1
|
Mhlongo LC, Kenyon P, Nsahlai IV. Effect of Acacia mearnsii forage or tannin extract on rumen dry matter and crude protein degradation. J Anim Physiol Anim Nutr (Berl) 2025; 109:22-29. [PMID: 39119695 PMCID: PMC11731477 DOI: 10.1111/jpn.14033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/01/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
This study investigated rumen degradation kinetics of dry matter (DM) and crude protein (CP) in compound feed with different tannin extract inclusions and Acacia mearnsi forage (AMF) relative to dairy feeds (perennial ryegrass+white clover mixture pasture, maize silage, lucerne hay and Themeda triandra hay). The compound feed had 0.75%, 1.5% and 3% tannins extract inclusions while the control was a commercial compound feed. Triplicates of each feed per incubation period were incubated in two fistulated Jersey cows for 0, 6, 24, 48, 72, 96 and 120 h, resulting in six replicates per feed. Tannin extract inclusions in compound feed only affected (p < 0.05) the (a) fraction, degradation rate and potential degradability (PD) for DM degradation, and affected (p < 0.05) the (a) and (b) fractions, as well as PD for CP degradation. The (a) fraction and degradation rate for DM degradation changed linearly (p < 0.05). The (a) fraction, PD and effective degradability (ED) of DM degradation changed quadratically (p < 0.05). Except for the degradation rate, the feed type affected (p < 0.05) the degradation parameters in both DM and CP degradations. For DM and CP degradations, (a) fraction was similarly the least in Themeda triandra hay and AMF but similarly the highest in maize silage, perennial ryegrass+white clover mixture pasture and lucerne hay. The (b) fraction was the least in AMF for both DM and CP degradations but the highest for pasture's DM degradation and similarly the highest in maize silage, lucerne hay and T. triandra hay for CP degradation. The PD was the least in AMF for both DM and CP degradations and similarly the highest in pasture DM but similarly the highest in perennial ryegrass+white clover mixture pasture, maize silage and lucerne hay for CP degradation. Furthermore, the ED was the lowest in AMF and the highest for perrenial ryegrass + white clover mixture pasture for DM degradation and same trend was observed for CP degradation whereby perrenial ryegrass + white clover mixture pasture, maize silage and lucerne had the highest ED. Digestible undegraded protein was the highest in AMF and similarly the least in dairy feeds. Tannin source inclusion in ruminant diets should be moderate to prevent rumen DM or CP degradation limitation.
Collapse
Affiliation(s)
- Lindokuhle C. Mhlongo
- Department of Animal ScienceUniversity of the Free StateBloemfonteinSouth Africa
- Department of Animal and Poultry ScienceUniversity of KwaZulu‐NatalScottsvillePietermaritzburgSouth Africa
| | - Piers Kenyon
- Ntlangwini Makhoba Farming (Pty) Ltd, Makhoba LandSwartbergSouth Africa
| | - Ignatius V. Nsahlai
- Department of Animal and Poultry ScienceUniversity of KwaZulu‐NatalScottsvillePietermaritzburgSouth Africa
| |
Collapse
|
2
|
Araiza Ponce KA, Gurrola Reyes JN, Martínez Estrada SC, Salas Pacheco JM, Palacios Torres J, Murillo Ortiz M. Fermentation Patterns, Methane Production and Microbial Population under In Vitro Conditions from Two Unconventional Feed Resources Incorporated in Ruminant Diets. Animals (Basel) 2023; 13:2940. [PMID: 37760339 PMCID: PMC10525595 DOI: 10.3390/ani13182940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, four experimental treatments were evaluated: (T1) alfalfa hay + concentrate, (50:50%, DM); (T2) alfalfa hay + Leucaena leucocephala + concentrate, (30:20:50%, DM); (T3) alfalfa hay + prickly pear + concentrate, (30:20:50%, DM); and (T4) alfalfa hay + Leucaena leucocephala + prickly pear + concentrate, (30:10:10:50%, DM). NH3-N concentrations in T2 and T4 decreased when replaced with alfalfa hay in 20 and 10%, respectively. Treatments did not affect the concentration of total volatile fatty acids (TVFA) between T3 and T4 (p > 0.05), while the concentrations among T1 and T2 were different (p < 0.05). T2 showed a reduction of 25.5% in the methane production when compared to T1 (p < 0.05). The lowest concentrations of protozoa were observed in T2 and T4, which contained Leucaena leucocephala (T2) and Leucaena leucocephala + prickly pear (T4) (p < 0.05). The highest concentration of total methanogens was recorded in T1 and was different in T2, T3, and T4 (p < 0.05). Leucaena leucocephala, at an inclusion percentage of 20%, decreased the methane when compared to T1, whereas prickly pear increased methane production in relation to T1.
