1
|
Meinert C, Weekes A, Chang CW, Schrobback K, Gelmi A, Stevens MM, Hutmacher DW, Klein TJ. Crosslinking substrate regulates frictional properties of tissue-engineered cartilage and chondrocyte response to loading. COMMUNICATIONS MATERIALS 2025; 6:55. [PMID: 40162094 PMCID: PMC11949837 DOI: 10.1038/s43246-025-00781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/14/2025] [Indexed: 04/02/2025]
Abstract
Hydrogels are frequently used in regenerative medicine due to their hydrated, tissue-compatible nature, and tuneable mechanics. While many strategies enable bulk mechanical modulation, little attention is given to tuning surface tribology, and its impact on cellular behavior under mechanical stimuli. Here, we demonstrate that photocrosslinking hydrogels on hydrophobic substrates leads to significant, long-lasting reductions in surface friction, ideal for cartilage tissue regeneration. Gelatin methacryloyl and hyaluronic acid methacrylate hydrogels photocrosslinked on polytetrafluoroethylene possess more hydrated, lubricious surfaces, with lower friction coefficients and crosslinking densities than those crosslinked on glass. This facilitated self-lubrication via water exudation, limiting shear during biaxial stimulation. When subject to intermittent biaxial loading mimicking joint movement, low-friction chondrocyte-laden neo-tissues formed superior hyaline cartilage, confirming the benefits of reduced friction on tissue development. Finally, in situ photocrosslinking enabled precise hydrogel formation in a full-thickness cartilage defect, highlighting the clinical potential and emphasizing the importance of crosslinking substrate in regenerative medicine.
Collapse
Affiliation(s)
- Christoph Meinert
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD Australia
- Gelomics Pty Ltd., Brisbane, QLD Australia
| | - Angus Weekes
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), Brisbane, QLD Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD Australia
| | - Chun-Wei Chang
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), Brisbane, QLD Australia
| | - Karsten Schrobback
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD Australia
| | - Amy Gelmi
- Department of Materials, Imperial College London, London, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, UK
- Department of Bioengineering, Imperial College London, London, UK
- Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Dietmar W. Hutmacher
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), Brisbane, QLD Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD Australia
| | - Travis J. Klein
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD Australia
| |
Collapse
|
2
|
Mangolini F, Espinosa-Marzal RM, Nalam PC, Ruths M. Pioneers in Applied and Fundamental Interfacial Chemistry (PAFIC): Nicholas D. Spencer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4403-4409. [PMID: 39995303 DOI: 10.1021/acs.langmuir.5c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Affiliation(s)
- Filippo Mangolini
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rosa M Espinosa-Marzal
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Prathima C Nalam
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260, United States
| | - Marina Ruths
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
3
|
Al Kindi A, Courelli NS, Ogbonna K, Urueña JM, Chau AL, Pitenis AA. Bioinspired Lubricity from Surface Gel Layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9926-9933. [PMID: 38683632 PMCID: PMC11100014 DOI: 10.1021/acs.langmuir.3c03686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Surface gel layers on commercially available contact lenses have been shown to reduce frictional shear stresses and mitigate damage during sliding contact with fragile epithelial cell layers in vitro. Spencer and co-workers recently demonstrated that surface gel layers could arise from oxygen-inhibited free-radical polymerization. In this study, polyacrylamide hydrogel shell probes (7.5 wt % acrylamide, 0.3 wt % N,N'-methylenebisacrylamide) were polymerized in three hemispherical molds listed in order of decreasing surface energy and increasing oxygen permeability: borosilicate glass, polyether ether ketone (PEEK), and polytetrafluoroethylene (PTFE). Hydrogel probes polymerized in PEEK and PTFE molds exhibited 100× lower elastic moduli at the surface (E PEEK * = 80 ± 31 and E PTFE * = 106 ± 26 Pa, respectively) than those polymerized in glass molds (E glass * = 31,560 ± 1,570 Pa), in agreement with previous investigations by Spencer and co-workers. Biotribological experiments revealed that hydrogel probes with surface gel layers reduced frictional shear stresses against cells (τPEEK = 35 ± 15 and τPTFE = 22 ± 16 Pa) more than those without (τglass = 68 ± 15 Pa) and offered greater protection against cell damage when sliding against human telomerase-immortalized corneal epithelial (hTCEpi) cell monolayers. Our work demonstrates that the "mold effect" resulting in oxygen-inhibition polymerization creates hydrogels with surface gel layers that reduce shear stresses in sliding contact with cell monolayers, similar to the protection offered by gradient mucin gel networks across epithelial cell layers.
