1
|
Meng X, Li Z, Zhang Y, Yu Y, WaGao, Wang W, Liu C. Establishment and application of a qPCR method for differential detection of Brucella S2 vaccine strain. BMC Vet Res 2025; 21:238. [PMID: 40176072 PMCID: PMC11963304 DOI: 10.1186/s12917-025-04635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/28/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Brucellosis is one of the most serious zoonotic bacterial diseases in the world. The disease has caused serious harm to people and livestock, hindered the healthy development of the breeding industry, and led to serious economic losses.At present, the prevention and control of this kind of disease is still based on vaccine immunization. However, after the widely used vaccine is inoculated to livestock, there is no widely used differential diagnosis method to distinguish vaccine immune antibodies from natural infection antibodies. Quarantine and purification work is difficult to carry out. In addition, there are few studies using real-time PCR(qPCR) methods in the differential diagnosis of natural virulent strains and vaccine strains of brucellosis.The purpose of this study is to establish a rapid, sensitive and accurate differential diagnosis method for Brucella S2 vaccine strain, and to solve the problem of lack of identification of Brucella S2 vaccine strain and natural virulent strain in clinical detection.It avoids the killing of some livestock due to the positive antibody of the Brucella S2 vaccine strain, and can also identify sick animals from immune herds, reducing the economic losses of farms, and providing certain technical support for the quarantine and purification of epidemic diseases. RESULTS In this study, combined with TaqMan probe-based qPCR technology, specific primers and probes were designed according to the specific deletion genes of the Brucella S2 vaccine strain,which could be used as marker genes.The qPCR and duplex qPCR detection methods of Brucella were successfully established.The method has good specificity, sensitivity and repeatability, the lowest limit of detection can reach 1 × 101 copies/μL, the sensitivity is about 100 times higher than that of conventional PCR, and there is no cross-reaction with Escherichia coli,Salmonella,streptococcus and other common strains.The coefficient of variation between groups was less than 0.6%, and the coefficient of variation within groups was less than 0.55%.Subsequently, this method was used to monitor the antibody levels in goat inoculated with different doses of Brucella S2 vaccine strain, and the method could also detect the corresponding nucleic acid signals in goat milk samples, and the clinical samples were detected. In summary, this method has good specificity, sensitivity and repeatability, and can be used for the differential diagnosis of clinical brucellosis. CONCLUSIONS This study successfully established a duplex qPCR detection method for the differential diagnosis of the Brucella S2 vaccine strain. From the establishment of the method to the clinical application of the method, it shows that the method can be used for the differential diagnosis of clinical brucellosis.
Collapse
Affiliation(s)
- Xianran Meng
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zheng Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yating Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Ordos Animal Disease Prevention and Control Center, Ordos, Inner Mongolia, China
| | - Yu Yu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - WaGao
- Hetao College and Inner Mongolia Key Laboratory of Tick-Borne Infectious Diseases, Bayannur, Inner Mongolia, China
| | - Wenlong Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| | - Chunxia Liu
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
2
|
Ma R, Li C, Gao A, Jiang N, Feng X, Li J, Hu W. Evidence-practice gap analysis in the role of tick in brucellosis transmission: a scoping review. Infect Dis Poverty 2024; 13:3. [PMID: 38191468 PMCID: PMC10773131 DOI: 10.1186/s40249-023-01170-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Brucellosis is a zoonotic affliction instigated by bacteria belonging to the genus Brucella and is characterized by a diverse range of pervasiveness, multiple transmission routes, and serious hazards. It is imperative to amalgamate the current knowledge and identify gaps pertaining to the role of ticks in brucellosis transmission. METHODS We systematically searched China National Knowledge Infrastructure (CNKI), WanFang, Google Scholar, and PubMed on the topic published until April 23, 2022. The procedure was performed in accordance with the Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines. The selected articles were categorized across three major topic areas, and the potential data was extracted to describe evidence-practice gaps by two reviewers. RESULTS The search identified 83 eligible studies for the final analyses. The results highlighted the potential capacity of ticks in brucellosis transmission as evidenced by the detection of Brucella in 16 different tick species. The pooled overall prevalence of Brucella in ticks was 33.87% (range: 0.00-87.80%). The review also revealed the capability of Brucella to circulate in parasitic ticks' different developmental stages, thus posing a potential threat to animal and human health. Empirical evidence from in vitro rodent infection experiments has revealed that ticks possess the capability to transmit Brucella to uninfected animals (range: 45.00-80.00%). Moreover, significant epidemiological associations have been found between the occurrence of brucellosis in animals and tick control in rangelands, which further suggests that ticks may serve as potential vectors for brucellosis transmission in ruminants. Notably, a mere three cases of human brucellosis resulting from potential tick bites were identified in search of global clinical case reports from 1963 to 2019. CONCLUSIONS It is imperative to improve the techniques used to identify Brucella in ticks, particularly by developing a novel, efficient, precise approach that can be applied in a field setting. Furthermore, due to the lack of adequate evidence of tick-borne brucellosis, it is essential to integrate various disciplines, including experimental animal science, epidemiology, molecular genetics, and others, to better understand the efficacy of tick-borne brucellosis. By amalgamating multiple disciplines, we can enhance our comprehension and proficiency in tackling tick-borne brucellosis.
