1
|
Marnis H, Syahputra K. Advancing fish disease research through CRISPR-Cas genome editing: Recent developments and future perspectives. FISH & SHELLFISH IMMUNOLOGY 2025; 160:110220. [PMID: 39988220 DOI: 10.1016/j.fsi.2025.110220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
CRISPR-Cas genome editing technology has transformed genetic research, by enabling unprecedented precision in modifying DNA sequences across various organisms, including fish. This review explores the significant advancements and potential uses of CRISPR-Cas technology in the study and management of fish diseases, which pose serious challenges to aquaculture and wild fish populations. Fish diseases cause significant economic losses and environmental impacts, therefore effective disease control a top priority. The review highlights the pivotal role of CRISPR-Cas in identifying disease-associated genes, which is critical to comprehending the genetic causes of disease susceptibility and resistance. Some studies have reported key genetic factors that influence disease outcomes, using targeted gene knockouts and modifications to pave the way for the development of disease-resistant fish strains. The creation of such genetically engineered fish holds great promise for enhancing aquaculture sustainability by reducing the reliance on antibiotics and other conventional disease control measures. In addition, CRISPR-Cas has facilitated in-depth studies of pathogen-host interactions, offering new insights into the mechanisms by which pathogens infect and proliferate within their hosts. By manipulating both host and pathogen genes, this technology provides a powerful tool for uncovering the molecular underpinnings of these interactions, leading to the development of more effective treatment strategies. While CRISPR-Cas has shown great promise in fish research, its application remains limited to a few species, primarily model organisms and some freshwater fish. In addition, challenges such as off-target effects, ecological risks, and ethical concerns regarding the release of genetically modified organisms into the environment must be carefully addressed. This review also discusses these challenges and emphasizes the need for robust regulatory frameworks and ongoing research to mitigate risks. Looking forward, the integration of CRISPR-Cas with other emerging technologies, such as multi-omics approaches, promises to further advance our understanding and management of fish diseases. This review concludes by envisioning the future directions of CRISPR-Cas applications in fish health, underscoring its potential to its growing in the field.
Collapse
Affiliation(s)
- Huria Marnis
- Research Center for Fishery, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia.
| | - Khairul Syahputra
- Research Center for Fishery, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Institute for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Ruben MO, Akinsanola AB, Okon ME, Shitu T, Jagunna II. Emerging challenges in aquaculture: Current perspectives and human health implications. Vet World 2025; 18:15-28. [PMID: 40041520 PMCID: PMC11873385 DOI: 10.14202/vetworld.2025.15-28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/04/2024] [Indexed: 03/06/2025] Open
Abstract
Aquaculture, the cultivation of aquatic organisms for human consumption, has become an essential contributor to global food security. However, it faces numerous challenges that threaten its sustainability and capacity to meet the growing demand for animal protein. This review investigates these challenges, with a particular focus on environmental degradation, public health risks, and ethical dilemmas posed by genetic interventions in fish breeding. Despite the promise of genetically modified organisms (GMOs) in enhancing fish production, their integration into aquaculture remains controversial due to potential risks and unresolved ethical questions. This study aims to provide a comprehensive understanding of these pressing issues and propose pathways for sustainable aquaculture development. With the global population increasing and the demand for animal protein intensifying, aquaculture holds great potential as a sustainable food source. However, its contribution to global protein demand remains minimal, projected to decline to as low as 4% in the coming decades. Furthermore, aquaculture's environmental impact, including pollution of water bodies and ecosystem disruption, poses serious threats to biodiversity and public health. Addressing these challenges is critical for ensuring the long-term viability of aquaculture. By exploring the intersection of sustainability, ethics, and innovation, this review provides valuable insights for policymakers, industry stakeholders, and researchers seeking to advance sustainable aquaculture practices. This study aims to evaluate the current state of aquaculture and identify key challenges related to environmental sustainability, public health, and ethical considerations. It seeks to explore the potential of sustainable practices and genetic interventions to address these challenges while balancing the need for increased production and societal acceptance. The ultimate goal is to offer practical recommendations for fostering a resilient and ethical aquaculture industry capable of meeting future global food demands.
Collapse
Affiliation(s)
- M. Oghenebrorhie Ruben
- Landmark University SDG 2 (Zero Hunger), Landmark University, Omu-Aran, Nigeria
- Department of Animal Science, Landmark University, Omu-Aran, Nigeria
| | | | - M. Ekemini Okon
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Teslim Shitu
- Department of Microbiology, University of Ilorin, Kwara State, Nigeria
| | | |
Collapse
|
3
|
Wattad H, Molcho J, Manor R, Weil S, Aflalo ED, Chalifa-Caspi V, Sagi A. Roadmap and Considerations for Genome Editing in a Non-Model Organism: Genetic Variations and Off-Target Profiling. Int J Mol Sci 2024; 25:12530. [PMID: 39684244 DOI: 10.3390/ijms252312530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The CRISPR/Cas genome editing approach in non-model organisms poses challenges that remain to be resolved. Here, we demonstrated a generalized roadmap for a de novo genome annotation approach applied to the non-model organism Macrobrachium rosenbergii. We also addressed the typical genome editing challenges arising from genetic variations, such as a high frequency of single nucleotide polymorphisms, differences in sex chromosomes, and repetitive sequences that can lead to off-target events. For the genome editing of M. rosenbergii, our laboratory recently adapted the CRISPR/Cas genome editing approach to embryos and the embryonic primary cell culture. In this continuation study, an annotation pipeline was trained to predict the gene models by leveraging the available genomic, transcriptomic, and proteomic data, and enabling accurate gene prediction and guide design for knock-outs. A next-generation sequencing analysis demonstrated a high frequency of genetic variations in genes on both autosomal and sex chromosomes, which have been shown to affect the accuracy of editing analyses. To enable future applications based on the CRISPR/Cas tool in non-model organisms, we also verified the reliability of editing efficiency and tracked off-target frequencies. Despite the lack of comprehensive information on non-model organisms, this study provides an example of the feasibility of selecting and editing specific genes with a high degree of certainty.
