
| |
Collapse
|
9
|
Kalds P, Zhou S, Huang S, Gao Y, Wang X, Chen Y. When Less Is More: Targeting the Myostatin Gene in Livestock for Augmenting Meat Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4216-4227. [PMID: 36862946 DOI: 10.1021/acs.jafc.2c08583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
How to increase meat production is one of the main questions in animal breeding. Selection for improved body weight has been made and, due to recent genomic advances, naturally occurring variants that are responsible for controlling economically relevant phenotypes have been revealed. The myostatin (MSTN) gene, a superstar gene in animal breeding, was discovered as a negative controller of muscle mass. In some livestock species, natural mutations in the MSTN gene could generate the agriculturally desirable double-muscling phenotype. However, some other livestock species or breeds lack these desirable variants. Genetic modification, particularly gene editing, offers an unprecedented opportunity to induce or mimic naturally occurring mutations in livestock genomes. To date, various MSTN-edited livestock species have been generated using different gene modification tools. These MSTN gene-edited models have higher growth rates and increased muscle mass, suggesting the high potential of utilizing MSTN gene editing in animal breeding. Additionally, post-editing investigations in most livestock species support the favorable influence of targeting the MSTN gene on meat quantity and quality. In this Review, we provide a collective discussion on targeting the MSTN gene in livestock to further encourage its utilization opportunities. It is expected that, shortly, MSTN gene-edited livestock will be commercialized, and MSTN-edited meat will be on the tables of ordinary customers.
Collapse
Affiliation(s)
- Peter Kalds
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt
| | - Shiwei Zhou
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shuhong Huang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yawei Gao
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, China
| | - Yulin Chen
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
10
|
Lin Y, Li J, Li C, Tu Z, Li S, Li XJ, Yan S. Application of CRISPR/Cas9 System in Establishing Large Animal Models. Front Cell Dev Biol 2022; 10:919155. [PMID: 35656550 PMCID: PMC9152178 DOI: 10.3389/fcell.2022.919155] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The foundation for investigating the mechanisms of human diseases is the establishment of animal models, which are also widely used in agricultural industry, pharmaceutical applications, and clinical research. However, small animals such as rodents, which have been extensively used to create disease models, do not often fully mimic the key pathological changes and/or important symptoms of human disease. As a result, there is an emerging need to establish suitable large animal models that can recapitulate important phenotypes of human diseases for investigating pathogenesis and developing effective therapeutics. However, traditional genetic modification technologies used in establishing small animal models are difficultly applied for generating large animal models of human diseases. This difficulty has been overcome to a great extent by the recent development of gene editing technology, especially the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). In this review, we focus on the applications of CRISPR/Cas9 system to establishment of large animal models, including nonhuman primates, pigs, sheep, goats and dogs, for investigating disease pathogenesis and treatment. We also discuss the limitations of large animal models and possible solutions according to our current knowledge. Finally, we sum up the applications of the novel genome editing tool Base Editors (BEs) and its great potential for gene editing in large animals.
Collapse
|
11
|
Multi-omics research in sarcopenia: Current progress and future prospects. Ageing Res Rev 2022; 76:101576. [PMID: 35104630 DOI: 10.1016/j.arr.2022.101576] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/13/2021] [Accepted: 01/26/2022] [Indexed: 12/17/2022]
Abstract
Sarcopenia is a systemic disease with progressive and generalized skeletal muscle dysfunction defined by age-related low muscle mass, high content of muscle slow fibers, and low muscle function. Muscle phenotypes and sarcopenia risk are heritable; however, the genetic architecture and molecular mechanisms underlying sarcopenia remain largely unclear. In recent years, significant progress has been made in determining susceptibility loci using genome-wide association studies. In addition, recent advances in omics techniques, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics, offer new opportunities to identify novel targets to help us understand the pathophysiology of sarcopenia. However, each individual technology cannot capture the entire view of the biological complexity of this disorder, while integrative multi-omics analyses may be able to reveal new insights. Here, we review the latest findings of multi-omics studies for sarcopenia and provide an in-depth summary of our current understanding of sarcopenia pathogenesis. Leveraging multi-omics data could give us a holistic understanding of sarcopenia etiology that may lead to new clinical applications. This review offers guidance and recommendations for fundamental research, innovative perspectives, and preventative and therapeutic interventions for sarcopenia.