Collapse
Affiliation(s)
- Karina A. Araiza Ponce
- Faculty of Veterinary Medicine and Animal Science, Juarez University of the State of Durango, Durango 34126, Mexico; (K.A.A.P.); (J.P.T.)
| | - J. Natividad Gurrola Reyes
- Interdisciplinary Research Center for Integral Regional Development, National Polytechnic Institute, Durango Unit, Durango 34126, Mexico; (J.N.G.R.); (S.C.M.E.)
| | - Sandra C. Martínez Estrada
- Interdisciplinary Research Center for Integral Regional Development, National Polytechnic Institute, Durango Unit, Durango 34126, Mexico; (J.N.G.R.); (S.C.M.E.)
| | - José M. Salas Pacheco
- Scientific Research Institute, Juarez University of the State of Durango, Durango 34126, Mexico;
| | - Javier Palacios Torres
- Faculty of Veterinary Medicine and Animal Science, Juarez University of the State of Durango, Durango 34126, Mexico; (K.A.A.P.); (J.P.T.)
| | - Manuel Murillo Ortiz
- Faculty of Veterinary Medicine and Animal Science, Juarez University of the State of Durango, Durango 34126, Mexico; (K.A.A.P.); (J.P.T.)
| |
Collapse
|
3
|
Acosta-Lozano N, Barros-Rodríguez M, Guishca-Cunuhay C, Andrade-Yucailla V, Contreras-Barros K, Sandoval-Castro C, Elghandour MMMY, Zeidan Mohamed Salem A. Potential Effect of Dietary Supplementation of Tannin-Rich Forage on Mitigation of Greenhouse Gas Production, Defaunation and Rumen Function. Vet Sci 2023; 10:467. [PMID: 37505871 PMCID: PMC10383649 DOI: 10.3390/vetsci10070467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/20/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
This experiment evaluated the effect of including Acacia mearnsii leaves in a high-fiber diet (corn stover), on ruminal degradation kinetics, digestibility, microbial biomass production, and gas, CH4, and CO2 production. Four experimental diets were tested, including a control with 100% corn stover (T1), and three additional diets with corn stover supplemented at 15% A. mearnsii leaves (T2), 30% A. mearnsii leaves (T3) and 45% of A. mearnsii leaves (T4). The highest dry matter in situ degradation (p ≤ 0.001) and in vitro digestibility (p ≤ 0.001) was found in T1 (80.6 and 53.4%, respectively) and T2 (76.4 and 49.6%, respectively) diets. A higher population of holotrich and entodiniomorph ruminal protozoa was found (p = 0.0001) in T1 at 12 and 24 h. Diets of T1 and T2 promoted a higher (p = 0.0001) microbial protein production (314.5 and 321.1 mg/0.5 g DM, respectively). Furthermore, a lower amount of CH4 was found (p < 0.05) with T2, T3 and T4. It is concluded that it is possible to supplement up to 15% of A. mearnsii leaves (30.5 g TC/kg DM) in ruminant's diets. This decreased the population of protozoa (holotrich and entodiniomorph) as well as the CH4 production by 35.8 and 18.5%, respectively, without generating adverse effects on the ruminal degradation kinetics, nutrient digestibility and microbial protein production.