Collapse
Affiliation(s)
- Hanin Wattad
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Jonathan Molcho
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Simy Weil
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
- Department of Life Sciences, Achva Academic College, Arugot 7980400, Israel
| | - Vered Chalifa-Caspi
- Bioinformatics Core Facility, Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| |
Collapse
|
4
|
Sasikumar R, Saranya S, Lourdu Lincy L, Thamanna L, Chellapandi P. Genomic insights into fish pathogenic bacteria: A systems biology perspective for sustainable aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109978. [PMID: 39442738 DOI: 10.1016/j.fsi.2024.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Fish diseases significantly challenge global aquaculture, causing substantial financial losses and impacting sustainability, trade, and socioeconomic conditions. Understanding microbial pathogenesis and virulence at the molecular level is crucial for disease prevention in commercial fish. This review provides genomic insights into fish pathogenic bacteria from a systems biology perspective, aiming to promote sustainable aquaculture. It covers the genomic characteristics of various fish pathogens and their industry impact. The review also explores the systems biology of zebrafish, fish bacterial pathogens, and probiotic bacteria, offering insights into fish production, potential vaccines, and therapeutic drugs. Genome-scale metabolic models aid in studying pathogenic bacteria, contributing to disease management and antimicrobial development. Researchers have also investigated probiotic strains to improve aquaculture health. Additionally, the review highlights bioinformatics resources for fish and fish pathogens, which are essential for researchers. Systems biology approaches enhance understanding of bacterial fish pathogens by revealing virulence factors and host interactions. Despite challenges from the adaptability and pathogenicity of bacterial infections, sustainable alternatives are necessary to meet seafood demand. This review underscores the potential of systems biology in understanding fish pathogen biology, improving production, and promoting sustainable aquaculture.
Collapse
Affiliation(s)
- R Sasikumar
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - S Saranya
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Lourdu Lincy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Thamanna
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - P Chellapandi
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
5
|
Qiu TX, Liu L, Wang H, Hu Y, Chen J. Schisandrin A: A sustainable antiviral and immunomodulatory agent against spring viraemia of carp virus in aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109914. [PMID: 39306214 DOI: 10.1016/j.fsi.2024.109914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Spring viraemia of carp virus (SVCV) is a major threat to the aquaculture industry, causing severe economic losses and significantly impacting fish health. Despite this, no approved antiviral treatments are currently available for use in aquaculture, underscoring the urgent need for effective interventions. This study evaluated the antiviral and immunomodulatory potential of Schisandrin A (SA), a bioactive compound derived from the traditional Chinese medicinal herb Schisandra chinensis, against SVCV. Through a combination of in vitro and in vivo experiments, SA was found to significantly inhibit SVCV replication, lower the viral titer, and improve survival rates in infected juvenile carp. Mechanistically, SA enhanced the host's innate immune response, as demonstrated by the upregulation of key antiviral genes including interferon-alpha1 (ifna1), interferon-gamma (ifnγ), interferon-stimulated gene 15 (isg15), and myxovirus resistance 1 (mx1). Additionally, SA exhibited potent antioxidative properties, preserving mitochondrial integrity and reducing oxidative stress in SVCV-infected cells. These findings showed the dual role of SA in both directly suppressing viral replication and modulating the immune response, offering a multifaceted approach to managing SVCV infection. Given its low toxicity and biodegradability, SA emerges as a promising, sustainable antiviral agent for aquaculture. This study highlights the potential of SA to enhance biosecurity and promote sustainability in the industry, paving the way for the development of eco-friendly antivirals that could improve the management of viral diseases, ensuring healthier fish populations and greater economic stability.
Collapse
Affiliation(s)
- Tian-Xiu Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Lei Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| | - Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Yang Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
6
|
Hu S, Tian G, Bai Y, Qu A, He Q, Chen L, Xu P. Alternative splicing dynamically regulates common carp embryogenesis under thermal stress. BMC Genomics 2024; 25:918. [PMID: 39358679 PMCID: PMC11448050 DOI: 10.1186/s12864-024-10838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Thermal stress is a major environmental factor affecting fish development and survival. Common carp (Cyprinus carpio) are susceptible to heat stress in their embryonic and larval phases, but the thermal stress response of alternative splicing during common carp embryogenesis remains poorly understood. RESULTS Using RNA-seq data from eight developmental stages and four temperatures, we constructed a comprehensive profile of alternative splicing (AS) during the embryogenesis of common carp, and found that AS genes and events are widely distributed among all stages. A total of 5,835 developmental stage-specific AS (SAS) genes, 21,368 temperature-specific differentially expressed genes (TDEGs), and 2,652 temperature-specific differentially AS (TDAS) genes were identified. Hub TDAS genes in each developmental stage, such as taf2, hnrnpa1, and drg2, were identified through protein-protein interaction (PPI) network analysis. The early developmental stages may be more sensitive to temperature, with thermal stress leading to a massive increase in the number of expressed transcripts, TDEGs, and TDAS genes in the morula stage, followed by the gastrula stage. GO and KEGG analyses showed that from the morula stage to the neurula stage, TDAS genes were more involved in intracellular transport, protein modification, and localization processes, while from the optic vesicle stage to one day post-hatching, they participated more in biosynthetic processes. Further subgenomic analysis revealed that the number of AS genes and events in subgenome B was generally higher than that in subgenome A, and the homologous AS genes were significantly enriched in basic life activity pathways, such as mTOR signaling pathway, p53 signaling pathway, and MAPK signaling pathway. Additionally, lncRNAs can play a regulatory role in the response to thermal stress by targeting AS genes such as lmnl3, affecting biological processes such as apoptosis and axon guidance. CONCLUSIONS In short, thermal stress can affect alternative splicing regulation during common carp embryogenesis at multiple levels. Our work complemented some gaps in the study of alternative splicing at both levels of embryogenesis and thermal stress in C. carpio and contributed to the comprehension of environmental adaptation formation in polyploid fishes during embryogenesis.