Collapse
|
12
|
Hou H, Wang X, Yang C, Cai X, Lv W, Tu Y, Bao A, Wu Q, Zhao W, Yao J, Ding W. Comparative Genome and Transcriptome Integration Studies Reveal the Mechanism of Pectoral Muscle Development and Function in Pigeons. Front Genet 2022; 12:735795. [PMID: 34987544 PMCID: PMC8721168 DOI: 10.3389/fgene.2021.735795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Pigeon breed resources provide a genetic model for the study of phenomics. The pectoral muscles play a key role for the meat production performance of the meat pigeon and the athletic ability of the High flyers. Euro-pigeons and Silver King pigeons are commercial varieties that exhibit good meat production performance. In contrast to the domestication direction of meat pigeons, the traditional Chinese ornamental pigeon breed, High flyers, has a small and light body. Here, we investigate the molecular mechanism of the pectoral muscle development and function of pigeons using whole-genome and RNA sequencing data. The selective sweep analysis (FST and log2 (θπ ratio)) revealed 293 and 403 positive selection genes in Euro-pigeons and Silver King, respectively, of which 65 genes were shared. With the Silver King and Euro-pigeon as the control group, the High flyers were selected for 427 and 566 genes respectively. There were 673 differentially expressed genes in the breast muscle transcriptome between the commercial meat pigeons and ornamental pigeons. Pigeon genome selection signal combined with the breast muscle transcriptome revealed that six genes (SLC16A10, S100B, SYNE1, HECW2, CASQ2 and LOC110363470) from commercial varieties of pigeons and five genes (INSC, CALCB, ZBTB21, B2M and LOC110356506) from Chinese traditional ornamental pigeons were positively selected which were involved in pathways related to muscle development and function. This study provides new insights into the selection of different directions and the genetic mechanism related to muscle development in pigeons.
Collapse
Affiliation(s)
- Haobin Hou
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Xiaoliang Wang
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Changsuo Yang
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Xia Cai
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Wenwei Lv
- National Poultry Engineer Research Center, Shanghai, China
| | - Yingying Tu
- National Poultry Engineer Research Center, Shanghai, China
| | | | - Quanli Wu
- Shanghai Jinhuang Pigeon Company, Shanghai, China
| | - Weimin Zhao
- Shanghai Jinhuang Pigeon Company, Shanghai, China
| | - Junfeng Yao
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| | - Weixing Ding
- Shanghai Academy of Agricultural Sciences, Shanghai, China.,National Poultry Engineer Research Center, Shanghai, China
| |
Collapse
|
13
|
Tu CF, Chuang CK, Yang TS. The application of new breeding technology based on gene editing in pig industry. Anim Biosci 2022; 35:791-803. [PMID: 34991204 PMCID: PMC9066036 DOI: 10.5713/ab.21.0390] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
Genome/gene-editing (GE) techniques, characterized by a low technological barrier, high efficiency, and broad application among organisms, are now being employed not only in medical science but also in agriculture/veterinary science. Different engineered CRISPR/Cas9s have been identified to expand the application of this technology. In pig production, GE is a precise new breeding technology (NBT), and promising outcomes in improving economic traits, such as growth, lean or healthy meat production, animal welfare, and disease resistance, have already been documented and reviewed. These promising achievements in porcine gene editing, including the Myostatin gene knockout (KO) in indigenous breeds to improve lean meat production, the uncoupling protein 1 (UCP1) gene knock-in to enhance piglet thermogenesis and survival under cold stress, the generation of GGTA1 and CMP-N-glycolylneuraminic acid hydroxylase (CMAH) gene double KO (dKO) pigs to produce healthy red meat, and the KO or deletion of exon 7 of the CD163 gene to confer resistance to porcine reproductive and respiratory syndrome virus infection, are described in the present article. Other related approaches for such purposes are also discussed. The current trend of global regulations or legislation for GE organisms is that they are exempted from classification as genetically modified organisms (GMOs) if no exogenes are integrated into the genome, according to product-based and not process-based methods. Moreover, an updated case study in the EU showed that current GMO legislation is not fit for purpose in term of NBTs, which contribute to the objectives of the EU’s Green Deal and biodiversity strategies and even meet the United Nations’ sustainable development goals for a more resilient and sustainable agri-food system. The GE pigs generated via NBT will be exempted from classification as GMOs, and their global valorization and commercialization can be foreseen.