Collapse
Affiliation(s)
- Néstor Acosta-Lozano
- Centro de Investigaciones Agropecuarias, Facultad de Ciencias Agrarias, Universidad Estatal Península de Santa Elena, La Libertad 240204, Ecuador
| | - Marcos Barros-Rodríguez
- Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato, Sector el Tambo-La Universidad, vía a Quero, Cevallos 1801334, Ecuador
- Department of Animal Nutrition and Rumen Biotechnology, Ruminant Feedlot Ranch-PROCESA, Street Playita-Estero Hondo, La Mana 050202, Ecuador
| | - Carlos Guishca-Cunuhay
- Department of Animal Nutrition and Rumen Biotechnology, Ruminant Feedlot Ranch-PROCESA, Street Playita-Estero Hondo, La Mana 050202, Ecuador
| | - Veronica Andrade-Yucailla
- Centro de Investigaciones Agropecuarias, Facultad de Ciencias Agrarias, Universidad Estatal Península de Santa Elena, La Libertad 240204, Ecuador
| | - Katherine Contreras-Barros
- Facultad de Ciencias Biológicas, Universidad Central del Ecuador, Campus El Dorado-Itchimbía, Quito 170403, Ecuador
| | - Carlos Sandoval-Castro
- Departamento de Nutrición Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Carretera Mérida-Xmatkuil Km. 15.5. Apdo. 4-116 Itzimná, Mérida 97100, Mexico
| | | | | |
Collapse
|
4
|
Rumen Function and In Vitro Gas Production of Diets Influenced by Two Levels of Tannin-Rich Forage. FERMENTATION 2022. [DOI: 10.3390/fermentation8110607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The aim of this research was to evaluate the effect of the inclusion of Acacia mearnsii (AM) at different levels of inclusion on ruminal digestion and in vitro gas production. A. mearnsii forage was incorporated in the diet at different levels of 0 (AM0), 20 (AM20), and 40 (AM40) %. In situ degradation of dry matter (DM) and organic matter (OM) showed differences between treatments (P < 0.05), obtaining the highest value of the degradation of soluble fraction (A), insoluble but potentially degradable fraction (B), degradation rate in % per hour (c), potential degradation (A + B), and effective degradation for all passage rates in % h (0.02, 0.05, and 0.08) in AM0 with respect to AM20 and AM40. The in vitro digestibility of DM and OM was higher (P < 0.05) in AM0 with approximately 23.6% and 22.8% of DM and OM, respectively, compared to treatments AM20 and AM40. Cumulative gas production (PG) and gas production asymptote (B) were lower at AM0 and AM20 versus AM40; however, gas production rate (c) and total CH4 production were lower at AM40 with about 40.1 mL CH4/0.500 g fermented DM versus AM0 and AM20. Under the conditions of this study, it is concluded that the incorporation of A. mearnsii (20% and 40%) in the feed of ruminants negatively affected the digestion of nutrients; however, it reduced the production of CH4, which may be associated with the low activity of microorganisms toward the substrate due to the possible tannin/nutrient complex. This shows that in animals with little history of consuming plants rich in tannin, more than 3% of tannin could not be incorporated into the diet.