Collapse
Affiliation(s)
- Shuimu Hu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Guopeng Tian
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yulin Bai
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ang Qu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qian He
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
7
|
Zhu M, Sumana SL, Abdullateef MM, Falayi OC, Shui Y, Zhang C, Zhu J, Su S. CRISPR/Cas9 Technology for Enhancing Desirable Traits of Fish Species in Aquaculture. Int J Mol Sci 2024; 25:9299. [PMID: 39273247 PMCID: PMC11395652 DOI: 10.3390/ijms25179299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Aquaculture, the world's fastest-growing food production sector, is critical for addressing food security concerns because of its potential to deliver high-quality, nutrient-rich supplies by 2050. This review assesses the effectiveness of CRISPR/Cas9 genome editing technology in enhancing desirable traits in fish species, including growth rates, muscle quality, disease resistance, pigmentation, and more. It also focuses on the potential effectiveness of the technology in allowing precise and targeted modifications of fish DNA to improve desirable characteristics. Many studies have reported successful applications of CRISPR/Cas9, such as knocking out reproductive genes to control reproduction and sex determination, enhancing feed conversion efficiency, and reducing off-target effects. Additionally, this technology has contributed to environmental sustainability by reducing nitrogen-rich waste and improving the nutritional composition of fish. However, the acceptance of CRISPR/Cas9 modified fish by the public and consumers is hindered by concerns regarding public perception, potential ecological impacts, and regulatory frameworks. To gain public approval and consumer confidence, clear communication about the editing process, as well as data on the safety and environmental considerations of genetically modified fish, are essential. This review paper discusses these challenges, provides possible solutions, and recommends future research on the integration of CRISPR/Cas9 into sustainable aquaculture practices, focusing on the responsible management of genetically modified fish to enable the creation of growth and disease-resistant strains. In conclusion, this review highlights the transformative potential of CRISPR/Cas9 technology in improving fish traits, while also considering the challenges and ethical considerations associated with sustainable and responsible practices in aquaculture.
Collapse
Affiliation(s)
- Minli Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Sahr Lamin Sumana
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | | | | | - Yan Shui
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Chengfeng Zhang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jian Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shengyan Su
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
8
|
Caballero-Huertas M, Salazar-Moscoso M, Ribas L. Sex is a Crucial Factor in the Immune Response: An Ichthyological Perspective. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2024:1-21. [DOI: 10.1080/23308249.2024.2390965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Marta Caballero-Huertas
- CIRAD, UMR ISEM, Montpellier, France
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Marcela Salazar-Moscoso
- Institut de Ciències Del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Laia Ribas
- Institut de Ciències Del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
9
|
Murakami Y, Ando M, Kishimoto K, Ohama M, Uemura Y, Tani R, Akazawa A, Matsumiya K, Sato K, Kinoshita M. Alterations in the fillet quality of myostatin-knockout red sea bream Pagrus major: Preliminary insights into nutritional, compositional, and textural properties. Heliyon 2024; 10:e32242. [PMID: 38873675 PMCID: PMC11170198 DOI: 10.1016/j.heliyon.2024.e32242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
Myostatin (MSTN) is a negative regulator of skeletal muscle growth and a popular target for enhancing the productivity of farmed fish. We previously developed an mstn-knockout breed of the aquaculture fish red sea bream (Pagrus major) using genome editing technology. However, little is known about the effects of mstn disruption on the fillet quality of red sea bream and other fish species. In this study, we used fillets of mstn-deficient red sea bream to evaluate their compositional and textural changes during refrigeration. Compared to the wild type, the mutant fillets exhibited an increase in moisture content and a decrease in drippings, indicating an enhanced water-holding capacity. Furthermore, the mutant fillets showed increased water retention and marginally lower collagen content, resulting in lower breaking force, an index of texture. In conclusion, we demonstrated that mstn disruption alters the compositional and textural properties of red sea bream fillets.
Collapse
Affiliation(s)
- Yu Murakami
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Shogoin Kawahara-cho 53, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masashi Ando
- Department of Fisheries, Faculty of Agriculture, Kindai University, Nakamachi 3327-204, Nara, 631-8505, Japan
| | - Kenta Kishimoto
- Regional Fish Institute, Ltd. Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Mitsuki Ohama
- Regional Fish Institute, Ltd. Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuto Uemura
- Regional Fish Institute, Ltd. Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Reoto Tani
- Regional Fish Institute, Ltd. Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Atsushi Akazawa
- Regional Fish Institute, Ltd. Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kentaro Matsumiya
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kenji Sato
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Shogoin Kawahara-cho 53, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masato Kinoshita
- Regional Fish Institute, Ltd. Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
10
|
Orlova SY, Ruzina MN, Emelianova OR, Sergeev AA, Chikurova EA, Orlov AM, Mugue NS. In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species. Genes (Basel) 2024; 15:726. [PMID: 38927661 PMCID: PMC11202958 DOI: 10.3390/genes15060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Aquaculture supplies the world food market with a significant amount of valuable protein. Highly productive aquaculture fishes can be derived by utilizing genome-editing methods, and the main problem is to choose a target gene to obtain the desirable phenotype. This paper presents a review of the studies of genome editing for genes controlling body development, growth, pigmentation and sex determination in five key aquaculture Salmonidae and Cyprinidae species, such as rainbow trout (Onchorhynchus mykiss), Atlantic salmon (Salmo salar), common carp (Cyprinus carpio), goldfish (Carassius auratus), Gibel carp (Carassius gibelio) and the model fish zebrafish (Danio rerio). Among the genes studied, the most applicable for aquaculture are mstnba, pomc, and acvr2, the knockout of which leads to enhanced muscle growth; runx2b, mutants of which do not form bones in myoseptae; lepr, whose lack of function makes fish fast-growing; fads2, Δ6abc/5Mt, and Δ6bcMt, affecting the composition of fatty acids in fish meat; dnd mettl3, and wnt4a, mutants of which are sterile; and disease-susceptibility genes prmt7, gab3, gcJAM-A, and cxcr3.2. Schemes for obtaining common carp populations consisting of only large females are promising for use in aquaculture. The immobilized and uncolored zebrafish line is of interest for laboratory use.