Collapse
Affiliation(s)
- Ahmed Al Kindi
- Department
of Mechanical Engineering, University of
California, Santa
Barbara, California 93106, United States
| | - Nemea S. Courelli
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kevin Ogbonna
- College
of Creative Studies, Biological Sciences, University of California, Santa
Barbara, California 93106, United States
| | - Juan Manuel Urueña
- NSF
BioPACIFIC Materials Innovation Platform, University of California, Santa
Barbara, California 93106, United States
| | - Allison L. Chau
- Materials
Department, University of California, Santa Barbara, California 93106, United States
| | - Angela A. Pitenis
- Materials
Department, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
4
|
O'Bryan CS, Ni Y, Taylor CR, Angelini TE, Schulze KD. Collagen Networks under Indentation and Compression Behave Like Cellular Solids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4228-4235. [PMID: 38357880 DOI: 10.1021/acs.langmuir.3c03357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Simple synthetic and natural hydrogels can be formulated to have elastic moduli that match biological tissues, leading to their widespread application as model systems for tissue engineering, medical device development, and drug delivery vehicles. However, two different hydrogels having the same elastic modulus but differing in microstructure or nanostructure can exhibit drastically different mechanical responses, including their poroelasticity, lubricity, and load bearing capabilities. Here, we investigate the mechanical response of collagen-1 networks to local and bulk compressive loads. We compare these results to the behavior of polyacrylamide, a fundamentally different class of hydrogel network consisting of flexible polymer chains. We find that the high bending rigidity of collagen fibers, which suppresses entropic bending fluctuations and osmotic pressure, facilitates the bulk compression of collagen networks under infinitesimal applied stress. These results are fundamentally different from the behavior of flexible polymer networks in which the entropic thermal fluctuations of the polymer chains result in an osmotic pressure that must first be overcome before bulk compression can occur. Furthermore, we observe minimal transverse strain during the axial loading of collagen networks, a behavior reminiscent of open-celled cellular solids. Inspired by these results, we applied mechanical models of cellular solids to predict the elastic moduli of the collagen networks and found agreement with the moduli values measured through contact indentation. Collectively, these results suggest that unlike flexible polymer networks that are often considered incompressible, collagen hydrogels behave like rigid porous solids that volumetrically compress and expel water rather than spreading laterally under applied normal loads.
Collapse
Affiliation(s)
- Christopher S O'Bryan
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Yongliang Ni
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Curtis R Taylor
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Thomas E Angelini
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32603, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Kyle D Schulze
- Department of Mechanical Engineering, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
5
|
Chau A, Edwards CER, Helgeson ME, Pitenis AA. Designing Superlubricious Hydrogels from Spontaneous Peroxidation Gradients. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43075-43086. [PMID: 37650860 PMCID: PMC10510045 DOI: 10.1021/acsami.3c04636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Hydrogels are hydrated three-dimensional networks of hydrophilic polymers that are commonly used in the biomedical industry due to their mechanical and structural tunability, biocompatibility, and similar water content to biological tissues. The surface structure of hydrogels polymerized through free-radical polymerization can be modified by controlling environmental oxygen concentrations, leading to the formation of a polymer concentration gradient. In this work, 17.5 wt % polyacrylamide hydrogels are polymerized in low (0.01 mol % O2) and high (20 mol % O2) oxygen environments, and their mechanical and tribological properties are characterized through microindentation, nanoindentation, and tribological sliding experiments. Without significantly reducing the elastic modulus of the hydrogel (E* ≈ 200 kPa), we demonstrate an order of magnitude reduction in friction coefficient (from μ = 0.021 ± 0.006 to μ = 0.002 ± 0.001) by adjusting polymerization conditions (e.g., oxygen concentration). A quantitative analytical model based on polyacrylamide chemistry and kinetics was developed to estimate the thickness and structure of the monomer conversion gradient, termed the "surface gel layer". We find that polymerizing hydrogels at high oxygen concentrations leads to the formation of a preswollen surface gel layer that is approximately five times thicker (t ≈ 50 μm) and four times less concentrated (≈ 6% monomer conversion) at the surface prior to swelling compared to low oxygen environments (t ≈ 10 μm, ≈ 20% monomer conversion). Our model could be readily modified to predict the preswollen concentration profile of the polyacrylamide gel surface layer for any reaction conditions─monomer and initiator concentration, oxygen concentration, reaction time, and reaction media depth─or used to select conditions that correspond to a certain desired surface gel layer profile.