Collapse
Affiliation(s)
- Rui Ma
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Chunfu Li
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ai Gao
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Na Jiang
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Xinyu Feng
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, China.
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, 20025, China.
| | - Jian Li
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
- Basic Medical College, Guangxi University of Chinese Medical, Nanning, 530005, Guangxi, China.
| | - Wei Hu
- School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
- Basic Medical College, Guangxi University of Chinese Medical, Nanning, 530005, Guangxi, China.
- Department of Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
3
|
Zhang T, Wang Y, Li Y, Qi T, Yue Z, Cao L, Zhou B, Jiao H. The outer membrane proteins based seroprevalence strategy for Brucella ovis natural infection in sheep. Front Cell Infect Microbiol 2023; 13:1189368. [PMID: 37389214 PMCID: PMC10302724 DOI: 10.3389/fcimb.2023.1189368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/10/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction The diagnosis of brucellosis largely relies on tiger red plate agglutination test (RBPT). However, it is difficult to distinguish between natural infection antibody positive and vaccination antibody positive, nevertheless, the identification of specific Brucella species natural infection. Methods Here, we analyzed the structure of main outer membrane proteins (OMPs), OMP25 and OMP31 from Brucella ovis (B. ovis) and Brucella melitensis (B. melitensis), which are the main pathogens of sheep brucellosis, and found the OMP25 and OMP31 could be used as the differential antigens for B. ovis and B. melitensis antibody. Then we expressed the OMP25 from B. ovis (OMP25o) and OMP31 from B. melitensis (OMP31m). Results They have equally efficiency in antibody detection of vaccinated sheep serum, consistent with the RBPT results. However, through epidemiological investigations, we found some RBPT positive samples were negative by the OMP31m based serum antibody detection, but these samples gave positive results by the OMP25o. We verified these OMP31m negative but OMP25o positive samples by B. ovis and B. melitensis specific primers based PCR detection, and all these samples were B. melitensis negative. However, four out of six samples are B. ovis positive. These results showed that we could use the OMP25o and OMP31m to diagnose sheep brucellosis antibody, especially to discriminate the infection of the B. ovis. Discussion Currently, China has not yet approved a vaccine based on B. ovis and B. ovis positive samples should be naturally infected. There should be some implicit transmission of B. ovis in Jilin province. Further epidemiological investigation should be conducted to monitor the B. ovis natural infection.