Collapse
Affiliation(s)
- Svetlana Yu. Orlova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Maria N. Ruzina
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Olga R. Emelianova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Department of Biological Evolution, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey A. Sergeev
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Evgeniya A. Chikurova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Alexei M. Orlov
- Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology, Russian Academy of Sciences, 117218 Moscow, Russia
- Laboratory of Behavior of Lower Vertebrates, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Ichthyology, Dagestan State University, 367000 Makhachkala, Russia
| | - Nikolai S. Mugue
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Laboratory of Genome Evolution and Speciation, Institute of Developmental Biology Russian Academy of Sciences, 117808 Moscow, Russia
| |
Collapse
|
11
|
Dolezel M, Lang A, Greiter A, Miklau M, Eckerstorfer M, Heissenberger A, Willée E, Züghart W. Challenges for the Post-Market Environmental Monitoring in the European Union Imposed by Novel Applications of Genetically Modified and Genome-Edited Organisms. BIOTECH 2024; 13:14. [PMID: 38804296 PMCID: PMC11130885 DOI: 10.3390/biotech13020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Information on the state of the environment is important to achieve the objectives of the European Green Deal, including the EU's Biodiversity Strategy for 2030. The existing regulatory provisions for genetically modified organisms (GMOs) foresee an obligatory post-market environmental monitoring (PMEM) of potential adverse effects upon release into the environment. So far, GMO monitoring activities have focused on genetically modified crops. With the advent of new genomic techniques (NGT), novel GMO applications are being developed and may be released into a range of different, non-agricultural environments with potential implications for ecosystems and biodiversity. This challenges the current monitoring concepts and requires adaptation of existing monitoring programs to meet monitoring requirements. While the incorporation of existing biodiversity monitoring programs into GMO monitoring at the national level is important, additional monitoring activities will also be required. Using case examples, we highlight that monitoring requirements for novel GMO applications differ from those of GM crop plants previously authorized for commercial use in the European Union.
Collapse
Affiliation(s)
- Marion Dolezel
- Land Use & Biosafety Unit, Umweltbundesamt–Environment Agency Austria (EAA), Spittelauer Laende 5, 1090 Vienna, Austria; (A.G.); (M.M.); (M.E.); (A.H.)
| | - Andreas Lang
- Büro Lang, Hoernlehof, Gresgen 108, 79669 Zell im Wiesental, Germany;
- Research Group Environmental Geosciences, Department of Environmental Sciences, University of Basel, Bernoullistr. 30, 4056 Basel, Switzerland
| | - Anita Greiter
- Land Use & Biosafety Unit, Umweltbundesamt–Environment Agency Austria (EAA), Spittelauer Laende 5, 1090 Vienna, Austria; (A.G.); (M.M.); (M.E.); (A.H.)
| | - Marianne Miklau
- Land Use & Biosafety Unit, Umweltbundesamt–Environment Agency Austria (EAA), Spittelauer Laende 5, 1090 Vienna, Austria; (A.G.); (M.M.); (M.E.); (A.H.)
| | - Michael Eckerstorfer
- Land Use & Biosafety Unit, Umweltbundesamt–Environment Agency Austria (EAA), Spittelauer Laende 5, 1090 Vienna, Austria; (A.G.); (M.M.); (M.E.); (A.H.)
| | - Andreas Heissenberger
- Land Use & Biosafety Unit, Umweltbundesamt–Environment Agency Austria (EAA), Spittelauer Laende 5, 1090 Vienna, Austria; (A.G.); (M.M.); (M.E.); (A.H.)
| | - Eva Willée
- Division of Terrestrial Monitoring, Federal Agency for Nature Conservation (BfN), Konstantinstr. 110, 53179 Bonn, Germany (W.Z.)
| | - Wiebke Züghart
- Division of Terrestrial Monitoring, Federal Agency for Nature Conservation (BfN), Konstantinstr. 110, 53179 Bonn, Germany (W.Z.)
| |
Collapse
|
12
|
Wang D, Ma X, Hu H, Ren J, Liu J, Zhou H. Functional identification of two HMGB1 paralogues provides insights into autophagic machinery in teleost. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109457. [PMID: 38387685 DOI: 10.1016/j.fsi.2024.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
High mobility group box 1 (HMGB1) is a multifunctional regulator that plays different roles in various physiological and pathological processes including cell development, autophagy, inflammation, tumor metastasis, and cell death based on its cellular localization. Unlike mammalian HMGB1, two HMGB1 paralogues (HMGB1a and HMGB1b) have been found in fathead minnow and other fish species and its function as an inflammatory cytokine has been well investigated. However, the role of fish HMGB1 in autophagy regulation has not been well clarified. In the present study, we generated HMGB1 paralogues single (HMGB1a-/- and HMGB1b-/-) and double knockout (DKO) epithelioma papulosum cyprini (EPC) cells from fathead minnow by CRISPR/Cas9 system, and the knockout efficiency of these genes was verified at both gene and protein levels. In this context, the effects of HMGB1 gene knockout on the protein expression of microtubule-associated protein 1 light chain 3 II (LC3-II), an autophagy marker, were determined, showing that single knockout of two HMGB1 paralogues significantly decreased the expression of LC3-II, and these inhibitory effects were further amplified in HMGB1 DKO cells under both basal and rapamycin treatment conditions, indicating the role of two HMGB1 paralogues in fish autophagy. In agreement with this notion, overexpression of HMGB1a or HMGB1b with Flag-tag markedly upregulated LC3-II protein expression. Interestingly, overexpressing two paralogues distributed in both cytoplasm and nucleus. Finally, the role of HMGB1-mediated autophagy was further explored, finding that HMGB1 could interact with Beclin1, a key initiation factor of autophagy. Taken together, these findings highlighted the role of HMGB1 paralogues as the autophagy regulator and increased our understanding of autophagic machinery in teleost.