Collapse
|
5
|
Vargas-Ortiz L, Andrade-Yucailla V, Barros-Rodríguez M, Lima-Orozco R, Macías-Rodríguez E, Contreras-Barros K, Guishca-Cunuhay C. Influence of Acacia Mearnsii Fodder on Rumen Digestion and Mitigation of Greenhouse Gas Production. Animals (Basel) 2022; 12:2250. [PMID: 36077970 PMCID: PMC9454763 DOI: 10.3390/ani12172250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years, the worrying generation of GHG from ruminant production has generated widespread interest in exploring nutritional strategies focused on reducing these gases, presenting the use of bioactive compounds (tannins) as an alternative in the diet. The aim of this research was to determine the effect of the addition of different levels of Acacia mearnsii on ruminal degradation, nutrient digestibility, and mitigation of greenhouse gas production. A completely randomized design with four treatments and six repetitions was used. The treatments were: T1, T2, T3, and T4 diets with, respectively, 0%, 20%, 40%, and 60% A. mearnsii. The rumen degradation kinetic and in vitro digestibility, and the production of gas, CH4, and CO2 were evaluated. In situ rumen degradation and in vitro digestibility of DM and OM showed differences between treatments, with T1 being higher (p < 0.05) in the degradation of the soluble fraction (A), potential degradation (A + B), and effective degradation for the different passage rates in percent hour (0.02, 0.05, and 0.08), compared to the other treatments. Rumen pH did not show differences (p > 0.05) between treatments. The lowest (p < 0.05) gas, CH4, and CO2 production was observed in treatments T1 and T2 with an approximate mean of 354.5 mL gas/0.500 g fermented DM, 36.5 mL CH4/0.500 g fermented DM, and 151.5 mL CO2/0.500 g fermented DM, respectively, compared to treatments T3 and T4. Under the conditions of this study, it was concluded that it is possible to replace traditional forages with up to 20% of A. mearnsii, without observing changes in the production of greenhouse gases with respect to the control treatment (0% of A. mearnsii); however, A. mearnsii is not usable because it significantly decreases rumen degradability of DM and OM, which would considerably affect the production in animals.
Collapse
Affiliation(s)
- Luis Vargas-Ortiz
- Departamento de Producción Animal, Instituto Superior Tecnológico Benjamín Araujo, Patate 180403, Ecuador
- Centro de Investigaciones Agropecuarias, Universidad Central “Marta Abreu” de Las Villas, Santa Clara 50100, Cuba
| | - Veronica Andrade-Yucailla
- Centro de Investigaciones Agropecuarias, Facultad de Ciencias Agrarias, Universidad Estatal Península de Santa Elena, La Libertad 240204, Ecuador
| | - Marcos Barros-Rodríguez
- Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato, Sector el Tambo-La Universidad, vía a Quero, Cevallos 1801334, Ecuador
| | - Raciel Lima-Orozco
- Centro de Investigaciones Agropecuarias, Universidad Central “Marta Abreu” de Las Villas, Santa Clara 50100, Cuba
| | - Edis Macías-Rodríguez
- Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Portoviejo 130701, Ecuador
| | - Katherine Contreras-Barros
- Facultad de Ciencias Biológicas, Universidad Central del Ecuador, Campus El Dorado-Itchimbía, Quito 170403, Ecuador
| | - Carlos Guishca-Cunuhay
- Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato, Sector el Tambo-La Universidad, vía a Quero, Cevallos 1801334, Ecuador
| |
Collapse
|
6
|
Uushona T, Chikwanha O, Katiyatiya C, Tayengwa T, Strydom P, Mapiye C. Ruminant meat production and quality enhancement, nematode suppression and greenhouse gas emission mitigation: A sustainable paradigm for valorisation of Acacia leaves. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2021.115187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
7
|
Aragadvay-Yungán RG, Barros-Rodríguez M, Ortiz L, Carro MD, Navarro Marcos C, Elghandour MMMY, Salem AZM. Mitigation of ruminal methane production with enhancing the fermentation by supplementation of different tropical forage legumes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3438-3445. [PMID: 34387819 DOI: 10.1007/s11356-021-15749-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The aim of this research was to evaluate the influence of forage species adapted to the tropical region of Ecuador on gas production, enteric methane, digestion, and ruminal fermentation. The tree forage evaluated were C. arborea, E. fusca, B. forficata, E. poeppigiana, C. argentea, G. sepium, C. tora, and F. macrophylla. Ruminal fluid of four adult sheep fistulated with permanent cannulas in the rumen was used in the in vitro gas production technique. The in vitro gas production parameters were lower (P < 0.05) in the C. arborea (A = 41.68 mL gas/g DM, c = 0.044%/h and Lag = 1.654 h) and the average gas production rate for B. forficata was 1.017 mL/h (P < 0.05). C. arborea presented higher (P = 0.0001) effective degradation and real DM digestibility (40.461 g/kg and 82.51 mg/g, respectively). With respect to VFA, the highest (P < 0.05) proportion of acetic, propionic, and butyric was observed in C. arborea, G. sepium, and E. poeppigiana (72.52, 23.09, and 7.44 mol/100 mol, respectively) and the lowest (P = 0.0001) ratio: acetic/propionic was observed in G. sepium (2.92 mol/100 mol). The content of NH3-N (mg/L) showed no difference. The lowest (P = 0.0001) methane production was observed in C. arborea (1.23 mL CH4/g DM). The use of forage species of tropical climate rich in secondary metabolites in ruminant diets has the capacity to reduce the gas production and enteric methane; however, this is at the expense of the reduction of the fermentation of organic matter in the rumen.