Collapse
Affiliation(s)
- Ching-Fu Tu
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City 30093, Taiwan
| | - Chin-Kai Chuang
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City 30093, Taiwan
| | - Tien-Shuh Yang
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City 30093, Taiwan.,Department of Biotechnology and Animal Science, National Ilan University, Yilan City, 26047 Taiwan
| |
Collapse
|
14
|
Sheng H, Guo Y, Zhang L, Zhang J, Miao M, Tan H, Hu D, Li X, Ding X, Li G, Guo H. Proteomic Studies on the Mechanism of Myostatin Regulating Cattle Skeletal Muscle Development. Front Genet 2021; 12:752129. [PMID: 34868225 PMCID: PMC8635237 DOI: 10.3389/fgene.2021.752129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022] Open
Abstract
Myostatin (MSTN) is an important negative regulator of muscle growth and development. In this study, we performed comparatively the proteomics analyses of gluteus tissues from MSTN+/− Mongolian cattle (MG.MSTN+/−) and wild type Mongolian cattle (MG.WT) using a shotgun-based tandem mass tag (TMT) 6-plex labeling method to investigate the regulation mechanism of MSTN on the growth and development of bovine skeletal muscle. A total of 1,950 proteins were identified in MG.MSTN+/− and MG.WT. Compared with MG.WT cattle, a total of 320 differentially expressed proteins were identified in MG.MSTN cattle, including 245 up-regulated differentially expressed proteins and 75 down-regulated differentially expressed proteins. Bioinformatics analysis showed that knockdown of the MSTN gene increased the expression of extracellular matrix and ribosome-related proteins, induced activation of focal adhesion, PI3K-AKT, and Ribosomal pathways. The results of proteomic analysis were verified by muscle tissue Western blot test and in vitro MSTN gene knockdown test, and it was found that knockdown MSTN gene expression could promote the proliferation and myogenic differentiation of bovine skeletal muscle satellite cells (BSMSCs). At the same time, Co-Immunoprecipitation (CO-IP) assay showed that MSTN gene interacted with extracellular matrix related protein type I collagen α 1 (COL1A1), and knocking down the expression of COL1A1 could inhibit the activity of adhesion, PI3K-AKT and ribosome pathway, thus inhibit BSMSCs proliferation. These results suggest that the MSTN gene regulates focal adhesion, PI3K-AKT, and Ribosomal pathway through the COL1A1 gene. In general, this study provides new insights into the regulatory mechanism of MSTN involved in muscle growth and development.
Collapse
Affiliation(s)
- Hui Sheng
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Yiwen Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Linlin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Junxing Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Manning Miao
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Haoyun Tan
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Debao Hu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Xin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Guangpeng Li
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Hong Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
15
|
Pan S, Zhang L, Liu Z, Xing H. Myostatin suppresses adipogenic differentiation and lipid accumulation by activating crosstalk between ERK1/2 and PKA signaling pathways in porcine subcutaneous preadipocytes. J Anim Sci 2021; 99:6388060. [PMID: 34634123 DOI: 10.1093/jas/skab287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/09/2021] [Indexed: 11/14/2022] Open
Abstract
The current study was undertaken to determine the effect of myostatin (MSTN) on lipid accumulation in porcine subcutaneous preadipocytes (PSPAs) and to further explore the potential molecular mechanisms. PSPAs isolated from Meishan weaned piglets were added with various concentrations of MSTN recombinant protein during the entire period of adipogenic differentiation process. Results showed that MSTN treatment significantly reduced the lipid accumulation, intracellular triglyceride (TG) content, glucose consumption and glycerol phosphate dehydrogenase activity, while increased glycerol and free fatty acid release. Consistent with above results, the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway was obviously activated and thus key adipogenic transcription factors peroxisome proliferator-activated receptor-gamma (PPAR-γ), CCAAT/enhancer-binding protein-alpha (C/EBP-α) and their downstream engymes fatty acid synthase and acetyl-CoA carboxylase were all inhibited. However, chemical inhibition of ERK1/2 signaling pathway by PD98059 markedly reversed the decreased TG content by increasing PPAR-γ expression. In addition, MSTN activated the cyclic AMP/protein kinase A (cAMP/PKA) pathway and stimulated lipolysis by reducing the expression of antilipolytic gene perilipin, thus elevated key lipolytic enzymes adipose triglyceride lipase and hormone-sensitive lipase expression and enzyme activity. On the contrary, pretreatment with PKA inhibitor H89 significantly reversed TG accumulation by increasing PPAR-γ expression and thus inhibiting ERK1/2, perilipin and HSL phosphorylation, supporting the crosstalk between PKA and ERK1/2 pathways in both the anti-adipogenic and pro-lipolytic effects. In summary, our results suggested that MSTN suppressed adipogenesis and stimulated lipolysis, which was mainly mediated by activating crosstalk of ERK1/2 and PKA signaling pathways, and consequently decreased lipid accumulation in PSPAs, our findings may provide novel insights for further exploring MSTN as a potent inhibitor of porcine subcutaneous lipid accumulation.