Collapse
Affiliation(s)
- Tao Zhang
- College of Animal Science, Jilin University, Changchun, China
| | - Yu Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Yin Li
- College of Animal Science, Jilin University, Changchun, China
| | - Tingting Qi
- College of Animal Science, Jilin University, Changchun, China
| | - Zhirong Yue
- College of Animal Science, Jilin University, Changchun, China
| | - Lili Cao
- Institute of Zoonosis, Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, China
| | - Bo Zhou
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, The Academy of Military Medical Sciences, Changchun, China
| | - Huping Jiao
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
4
|
Rossetti CA, Maurizio E, Rossi UA. Comparative Review of Brucellosis in Small Domestic Ruminants. Front Vet Sci 2022; 9:887671. [PMID: 35647101 PMCID: PMC9133814 DOI: 10.3389/fvets.2022.887671] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Brucella melitensis and Brucella ovis are the primary etiological agents of brucellosis in small domestic ruminants. B. melitensis was first isolated in 1887 by David Bruce in Malta Island from spleens of four soldiers, while B. ovis was originally isolated in Australia and New Zealand in early 1950's from ovine abortion and rams epididymitis. Today, both agents are distributed worldwide: B. melitensis remains endemic and associated with an extensive negative impact on the productivity of flocks in -some regions, and B. ovis is still present in most sheep-raising regions in the world. Despite being species of the same bacterial genus, B. melitensis and B. ovis have extensive differences in their cultural and biochemical characteristics (smooth vs. rough colonial phases, serum and CO2 dependence for in vitro growth, carbohydrate metabolism), host preference (female goat and sheep vs. rams), the outcome of infection (abortion vs. epididymitis), and their zoonotic potential. Some of these differences can be explained at the bacterial genomic level, but the role of the host genome in promoting or preventing interaction with pathogens is largely unknown. Diagnostic techniques and measures to prevent and control brucellosis in small ruminants vary, with B. melitensis having more available tools for detection and prevention than B. ovis. This review summarizes and analyzes current available information on: (1) the similarities and differences between these two etiological agents of brucellosis in small ruminants, (2) the outcomes after their interaction with different preferred hosts and current diagnostic methodologies, (3) the prevention and control measures, and (4) alerting animal producers about the disease and raise awareness in the research community for future innovative activities.
Collapse
Affiliation(s)
- Carlos Alberto Rossetti
- Instituto de Patobiología Veterinaria, Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), N. Repetto y de Los Reseros, Buenos Aires, Argentina
| | - Estefanía Maurizio
- Instituto de Patobiología Veterinaria, Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), N. Repetto y de Los Reseros, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (Conicet), Buenos Aires, Argentina
| | - Ursula Amaranta Rossi
- Instituto de Patobiología Veterinaria, Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), N. Repetto y de Los Reseros, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (Conicet), Buenos Aires, Argentina
| |
Collapse
|
5
|
Gangwar C, Kumaresan G, Mishra AK, Kumar A, Pachoori A, Saraswat S, Singh NP, Kharche SD. Molecular detection of important abortion-causing microorganisms in preputial swab of breeding bucks using PCR-based assays. Reprod Domest Anim 2020; 55:1520-1525. [PMID: 32794354 DOI: 10.1111/rda.13801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 11/29/2022]
Abstract
Infectious diseases and aetiological agents related to female reproductive systems were extensively covered compared to its male counterpart. There needs a proper study to bridge this gap, where microflora and infectious agents of both male and female reproductive are mutually intelligible. With this study, we aimed to evaluate the microbial contamination of the preputial cavity and also screened for abortion-causing agents which are zoonotic as well. In goats, such types of abortions are caused by Brucella melitensis, Chlamydophila, Campylobacter and Coxiella etc. One of the major sources of contamination of semen is the preputial cavity, which is exposed to the external environment leading to spread of infection into the female via semen straws or by natural service. In the current study, good quality bucks (n = 32, Barbari = 12, Jamunapari = 10, Jakhrana = 10) which were routinely used for semen collection were screened for their preputial swabs, for the presence of the above pathogens. For detection of Brucella melitensis, OMP31 based TaqMan® probe real-time PCR assay was used, and for Chlamydia, 16srRNA gene based SYBR® green real-time PCR assay was employed for detection of Chlamydophila abortus. While for Campylobacter spp. and Coxiella burnetii, 16srRNA gene based conventional PCR and Trans-PCR were used, respectively. In the current study, of the screened preputial swabs, none of them showed positive for Brucella and Coxiella, but of the screened 32 samples 17 showed positive for Chlamydia (53.13%) and two (6.25%) showed positive for Campylobacter spp. The current study emphasizes on the farms and laboratories which were regularly involved in screening of brucellosis also often overlook the other potential non-brucella pathogens, causing abortions eventually incurring severe economic losses to the goat keepers.