Collapse
Affiliation(s)
- Ramón Gonzalo Aragadvay-Yungán
- Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato, Sector el Tambo-La Universidad, Vía a Quero, 1801334, Cevallos, Ambato, Ecuador
| | - Marcos Barros-Rodríguez
- Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato, Sector el Tambo-La Universidad, Vía a Quero, 1801334, Cevallos, Ambato, Ecuador.
| | - Luis Ortiz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Cuidad Universitaria, 28040, Madrid, Spain
| | - María Dolores Carro
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agraria, Agroalimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| | - Carlos Navarro Marcos
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agraria, Agroalimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040, Madrid, Spain
| | | | | |
Collapse
|
8
|
Sarkar S, Mohini M, Sharma A, Tariq H, Pal RP. Effect of supplementing Leucaena leucocephala leaves alone or in conjunction with malic acid on nutrient utilization, performance traits, and enteric methane emission in crossbred calves under tropical conditions. Trop Anim Health Prod 2021; 53:514. [PMID: 34643791 DOI: 10.1007/s11250-021-02941-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Dietary strategies aiming at minimizing enteric methane (CH4) emission in ruminants are of practical interest from nutritional, economical, and environmental point of view. The present study evaluated the effects of supplementing Leucaena leucocephala leaves either alone or in conjunction with malic acid on nutrient utilization, growth performance, and enteric CH4 emission in crossbred cattle fed wheat straw and concentrate-based diet under tropical conditions. Eighteen crossbred (Karan-Fries) calves were randomly allocated into 3 groups: G-I (control)-fed wheat (Triticum aestivum) straw and concentrate mixture in the ratio 50:50; G-II-fed wheat straw, concentrate mixture, and Leucaena leucocephala leaves in the ratio 45:45:10; and (3) G-III-fed similar diet like G-II with an additional supplementation of 1% malic acid on dry matter intake basis. Experimental feeding spanning 90 days included a 7-day metabolism trial and CH4 quantification study by sulfur hexafluoride tracer technique. Results revealed no significant effect of dietary treatments on dry matter intake (DMI) and digestibility of nutrients, except neutral detergent fiber (NDF) digestibility which was 5.5% higher (P < 0.05) in G-III as compared to control. Further, nitrogen (N) metabolism, rumen microbial protein synthesis, and growth performance remained similar among the treatments. No significant effect was also observed for enteric CH4 emission (expressed as g/day and g/kg DMI) in calves supplemented with Leucaena leucocephala leaves and malic acid. Therefore, the present findings depict modest improvement in fiber digestibility with no encouraging effect in mitigating enteric CH4 in growing cattle calves by supplementing Leucaena leucocephala leaves alone or with malic acid within the selected levels.