Collapse
Affiliation(s)
- Allison
L. Chau
- Materials
Department, University of California, Santa
Barbara, Santa
Barbara, California 93106, United States
- Materials
Research Laboratory, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
| | - Chelsea E. R. Edwards
- Materials
Research Laboratory, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
- Department
of Chemical Engineering, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
| | - Matthew E. Helgeson
- Materials
Research Laboratory, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
- Department
of Chemical Engineering, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
| | - Angela A. Pitenis
- Materials
Department, University of California, Santa
Barbara, Santa
Barbara, California 93106, United States
- Materials
Research Laboratory, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
6
|
Polymer brushes for friction control: Contributions of molecular simulations. Biointerphases 2023; 18:010801. [PMID: 36653299 DOI: 10.1116/6.0002310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
When polymer chains are grafted to solid surfaces at sufficiently high density, they form brushes that can modify the surface properties. In particular, polymer brushes are increasingly being used to reduce friction in water-lubricated systems close to the very low levels found in natural systems, such as synovial joints. New types of polymer brush are continually being developed to improve with lower friction and adhesion, as well as higher load-bearing capacities. To complement experimental studies, molecular simulations are increasingly being used to help to understand how polymer brushes reduce friction. In this paper, we review how molecular simulations of polymer brush friction have progressed from very simple coarse-grained models toward more detailed models that can capture the effects of brush topology and chemistry as well as electrostatic interactions for polyelectrolyte brushes. We pay particular attention to studies that have attempted to match experimental friction data of polymer brush bilayers to results obtained using molecular simulations. We also critically look at the remaining challenges and key limitations to overcome and propose future modifications that could potentially improve agreement with experimental studies, thus enabling molecular simulations to be used predictively to modify the brush structure for optimal friction reduction.
Collapse
|
7
|
Hasan MM, Johnson CL, Dunn AC. Soft Contact Mechanics with Gradient-Stiffness Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9454-9465. [PMID: 35895905 DOI: 10.1021/acs.langmuir.2c00296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The stiffness in the top surface of many biological entities like cornea or articular cartilage, as well as chemically cross-linked synthetic hydrogels, can be significantly lower or more compliant than the bulk. When such a heterogeneous surface comes into contact, the contacting load is distributed differently from typical contact models. The mechanical response under indentation loading of a surface with a gradient of stiffness is a complex, integrated response that necessarily includes the heterogeneity. In this work, we identify empirical contact models between a rigid indenter and gradient elastic surfaces by numerically simulating quasi-static indentation. Three key case studies revealed the specific ways in which (I) continuous gradients, (II) laminate-layer gradients, and (III) alternating gradients generate new contact mechanics at the shallow-depth limit. Validation of the simulation-generated models was done by micro- and nanoindentation experiments on polyacrylamide samples synthesized to have a softer gradient surface layer. The field of stress and stretch in the subsurface as visualized from the simulations also reveals that the gradient layers become confined, which pushes the stretch fields closer to the surface and radially outward. Thus, contact areas are larger than expected, and average contact pressures are lower than predicted by the Hertz model. The overall findings of this work are new contact models and the mechanisms by which they change. These models allow a more accurate interpretation of the plethora of indentation data on surface gradient soft matter (biological and synthetic) as well as a better prediction of the force response to gradient soft surfaces. This work provides examples of how gradient hydrogel surfaces control the subsurface stress distribution and loading response.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, 1206 W Green St., Urbana, Illinois 61801, United States
| | - Christopher L Johnson
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, 1206 W Green St., Urbana, Illinois 61801, United States
| | - Alison C Dunn
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, 1206 W Green St., Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Simič R, Mandal J, Zhang K, Spencer ND. Oxygen inhibition of free-radical polymerization is the dominant mechanism behind the "mold effect" on hydrogels. SOFT MATTER 2021; 17:6394-6403. [PMID: 34132302 PMCID: PMC8262556 DOI: 10.1039/d1sm00395j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/07/2021] [Indexed: 05/27/2023]
Abstract
Hydrogel surfaces are of great importance in numerous applications ranging from cell-growth studies and hydrogel-patch adhesion to catheter coatings and contact lenses. A common method to control the structure and mechanical/tribological properties of hydrogel surfaces is by synthesizing them in various mold materials, whose influence has been widely ascribed to their hydrophobicity. In this work, we examine possible mechanisms for this "mold effect" on the surface of hydrogels during polymerization. Our results for polyacrylamide gels clearly rule out the effect of mold hydrophobicity as well as any thermal-gradient effects during synthesis. We show unequivocally that oxygen diffuses out of certain molding materials and into the reaction mixture, thereby inhibiting free-radical polymerization in the vicinity of the molding interface. Removal of oxygen from the system results in homogeneously cross-linked hydrogel surfaces, irrespective of the substrate material used. Moreover, by varying the amount of oxygen at the surface of the polymerizing solutions using a permeable membrane we are able to tailor the surface structures and mechanical properties of PAAm, PEGDA and HEMA hydrogels in a controlled manner.
Collapse
Affiliation(s)
- Rok Simič
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Switzerland.
| | - Joydeb Mandal
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Switzerland.
| | - Kaihuan Zhang
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Switzerland.
| | - Nicholas D Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Switzerland.
| |
Collapse
|