Collapse
Affiliation(s)
- Dan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyu Ma
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hengyi Hu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingqi Ren
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiaxi Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
13
|
Puthumana J, Chandrababu A, Sarasan M, Joseph V, Singh ISB. Genetic improvement in edible fish: status, constraints, and prospects on CRISPR-based genome engineering. 3 Biotech 2024; 14:44. [PMID: 38249355 PMCID: PMC10796887 DOI: 10.1007/s13205-023-03891-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024] Open
Abstract
Conventional selective breeding in aquaculture has been effective in genetically enhancing economic traits like growth and disease resistance. However, its advances are restricted by heritability, the extended period required to produce a strain with desirable traits, and the necessity to target multiple characteristics simultaneously in the breeding programs. Genome editing tools like zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) are promising for faster genetic improvement in fishes. CRISPR/Cas9 technology is the least expensive, most precise, and well compatible with multiplexing of all genome editing approaches, making it a productive and highly targeted approach for developing customized fish strains with specified characteristics. As a result, the use of CRISPR/Cas9 technology in aquaculture is rapidly growing, with the main traits researched being reproduction and development, growth, pigmentation, disease resistance, trans-GFP utilization, and omega-3 metabolism. However, technological obstacles, such as off-target effects, ancestral genome duplication, and mosaicism in founder population, need to be addressed to achieve sustainable fish production. Furthermore, present regulatory and risk assessment frameworks are inadequate to address the technical hurdles of CRISPR/Cas9, even though public and regulatory approval is critical to commercializing novel technology products. In this review, we examine the potential of CRISPR/Cas9 technology for the genetic improvement of edible fish, the technical, ethical, and socio-economic challenges to using it in fish species, and its future scope for sustainable fish production.
Collapse
Affiliation(s)
- Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Aswathy Chandrababu
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Manomi Sarasan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - Valsamma Joseph
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| | - I. S. Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, 16 Kerala India
| |
Collapse
|
14
|
Clark B, Kuwalekar M, Fischer B, Woltering J, Biran J, Juntti S, Kratochwil CF, Santos ME, Almeida MV. Genome editing in East African cichlids and tilapias: state-of-the-art and future directions. Open Biol 2023; 13:230257. [PMID: 38018094 PMCID: PMC10685126 DOI: 10.1098/rsob.230257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
African cichlid fishes of the Cichlidae family are a group of teleosts important for aquaculture and research. A thriving research community is particularly interested in the cichlid radiations of the East African Great Lakes. One key goal is to pinpoint genetic variation underlying phenotypic diversification, but the lack of genetic tools has precluded thorough dissection of the genetic basis of relevant traits in cichlids. Genome editing technologies are well established in teleost models like zebrafish and medaka. However, this is not the case for emerging model organisms, such as East African cichlids, where these technologies remain inaccessible to most laboratories, due in part to limited exchange of knowledge and expertise. The Cichlid Science 2022 meeting (Cambridge, UK) hosted for the first time a Genome Editing Workshop, where the community discussed recent advances in genome editing, with an emphasis on CRISPR/Cas9 technologies. Based on the workshop findings and discussions, in this review we define the state-of-the-art of cichlid genome editing, share resources and protocols, and propose new possible avenues to further expand the cichlid genome editing toolkit.
Collapse
Affiliation(s)
- Bethan Clark
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Muktai Kuwalekar
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Uusimaa 00014, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Uusimaa 00014, Finland
| | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Joost Woltering
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Baden-Württemberg 78457, Germany
| | - Jakob Biran
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Scott Juntti
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Claudius F. Kratochwil
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Uusimaa 00014, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Uusimaa 00014, Finland
| | | | - Miguel Vasconcelos Almeida
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Mazloum A, Karagyaur M, Chernyshev R, van Schalkwyk A, Jun M, Qiang F, Sprygin A. Post-genomic era in agriculture and veterinary science: successful and proposed application of genetic targeting technologies. Front Vet Sci 2023; 10:1180621. [PMID: 37601766 PMCID: PMC10434572 DOI: 10.3389/fvets.2023.1180621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Gene editing tools have become an indispensable part of research into the fundamental aspects of cell biology. With a vast body of literature having been generated based on next generation sequencing technologies, keeping track of this ever-growing body of information remains challenging. This necessitates the translation of genomic data into tangible applications. In order to address this objective, the generated Next Generation Sequencing (NGS) data forms the basis for targeted genome editing strategies, employing known enzymes of various cellular machinery, in generating organisms with specifically selected phenotypes. This review focuses primarily on CRISPR/Cas9 technology in the context of its advantages over Zinc finger proteins (ZNF) and Transcription activator-like effector nucleases (TALEN) and meganucleases mutagenesis strategies, for use in agricultural and veterinary applications. This review will describe the application of CRISPR/Cas9 in creating modified organisms with custom-made properties, without the undesired non-targeted effects associated with virus vector vaccines and bioactive molecules produced in bacterial systems. Examples of the successful and unsuccessful applications of this technology to plants, animals and microorganisms are provided, as well as an in-depth look into possible future trends and applications in vaccine development, disease resistance and enhanced phenotypic traits will be discussed.