Collapse
Affiliation(s)
- Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P. R. China.,Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Lin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Zhuang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, P. R. China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
16
|
Application of the modified cytosine base-editing in the cultured cells of bama minipig. Biotechnol Lett 2021; 43:1699-1714. [PMID: 34189671 DOI: 10.1007/s10529-021-03159-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022]
Abstract
Bama minipig is a unique miniature swine bred from China. Their favorable characteristics include delicious meat, strong adaptability, tolerance to rough feed, and high levels of stress tolerance. Unfavorable characteristics are their low lean meat percentage, high fat content, slow growth rate, and low feed conversion ratio. Genome-editing technology using CRISPR/Cas9 efficiently knocked out the myostatin gene (MSTN) that has a negative regulatory effect on muscle production, effectively promoting pig muscle growth and increasing lean meat percentage of the pigs. However, CRISPR/Cas9 genome editing technology is based on random mutations implemented by DNA double-strand breaks, which may trigger genomic off-target effects and chromosomal rearrangements. The application of CRISPR/Cas9 to improve economic traits in pigs has raised biosafety concerns. Base editor (BE) developed based on CRISPR/Cas9 such as cytosine base editor (CBE) effectively achieve targeted modification of a single base without relying on DNA double-strand breaks. Hence, the method has greater safety in the genetic improvement of pigs. The aim of the present study is to utilize a modified CBE to generate MSTN-knockout cells of Bama minipigs. Our results showed that the constructed "all-in-one"-modified CBE plasmid achieved directional conversion of a single C·G base pair to a T·A base pair of the MSTN target in Bama miniature pig fibroblast cells. We successfully constructed multiple single-cell colonies of Bama minipigs fibroblast cells carrying the MSTN premature termination and verified that there were no genomic off-target effects detected. This study provides a foundation for further application of somatic cell cloning to construct MSTN-edited Bama minipigs that carry only a single-base mutation and avoids biosafety risks to a large extent, thereby providing experience and a reference for the base editing of other genetic loci in Bama minipigs.
Collapse
|
17
|
Maximiano MR, Távora FTPK, Prado GS, Dias SC, Mehta A, Franco OL. CRISPR Genome Editing Technology: A Powerful Tool Applied to Developing Agribusiness. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6379-6395. [PMID: 34097395 DOI: 10.1021/acs.jafc.1c01062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The natural increase of the world's population implies boosting agricultural demand. In the current non-optimistic global scenario, where adverse climate changes come associated with substantial population growth, the main challenge in agribusiness is food security. Recently, the CRISPR/Cas system has emerged as a friendly gene editing biotechnological tool, enabling a precise manipulation of genomes and enhancement of desirable traits in several organisms. This review highlights the CRISPR/Cas system as a paramount tool for the improvement of agribusiness products and brings up-to-date findings showing its potential applications in improving agricultural-related traits in major plant crops and farm animals, all representing economic-relevant commodities responsible for feeding the world. Several applied pieces of research have successfully demonstrated the CRISPR/Cas ability in boosting interesting traits in agribusiness products, including animal productivity and welfare, crop yield growth, and seed quality, reflecting positive impacts in both socioeconomics and human health aspects. Hence, the CRISPR/Cas system has revolutionized bioscience and biotechnology, and its concrete application in agribusiness goods is on the horizon.