Collapse
Affiliation(s)
- Srobana Sarkar
- Animal Nutrition Division, ICAR - National Dairy Research Institute, Karnal, Haryana, 132 001, India. .,ICAR - Central Sheep and Wool Research Institute, Rajasthan, 304 501, Avikanagar, India.
| | - Madhu Mohini
- Animal Nutrition Division, ICAR - National Dairy Research Institute, Karnal, Haryana, 132 001, India
| | - Amit Sharma
- Animal Nutrition Division, ICAR - National Dairy Research Institute, Karnal, Haryana, 132 001, India.,Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141 001, India
| | - Hujaz Tariq
- Animal Nutrition Division, ICAR - National Dairy Research Institute, Karnal, Haryana, 132 001, India
| | - Ravi Prakash Pal
- Animal Nutrition Division, ICAR - National Dairy Research Institute, Karnal, Haryana, 132 001, India
| |
Collapse
|
9
|
Mohammadabadi T, Chaji M, Direkvandi E, Alqaisi O. Effect of replacing alfalfa hay with Leucaena leucocephala (L. Leucocephala) leaves on in vitro gas production, digestibility and in situ degradability in buffalo. ACTA SCIENTIARUM: ANIMAL SCIENCES 2021. [DOI: 10.4025/actascianimsci.v43i1.52129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
. This study was performed to investigate the effect of replacing alfalfa hay by L. leucocephala leaves in proportions of 25, 50 and 100% on in vitro gas production (GP) parameter, digestibility and in situ degradability in buffalo. Results showed that the volume of GP at 2 to 12 hours after incubation was significantly affected by replacing alfalfa hay with L. leucocephala leaves. In vitro digestibility of organic matter (OMD) differed significantly between treatment as it declined by increasing the alfalfa hay substitution rate from 25 to 100%. The microbial crude protein (MCP) differed significantly between treatments and was the greatest of 589 and 599 mg g-1 of dry matter (DM) when L. leucocephala leaves replaced alfalfa hay at 25 and 50%. The in vitro digestibility of DM (IVDMD) increased significantly at 50% L. leucocephala replacement rate. Moreover, substituting alfalfa hay by L. leucocephala had a significant effect on the in situ degradability parameters. The insoluble but potentially degradable fraction (B) and potential of degradability (A+B) significantly increased for treatment contain 50% L. leucocephala leaves. The effective degradability (ED) was significantly different between dietary treatments and was the greatest when alfalfa hay was replaced by 25 and 50% L. leucocephala. In conclusion, L. leucocephala leaves can substitute 25 to 50% of dietary alfalfa hay in buffalo rations without effect on rumen efficiency.
Collapse
|
10
|
Air-Dried Brown Seaweed, Ascophyllum nodosum, Alters the Rumen Microbiome in a Manner That Changes Rumen Fermentation Profiles and Lowers the Prevalence of Foodborne Pathogens. mSphere 2018; 3:mSphere00017-18. [PMID: 29404417 PMCID: PMC5793039 DOI: 10.1128/msphere.00017-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 01/29/2023] Open
Abstract
Maintaining product safety and reducing the carbon footprint of production are two sustainability goals of the livestock industry. The objective of this study was to study the impact of Tasco, a product derived from the brown macroalga Ascophyllum nodosum, on the rumen microbiome and its function. The inclusion of Tasco altered both rumen and fecal microbiota levels without affecting rumen fermentation. Tasco reduced fecal Escherichia coli populations and specifically reduced the prevalence of Shiga toxin-producing E. coli O45, O103, O111, and O121 in feces. The findings of this study highlight the application of Tasco as a potential feed additive to reduce pathogen shedding in rams without interfering with ruminal metabolism. The use of Tasco (air-dried Ascophyllum nodosum) as a feed supplement for ruminants has been reported to affect rumen fermentation and reduce Escherichia coli O157:H7 shedding in feces, but the mode of action behind this phenomenon is unclear. In this study, the effects