Collapse
Affiliation(s)
- Ali Mazloum
- Federal Center for Animal Health, Vladimir, Russia
| | - Maxim Karagyaur
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | | | - Antoinette van Schalkwyk
- Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Ma Jun
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Fu Qiang
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | | |
Collapse
|
16
|
Tromp A, Wang H, Hall TE, Mowry B, Giacomotto J. Optimising the zebrafish Cre/Lox toolbox. Codon improved iCre, new gateway tools, Cre protein and guidelines. Front Physiol 2023; 14:1221310. [PMID: 37601640 PMCID: PMC10433388 DOI: 10.3389/fphys.2023.1221310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
We recently introduced the Cre/Lox technology in our laboratory for both transient (mRNA injections) and stable/transgenic experiments. We experienced significant issues such as silencing, mosaicism, and partial recombination using both approaches. Reviewing the literature gave us the impression that these issues are common among the zebrafish community using the Cre/Lox system. While some researchers took advantage of these problems for specific applications, such as cell and lineage tracing using the Zebrabow construct, we tried here to improve the efficiency and reliability of this system by constituting and testing a new set of tools for zebrafish genetics. First, we implemented a codon-improved Cre version (iCre) designed for rodent studies to counteract some of the aforementioned problems. This eukaryotic-like iCre version was engineered to i) reduce silencing, ii) increase mRNA stability, iii) enhance translational efficiency, and iv) improve nuclear translocation. Second, we established a new set of tol2-kit compatible vectors to facilitate the generation of either iCre-mRNA or iCre-transgenes for transient and transgenic experiments, respectively. We then validated the use of this material and are providing tips for users. Interestingly, during the validation steps, we found that maternal iCRE-mRNA and/or protein deposition from female transgenics systematically led to complete/homogeneous conversion of all tested Lox-responder-transgenes, as opposed to some residual imperfect conversion when using males-drivers or mRNA injections. Considering that we did not find any evidence of Cre-protein soaking and injections in the literature as it is usually conducted with cells, we tested these approaches. While soaking of cell-permeant CRE-protein did not lead to any detectable Lox-conversion, 1ng-10 ng protein injections led to robust and homogeneous Lox-recombination, suggesting that the use of protein could be a robust option for exogenous delivery. This approach may be particularly useful to manipulate housekeeping genes involved in development, sex determination and reproduction which are difficult to investigate with traditional knockout approaches. All in all, we are providing here a new set of tools that should be useful in the field.
Collapse
Affiliation(s)
- Alisha Tromp
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Haitao Wang
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Thomas E. Hall
- Institute for Molecular Biosciences, University of Queensland, St Lucia, QLD, Australia
| | - Bryan Mowry
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
- Queensland Centre for Mental Health Research, Wacol, QLD, Australia
| | - Jean Giacomotto
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
- Centre for Cellular Phenomics, School of Environment and Science, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Ansori ANM, Antonius Y, Susilo RJK, Hayaza S, Kharisma VD, Parikesit AA, Zainul R, Jakhmola V, Saklani T, Rebezov M, Ullah ME, Maksimiuk N, Derkho M, Burkov P. Application of CRISPR-Cas9 genome editing technology in various fields: A review. NARRA J 2023; 3:e184. [PMID: 38450259 PMCID: PMC10916045 DOI: 10.52225/narra.v3i2.184] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/23/2023] [Indexed: 03/08/2024]
Abstract
CRISPR-Cas9 has emerged as a revolutionary tool that enables precise and efficient modifications of the genetic material. This review provides a comprehensive overview of CRISPR-Cas9 technology and its applications in genome editing. We begin by describing the fundamental principles of CRISPR-Cas9 technology, explaining how the system utilizes a single guide RNA (sgRNA) to direct the Cas9 nuclease to specific DNA sequences in the genome, resulting in targeted double-stranded breaks. In this review, we provide in-depth explorations of CRISPR-Cas9 technology and its applications in agriculture, medicine, environmental sciences, fisheries, nanotechnology, bioinformatics, and biotechnology. We also highlight its potential, ongoing research, and the ethical considerations and controversies surrounding its use. This review might contribute to the understanding of CRISPR-Cas9 technology and its implications in various fields, paving the way for future developments and responsible applications of this transformative technology.
Collapse
Affiliation(s)
- Arif NM. Ansori
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
- European Virus Bioinformatics Center, Jena, Germany
| | - Yulanda Antonius
- Faculty of Biotechnology, Universitas Surabaya, Surabaya, Indonesia
| | - Raden JK. Susilo
- Nanotechology Engineering Study Program, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Suhailah Hayaza
- Nanotechology Engineering Study Program, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, Indonesia
| | - Viol D. Kharisma
- Doctoral Program of Mathematics and Natural Sciences, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
- Generasi Biologi Indonesia Foundation, Gresik, Indonesia
| | - Arli A. Parikesit
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences (i3L), Jakarta,Indonesia
| | - Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Taru Saklani
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russian Federation
- Faculty of Biotechnology and Food Engineering, Ural State Agrarian University, Yekaterinburg, Russian Federation
| | - Md. Emdad Ullah
- Department of Chemistry, Mississippi State University, Mississippi, United States
| | - Nikolai Maksimiuk
- Institute of Medical Education, Yaroslav-the-Wise Novgorod State University, Velikiy Novgorod, Russian Federation
| | - Marina Derkho
- Institute of Veterinary Medicine, South Ural State Agrarian University, Troitsk, Russian Federation
| | - Pavel Burkov
- Institute of Veterinary Medicine, South Ural State Agrarian University, Troitsk, Russian Federation
| |
Collapse
|
18
|
Gutási A, Hammer SE, El-Matbouli M, Saleh M. Review: Recent Applications of Gene Editing in Fish Species and Aquatic Medicine. Animals (Basel) 2023; 13:1250. [PMID: 37048506 PMCID: PMC10093118 DOI: 10.3390/ani13071250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Gene editing and gene silencing techniques have the potential to revolutionize our knowledge of biology and diseases of fish and other aquatic animals. By using such techniques, it is feasible to change the phenotype and modify cells, tissues and organs of animals in order to cure abnormalities and dysfunctions in the organisms. Gene editing is currently experimental in wide fields of aquaculture, including growth, controlled reproduction, sterility and disease resistance. Zink finger nucleases, TALENs and CRISPR/Cas9 targeted cleavage of the DNA induce favorable changes to site-specific locations. Moreover, gene silencing can be used to inhibit the translation of RNA, namely, to regulate gene expression. This methodology is widely used by researchers to investigate genes involved in different disorders. It is a promising tool in biotechnology and in medicine for investigating gene function and diseases. The production of food fish has increased markedly, making fish and seafood globally more popular. Consequently, the incidence of associated problems and disease outbreaks has also increased. A greater investment in new technologies is therefore needed to overcome such problems in this industry. To put it concisely, the modification of genomic DNA and gene silencing can comprehensively influence aquatic animal medicine in the future. On the ethical side, these precise genetic modifications make it more complicated to recognize genetically modified organisms in nature and can cause several side effects through created mutations. The aim of this review is to summarize the current state of applications of gene modifications and genome editing in fish medicine.