Collapse
Affiliation(s)
- Mariana Rocha Maximiano
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
| | - Fabiano T P K Távora
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal 70770-917, Brazil
- Programa de Pós Graduação em Ciências Biológicas (Imunologia e DIP/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Guilherme Souza Prado
- Laboratório de Biotecnologia, Embrapa Arroz e Feijão, Goiânia, Goiás 75375-000, Brazil
| | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, Distrito Federal 70770-917, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Distrito Federal 70790-160, Brazil
- Programa de Pós Graduação em Ciências Biológicas (Imunologia e DIP/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-900, Brazil
| |
Collapse
|
18
|
Zhang J, Khazalwa EM, Abkallo HM, Zhou Y, Nie X, Ruan J, Zhao C, Wang J, Xu J, Li X, Zhao S, Zuo E, Steinaa L, Xie S. The advancements, challenges, and future implications of the CRISPR/Cas9 system in swine research. J Genet Genomics 2021; 48:347-360. [PMID: 34144928 DOI: 10.1016/j.jgg.2021.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) genome editing technology has dramatically influenced swine research by enabling the production of high-quality disease-resistant pig breeds, thus improving yields. In addition, CRISPR/Cas9 has been used extensively in pigs as one of the tools in biomedical research. In this review, we present the advancements of the CRISPR/Cas9 system in swine research, such as animal breeding, vaccine development, xenotransplantation, and disease modeling. We also highlight the current challenges and some potential applications of the CRISPR/Cas9 technologies.
Collapse
Affiliation(s)
- Jinfu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Emmanuel M Khazalwa
- Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Hussein M Abkallo
- Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya
| | - Yuan Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiongwei Nie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jinxue Ruan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Changzhi Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jieru Wang
- Key Laboratory of Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, PR China
| | - Jing Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Erwei Zuo
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, PR China.
| | - Lucilla Steinaa
- Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya.
| | - Shengsong Xie
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; Animal and Human Health Program, Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
19
|
Perisse IV, Fan Z, Singina GN, White KL, Polejaeva IA. Improvements in Gene Editing Technology Boost Its Applications in Livestock. Front Genet 2021; 11:614688. [PMID: 33603767 PMCID: PMC7885404 DOI: 10.3389/fgene.2020.614688] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Accelerated development of novel CRISPR/Cas9-based genome editing techniques provides a feasible approach to introduce a variety of precise modifications in the mammalian genome, including introduction of multiple edits simultaneously, efficient insertion of long DNA sequences into specific targeted loci as well as performing nucleotide transitions and transversions. Thus, the CRISPR/Cas9 tool has become the method of choice for introducing genome alterations in livestock species. The list of new CRISPR/Cas9-based genome editing tools is constantly expanding. Here, we discuss the methods developed to improve efficiency and specificity of gene editing tools as well as approaches that can be employed for gene regulation, base editing, and epigenetic modifications. Additionally, advantages and disadvantages of two primary methods used for the production of gene-edited farm animals: somatic cell nuclear transfer (SCNT or cloning) and zygote manipulations will be discussed. Furthermore, we will review agricultural and biomedical applications of gene editing technology.
Collapse
Affiliation(s)
- Iuri Viotti Perisse
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Galina N. Singina
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, Russia
| | - Kenneth L. White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Irina A. Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| |
Collapse
|
20
|
Zhao X, Nie J, Tang Y, He W, Xiao K, Pang C, Liang X, Lu Y, Zhang M. Generation of Transgenic Cloned Buffalo Embryos Harboring the EGFP Gene in the Y Chromosome Using CRISPR/Cas9-Mediated Targeted Integration. Front Vet Sci 2020; 7:199. [PMID: 32426378 PMCID: PMC7212351 DOI: 10.3389/fvets.2020.00199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022] Open
Abstract
Sex control technology is of great significance in the production of domestic animals, especially for rapidly breeding water buffalo (bubalus bubalis), which served as a research model in the present study. We have confirmed that a fluorescence protein integrated into the Y chromosome is fit for sexing pre-implantation embryos in the mouse. Firstly, we optimized the efficiency of targeted integration of exogenous gene encoding enhanced green fluorescent protein (eGFP) and mCherry in Neuro-2a cells, mouse embryonic stem cells, mouse embryonic cells (NIH3T3), buffalo fetal fibroblast (BFF) cells. The results showed that a homology arm length of 800 bp on both sides of the target is more efficient that 300 bp or 300 bp/800 bp. Homology-directed repair (HDR)-mediated knock-in in BFF cells was also significantly improved when cells were supplemented with pifithrin-μ, which is a small molecule that inhibits the binding of p53 to mitochondria. Three pulses at 250 V resulted in the most efficient electroporation in BFF cells and 1.5 μg/mL puromycin was found to be the optimal concentration for screening. Moreover, Y-Chr-eGFP transgenic BFF cells and cloned buffalo embryos were successfully generated using CRISPR/Cas9-mediated gene editing combined with the somatic cell nuclear transfer (SCNT) technique. At passage numbers 6–8, the growth rate and cell proliferation rate were significantly lower in Y-Chr-eGFP transgenic than in non-transgenic BFF cells; the expression levels of the methylation-related genes DNMT1 and DNMT3a were similar; however, the expression levels of the acetylation-related genes HDAC1, HDAC2, and HDAC3 were significantly higher (p < 0.05) in Y-Chr-eGFP transgenic BFF cells compared with non-transgenic cells. Y-Chr-eGFP transgenic BFFs were used as donors for SCNT, the results showed that eGFP reporter is suitable for the visualization of the sex of embryos. The blastocyst rates of cloned buffalo embryos were similar; however, the cleavage rates of transgenic cloned embryos were significantly lower compared with control. In summary, we optimized the protocol for generating transgenic BFF cells and successfully generated Y-Chr-eGFP transgenic embryos using these cells as donors.