of four Tasco levels (0, 1, 3, and 5%) on rumen microbiota and rumen/fecal E. coli O serogroups in rams were investigated. Rumen total bacteria and archaea were linearly reduced (P < 0.001) and protozoa were linearly increased (P < 0.001) by increasing levels of Tasco. The relative abundances of seven bacterial species and one protozoal species differed among Tasco levels. With Tasco, 14 predicted metabolic pathways were enriched while only 3 were suppressed. A lower ruminal butyrate concentration is possibly associated with enrichment of the “butanoate metabolism” pathway in Tasco-fed rams. The ruminal total E. coli population was linearly reduced (P < 0.001) by Tasco. Supplementation with Tasco only completely eliminated O121 in the rumen and feces, and higher levels of Tasco (3 and 5%) reduced fecal shedding of serogroups O45, O103, and O111 even though these serogroups were present in the rumen. Our results suggest that Tasco effectively reduced pathogenic E. coli but had only minimal impacts on rumen fermentation in rams. IMPORTANCE Maintaining product safety and reducing the carbon footprint of production are two sustainability goals of the livestock industry. The objective of this study was to study the impact of Tasco, a product derived from the brown macroalga Ascophyllum nodosum, on the rumen microbiome and its function. The inclusion of Tasco altered both rumen and fecal microbiota levels without affecting rumen fermentation. Tasco reduced fecal Escherichia coli populations and specifically reduced the prevalence of Shiga toxin-producing E. coli O45, O103, O111, and O121 in feces. The findings of this study highlight the application of Tasco as a potential feed additive to reduce pathogen shedding in rams without interfering with ruminal metabolism.
Collapse
|
11
|
Mohammadabadi T, Jolazadeh A. Replacement of alfalfa hay (Medicago sativa L.) with subabul (Leucaena leucocephala) leaf meal in diets of Najdi goats: effect on digestion activity of rumen microorganisms. Trop Anim Health Prod 2017; 49:1309-1316. [PMID: 28608306 DOI: 10.1007/s11250-017-1330-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/31/2017] [Indexed: 11/30/2022]
Abstract
This study investigated the effect of replacing alfalfa hay by subabul leaf meal (SLM) on digestion, fermentation parameters and rumen bacteria and fungi activity of Najdi goats. Six Najdi goats (150 ± 15 days of age and initial body weight of 35 ± 1.1 kg) were randomly assigned to one of two dietary treatments in a balanced completely randomized design (three goats per treatment) for 56 days. Experimental treatments included alfalfa hay as control group and diet containing SLM (SLM replacing alfalfa hay at 50% level). Bacterial and fungi activity and rumen fermentation parameters of animals fed experimental diets were determined. Dry matter disappearance (DMD) was unaffected by replacing SLM with alfalfa hay for both rumen bacteria and fungi in different incubation times, except for 48 h of incubation in specific culture medium of mixed rumen bacteria, which decreased for SLM group (P > 0.05). NDF disappearance (NDFD) and ADF disappearance (ADFD) after 24 and 48 h of incubation in specific culture medium of mixed rumen bacteria was not affected by experimental diets (P > 0.05). However, 72 h after incubation, NDFD in SLM treatment decreased (P > 0.05). Gas production parameters of rumen bacteria were similar for both experimental diets, but partitioning factor (PF), efficiency microbial biomass production (EMBP), microbial protein production (MP), and organic matter truly digested (OMTD) decreased (p < 0.05) in specific culture medium of mixed rumen fungi for SLM diet. There was significant decrease in total protozoa population for diet containing SLM (p < 0.05). Results indicated that replacement of alfalfa hay by SLM had no major effect on rumen microorganisms' activity of Najdi goats, so it may be used as an alternative for alfalfa (at 50% level) in susceptible areas.