Collapse
Affiliation(s)
- Anikó Gutási
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sabine E. Hammer
- Department of Pathobiology, Institute of Immunology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Mansour El-Matbouli
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Mona Saleh
- Department of Farm Animals and Veterinary Public Health, Division of Fish Health, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
19
|
Robinson NA, Robledo D, Sveen L, Daniels RR, Krasnov A, Coates A, Jin YH, Barrett LT, Lillehammer M, Kettunen AH, Phillips BL, Dempster T, Doeschl‐Wilson A, Samsing F, Difford G, Salisbury S, Gjerde B, Haugen J, Burgerhout E, Dagnachew BS, Kurian D, Fast MD, Rye M, Salazar M, Bron JE, Monaghan SJ, Jacq C, Birkett M, Browman HI, Skiftesvik AB, Fields DM, Selander E, Bui S, Sonesson A, Skugor S, Østbye TK, Houston RD. Applying genetic technologies to combat infectious diseases in aquaculture. REVIEWS IN AQUACULTURE 2023; 15:491-535. [PMID: 38504717 PMCID: PMC10946606 DOI: 10.1111/raq.12733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 03/21/2024]
Abstract
Disease and parasitism cause major welfare, environmental and economic concerns for global aquaculture. In this review, we examine the status and potential of technologies that exploit genetic variation in host resistance to tackle this problem. We argue that there is an urgent need to improve understanding of the genetic mechanisms involved, leading to the development of tools that can be applied to boost host resistance and reduce the disease burden. We draw on two pressing global disease problems as case studies-sea lice infestations in salmonids and white spot syndrome in shrimp. We review how the latest genetic technologies can be capitalised upon to determine the mechanisms underlying inter- and intra-species variation in pathogen/parasite resistance, and how the derived knowledge could be applied to boost disease resistance using selective breeding, gene editing and/or with targeted feed treatments and vaccines. Gene editing brings novel opportunities, but also implementation and dissemination challenges, and necessitates new protocols to integrate the technology into aquaculture breeding programmes. There is also an ongoing need to minimise risks of disease agents evolving to overcome genetic improvements to host resistance, and insights from epidemiological and evolutionary models of pathogen infestation in wild and cultured host populations are explored. Ethical issues around the different approaches for achieving genetic resistance are discussed. Application of genetic technologies and approaches has potential to improve fundamental knowledge of mechanisms affecting genetic resistance and provide effective pathways for implementation that could lead to more resistant aquaculture stocks, transforming global aquaculture.
Collapse
Affiliation(s)
- Nicholas A. Robinson
- Nofima ASTromsøNorway
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | - Andrew Coates
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Luke T. Barrett
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | - Ben L. Phillips
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory—Temperate and Tropical (SALTT)School of BioSciences, The University of MelbourneMelbourneVictoriaAustralia
| | - Andrea Doeschl‐Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Francisca Samsing
- Sydney School of Veterinary ScienceThe University of SydneyCamdenAustralia
| | | | - Sarah Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | | | | | | | | | - Dominic Kurian
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghEdinburghUK
| | - Mark D. Fast
- Atlantic Veterinary CollegeThe University of Prince Edward IslandCharlottetownPrince Edward IslandCanada
| | | | | | - James E. Bron
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Sean J. Monaghan
- Institute of AquacultureUniversity of StirlingStirlingScotlandUK
| | - Celeste Jacq
- Blue Analytics, Kong Christian Frederiks Plass 3BergenNorway
| | | | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Ecosystem Acoustics GroupTromsøNorway
| | | | - Erik Selander
- Department of Marine SciencesUniversity of GothenburgGothenburgSweden
| | - Samantha Bui
- Institute of Marine Research, Matre Research StationMatredalNorway
| | | | | | | | | |
Collapse
|
20
|
Yu P, Wang Y, Li Z, Jin H, Li LL, Han X, Wang ZW, Yang XL, Li XY, Zhang XJ, Zhou L, Gui JF. Causal gene identification and desirable trait recreation in goldfish. SCIENCE CHINA LIFE SCIENCES 2022; 65:2341-2353. [DOI: 10.1007/s11427-022-2194-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
|
21
|
Murakami Y, Ando M, Futamata R, Horibe T, Ueda K, Kinoshita M, Kobayashi T. Targeted deletion of ecto-5'-nucleotidase results in retention of inosine monophosphate content in postmortem muscle of medaka (Oryzias latipes). Sci Rep 2022; 12:18588. [PMID: 36329230 PMCID: PMC9633828 DOI: 10.1038/s41598-022-22029-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Inosine monophosphate (IMP) is an important indicator of meat freshness and contributes to its umami taste. An attractive strategy for enhancing umami is to suppress the IMP-degrading activity and increase the IMP content in the skeletal muscle through genome editing technology using the CRISPR-Cas9 system. However, the molecular mechanisms underlying IMP degradation remain unclear. We cloned two ecto-5'-nucleotidase genes, designated as ecto-5'-nucleotidase-a (nt5ea) and ecto-5'-nucleotidase-b (nt5eb), from medaka (Oryzias latipes), a vertebrate model organism. Expression analysis using embryos showed that nt5ea or nt5eb overexpression remarkably upregulated IMP degradation, and that the IMP-degrading activity was higher in Nt5ea than in Nt5eb. Furthermore, we established frame-shifted or large deletion (lacking nt5ea or nt5eb locus) mutant strains and assayed the effects of gene disruptions on the amount of IMP in skeletal muscle. The nt5ea-deficient medaka showed considerable higher levels of IMP at 48 h postmortem than did the wild-type fish. The nt5eb mutants also exhibited higher IMP contents than that in the wild types, but the increase was less than that in the nt5ea mutants. Our results demonstrated that nt5e is an important regulator of IMP levels in skeletal muscle and that its loss of function was effective in maintaining IMP content.