Collapse
Affiliation(s)
- Xiuling Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Junyu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yuyan Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Wengtan He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Kai Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Chunying Pang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, China
| | - Xianwei Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| |
Collapse
|
21
|
Use of gene expression profile to identify potentially relevant transcripts to myofibrillar fragmentation index trait. Funct Integr Genomics 2020; 20:609-619. [PMID: 32285226 DOI: 10.1007/s10142-020-00738-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 12/22/2022]
Abstract
The myofibrillar fragmentation index (MFI) is an indicative trait for meat tenderness. Longissimus thoracis muscle samples from the 20 most extreme bulls (out of 80 bulls set) for MFI (high (n = 10) and low (n = 10) groups) trait were used to perform transcriptomic analysis, using RNA Sequencing (RNA-Seq). An average of 24.616 genes was expressed in the Nellore muscle transcriptome analysis. A total of 96 genes were differentially expressed (p value ≤ 0.001) between the two groups of divergent bulls for MFI. The HEBP2 and BDH1 genes were overexpressed in animals with high MFI. The MYBPH and MYL6, myosin encoders, were identified. The differentially expressed genes were related to increase mitochondria efficiency, especially in cells under oxidative stress conditions, and these also were related to zinc and calcium binding, membrane transport, and muscle constituent proteins, such as actin and myosin. Most of those genes were involved in metabolic pathways of oxidation-reduction, transport of lactate in the plasma membrane, and muscle contraction. This is the first study applying MFI phenotypes in transcriptomic studies to identify and understand differentially expressed genes for beef tenderness. These results suggest that differences detected in gene expression between high and low MFI animals are related to reactive mechanisms and structural components of oxidative fibers under the condition of cellular stress. Some genes may be selected as positional candidate genes to beef tenderness, MYL6, MYBPH, TRIM63, TRIM55, TRIOBP, and CHRNG genes. The use of MFI phenotypes could enhance results of meat tenderness studies.
Collapse
|
22
|
Muscle Hyperplasia in Japanese Quail by Single Amino Acid Deletion in MSTN Propeptide. Int J Mol Sci 2020; 21:ijms21041504. [PMID: 32098368 PMCID: PMC7073117 DOI: 10.3390/ijms21041504] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/07/2022] Open
Abstract
Mutation in myostatin (MSTN), a negative regulator of muscle growth in skeletal muscle, resulted in increased muscle mass in mammals and fishes. However, MSTN mutation in avian species has not been reported. The objective of this study was to generate MSTN mutation in quail and investigate the effect of MSTN mutation in avian muscle growth. Recently, a new targeted gene knockout approach for the avian species has been developed using an adenoviral CRISPR/Cas9 system. By injecting the recombinant adenovirus containing CRISPR/Cas9 into the quail blastoderm, potential germline chimeras were generated and offspring with three base-pair deletion in the targeted region of the MSTN gene was identified. This non-frameshift mutation in MSTN resulted in deletion of cysteine 42 in the MSTN propeptide region and homozygous mutant quail showed significantly increased body weight and muscle mass with muscle hyperplasia compared to heterozygous mutant and wild-type quail. In addition, decreased fat pad weight and increased heart weight were observed in MSTN mutant quail in an age- and sex-dependent manner, respectively. Taken together, these data indicate anti-myogenic function of MSTN in the avian species and the importance of cysteine 42 in regulating MSTN function.
Collapse
|