Collapse
Affiliation(s)
- Tahereh Mohammadabadi
- Department of Animal Science, Ramin Agriculture and Natural Resource University of Khouzestan, Mollasani, Khouzestan, 63517-73637, Iran.
| | - Alireza Jolazadeh
- Department of Animal Science, Ramin Agriculture and Natural Resource University of Khouzestan, Mollasani, Khouzestan, 63517-73637, Iran
| |
Collapse
|
12
|
Ribeiro RS, Terry SA, Sacramento JP, Silveira SRE, Bento CBP, da Silva EF, Mantovani HC, da Gama MAS, Pereira LGR, Tomich TR, Maurício RM, Chaves AV. Tithonia diversifolia as a Supplementary Feed for Dairy Cows. PLoS One 2016; 11:e0165751. [PMID: 27906983 PMCID: PMC5132235 DOI: 10.1371/journal.pone.0165751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/14/2016] [Indexed: 11/19/2022] Open
Abstract
The objective of this study was to examine the effects of Tithonia diversifolia as a supplementary forage on dairy cow performance and methane production. Nine lactating Holstein × Zebu dairy cows (519 ± 53.3 kg of body weight and 66 ± 13.3 d in milk) were paired by milk yield (21.3 ± 2.34 kg/d) and body weight and randomly assigned to three dietary treatments in a Latin square design with 21-d experimental periods (14 d for diet adaptation and 7 d for measurements and sample collection). The dietary treatments included the control diet consisting of fresh sugar cane plus concentrate (44:56, % of diet DM), and two treatment diets containing different levels of fresh T. diversifolia (6.5 and 15.4%, DM basis) which partially replaced both sugarcane and concentrates. Methane production was measured using the sulphur hexafluoride (SF6) technique from d 16 to d 21 of each experimental period. Analysis of the gas samples was performed by gas chromatography. The inclusion of T. diversifolia at 15.4% DM had no effects on DM intake, milk production, nitrogen balance or methane production. There was no effect on the concentrations of total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) in milk fat (P ≥ 0.28), though individual milk fatty acids were affected. Serum concentrations of glucose, urea nitrogen (BUN), triglycerides, β-hydroxybutyrate (BHBA), and cholesterol were unaffected by the dietary treatments (P ≥ 0.13). There was a time (2 and 6 h post-feeding) and dietary treatment effect (P < 0.01) on the acetate to propionate ratio in the rumen. A denaturing gradient gel electrophoresis analysis of the archaeal community showed distinct clustering of the archaea populations for control and treatment diets. Taken together, our results indicate the potential of T. diversifolia as a supplementary forage for dairy cattle in the tropics.
Collapse
Affiliation(s)
- Rafael Sandin Ribeiro
- Bioengineering Department, Universidade Federal de São João del-Rei, São João del-Rei, MG, Brazil
| | - Stephanie Amelia Terry
- The University of Sydney, Faculty of Veterinary Science, School of Life and Environmental Sciences, Sydney, NSW, Australia
| | - João Paulo Sacramento
- Bioengineering Department, Universidade Federal de São João del-Rei, São João del-Rei, MG, Brazil
| | - Sylvia Rocha e Silveira
- Bioengineering Department, Universidade Federal de São João del-Rei, São João del-Rei, MG, Brazil
| | | | | | | | | | | | | | - Rogério Martins Maurício
- Bioengineering Department, Universidade Federal de São João del-Rei, São João del-Rei, MG, Brazil
| | - Alexandre Vieira Chaves
- The University of Sydney, Faculty of Veterinary Science, School of Life and Environmental Sciences, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
13
|
The use of cassava leaf silage as a substitute for concentrate feed in sheep. Trop Anim Health Prod 2016; 48:1509-12. [DOI: 10.1007/s11250-016-1107-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
|
14
|
Oh J, Hristov AN. Effects of Plant-Derived Bio-Active Compounds on Rumen Fermentation, Nutrient Utilization, Immune Response, and Productivity of Ruminant Animals. ACS SYMPOSIUM SERIES 2016. [DOI: 10.1021/bk-2016-1218.ch011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- J. Oh
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - A. N. Hristov
- Department of Animal Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|