Collapse
Affiliation(s)
- Yu Murakami
- grid.258622.90000 0004 1936 9967Department of Fisheries, Graduate School of Agriculture, Kindai University, Nakamachi 3327-204, Nara, 631-8505 Japan
| | - Masashi Ando
- grid.258622.90000 0004 1936 9967Department of Fisheries, Graduate School of Agriculture, Kindai University, Nakamachi 3327-204, Nara, 631-8505 Japan
| | - Ryota Futamata
- grid.258799.80000 0004 0372 2033Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Tomohisa Horibe
- grid.419056.f0000 0004 1793 2541Department of Medical-Bioscience, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829 Japan
| | - Kazumitsu Ueda
- grid.258799.80000 0004 0372 2033Institute for Integrated Cell-Material Sciences (WPI-iCeMS), KUIAS, Kyoto University, Kyoto, 606-8501 Japan
| | - Masato Kinoshita
- grid.258799.80000 0004 0372 2033Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Toru Kobayashi
- grid.258622.90000 0004 1936 9967Department of Fisheries, Graduate School of Agriculture, Kindai University, Nakamachi 3327-204, Nara, 631-8505 Japan
| |
Collapse
|
22
|
Ferdous MA, Islam SI, Habib N, Almehmadi M, Allahyani M, Alsaiari AA, Shafie A. CRISPR-Cas Genome Editing Technique for Fish Disease Management: Current Study and Future Perspective. Microorganisms 2022; 10:2012. [PMID: 36296288 PMCID: PMC9610719 DOI: 10.3390/microorganisms10102012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Scientists have discovered many ways to treat bacteria, viruses, and parasites in aquaculture; however, there is still an impossibility in finding a permanent solution for all types of diseases. In that case, the CRISPR-Cas genome-editing technique can be the potential solution to preventing diseases for aquaculture sustainability. CRISPR-Cas is cheaper, easier, and more precise than the other existing genome-editing technologies and can be used as a new disease treatment tool to solve the far-reaching challenges in aquaculture. This technique may now be employed in novel ways, such as modifying a single nucleotide base or tagging a location in the DNA with a fluorescent protein. This review paper provides an informative discussion on adopting CRISPR technology in aquaculture disease management. Starting with the basic knowledge of CRISPR technology and phages, this study highlights the development of RNA-guided immunity to combat the Chilodonella protozoan group and nervous necrosis virus (NNV) in marine finfish. Additionally, we highlight the immunological application of CRISPR-Cas against bacterial diseases in channel catfish and the white spot syndrome virus (WSSV) in shrimp. In addition, the review summarizes a synthesis of bioinformatics tools used for CRISPR-Cas sgRNA design, and acceptable solutions are discussed, considering the limitations.
Collapse
Affiliation(s)
- Md. Akib Ferdous
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Sk Injamamul Islam
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- The International Graduate Program of Veterinary Science and Technology (VST), Department of Veterinary Microbiology, Faculty of Veterinary Science and Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nasim Habib
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
23
|
Ryu JH, Xu L, Wong TT. Advantages, Factors, Obstacles, Potential Solutions, and Recent Advances of Fish Germ Cell Transplantation for Aquaculture-A Practical Review. Animals (Basel) 2022; 12:ani12040423. [PMID: 35203131 PMCID: PMC8868515 DOI: 10.3390/ani12040423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This review aims to provide practical information and viewpoints regarding fish germ cell transplantation for enhancing its commercial applications. We reviewed and summarized the data from more than 70 important studies and described the advantages, obstacles, recent advances, and future perspectives of fish germ cell transplantation. We concluded and proposed the critical factors for achieving better success and various options for germ cell transplantation with their pros and cons. Additionally, we discussed why this technology has not actively been utilized for commercial purposes, what barriers need to be overcome, and what potential solutions can advance its applications in aquaculture. Abstract Germ cell transplantation technology enables surrogate offspring production in fish. This technology has been expected to mitigate reproductive barriers, such as long generation time, limited fecundity, and complex broodstock management, enhancing seed production and productivity in aquaculture. Many studies of germ cell transplantation in various fish species have been reported over a few decades. So far, surrogate offspring production has been achieved in many commercial species. In addition, the knowledge of fish germ cell biology and the related technologies that can enhance transplantation efficiency and productivity has been developed. Nevertheless, the commercial application of this technology still seems to lag behind, indicating that the established models are neither beneficial nor cost-effective enough to attract potential commercial users of this technology. Furthermore, there are existing bottlenecks in practical aspects such as impractical shortening of generation time, shortage of donor cells with limited resources, low efficiency, and unsuccessful surrogate offspring production in some fish species. These obstacles need to be overcome through further technology developments. Thus, we thoroughly reviewed the studies on fish germ cell transplantation reported to date, focusing on the practicality, and proposed potential solutions and future perspectives.
Collapse
|