Collapse
Affiliation(s)
- Chetna Gangwar
- AP&R Division, ICAR- Central Institute for Research on Goats, Makhdoom, Farah, Mathura, India
| | - Gururaj Kumaresan
- Animal Health Division, ICAR- Central Institute for Research on Goats, Makhdoom, Farah, Mathura, India
| | - Anil Kumar Mishra
- Animal Health Division, ICAR- Central Institute for Research on Goats, Makhdoom, Farah, Mathura, India
| | - Anshuman Kumar
- Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences (FVAS), RGSC, Banaras Hindu University, Mathura, India
| | - Anjali Pachoori
- Animal Health Division, ICAR- Central Institute for Research on Goats, Makhdoom, Farah, Mathura, India
| | - Sonia Saraswat
- AP&R Division, ICAR- Central Institute for Research on Goats, Makhdoom, Farah, Mathura, India
| | - Narendra Pratap Singh
- Animal Health Division, ICAR- Central Institute for Research on Goats, Makhdoom, Farah, Mathura, India
| | - Suresh Dinkar Kharche
- AP&R Division, ICAR- Central Institute for Research on Goats, Makhdoom, Farah, Mathura, India.,Animal Genetics and Breeding, Faculty of Veterinary and Animal Sciences (FVAS), RGSC, Banaras Hindu University, Mathura, India
| |
Collapse
|
6
|
Zhao C, Xu W, Gao W. A real-time quantitative PCR based on molecular beacon for detecting Brucella infection. ARQ BRAS MED VET ZOO 2020. [DOI: 10.1590/1678-4162-11133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - W. Xu
- Southeast University, China
| | - W. Gao
- Southeast University, China
| |
Collapse
|
7
|
Rajagunalan S, Gururaj K, Lakshmikantan U, Murugan M, Ganesan A, Sundar A, Sureshkannan S, Andani D, Pawaiya RS. Detection of the presence of Coxiella burnetii in a case of goat abortion: a first report from India. Trop Anim Health Prod 2018; 51:983-986. [DOI: 10.1007/s11250-018-1756-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/11/2018] [Indexed: 10/27/2022]
|
8
|
Lusk Pfefer TS, Timme R, Kase JA. Identification of Brucella genus and eight Brucella species by Luminex bead-based suspension array. Food Microbiol 2018; 70:113-119. [DOI: 10.1016/j.fm.2017.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 11/25/2022]
|
9
|
A systematic review of current immunological tests for the diagnosis of cattle brucellosis. Prev Vet Med 2018; 151:57-72. [PMID: 29496108 DOI: 10.1016/j.prevetmed.2018.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022]
Abstract
Brucellosis is a worldwide extended zoonosis with a heavy economic and public health impact. Cattle, sheep and goats are infected by smooth Brucella abortus and Brucella melitensis, and represent a common source of the human disease. Brucellosis diagnosis in these animals is largely based on detection of a specific immunoresponse. We review here the immunological tests used for the diagnosis of cattle brucellosis. First, we discuss how the diagnostic sensitivity (DSe) and specificity (DSp), balance should be adjusted for brucellosis diagnosis, and the difficulties that brucellosis tests specifically present for the estimation of DSe/DSp in frequentistic (gold standard) and Bayesian analyses. Then, we present a systematic review (PubMed, GoogleScholar and CABdirect) of works (154 out of 991; years 1960-August 2017) identified (by title and Abstract content) as DSe and DSp studies of smooth lipopolysaccharide, O-polysaccharide-core, native hapten and protein diagnostic tests. We summarize data of gold standard studies (n = 23) complying with strict inclusion and exclusion criteria with regards to test methodology and definition of the animals studied (infected and S19 or RB51 vaccinated cattle, and Brucella-free cattle affected or not by false positive serological reactions). We also discuss some studies (smooth lipopolysaccharide tests, protein antibody and delayed type hypersensitivity [skin] tests) that do not meet the criteria and yet fill some of the gaps in information. We review Bayesian studies (n = 5) and report that in most cases priors and assumptions on conditional dependence/independence are not coherent with the variable serological picture of the disease in different epidemiological scenarios and the bases (antigen, isotype and immunoglobulin properties involved) of brucellosis tests, practical experience and the results of gold standard studies. We conclude that very useful lipopolysaccharide (buffered plate antigen and indirect ELISA) and native hapten polysaccharide and soluble protein tests exist, provided they are applied taking into account the means available and the epidemiological contexts of this disease: i) mass vaccination; ii) elimination based on vaccination combined with test-and-slaughter; and iii) surveillance and existence of false positive serological reactions. We also conclude that the insistence in recent literature on the lack of usefulness of all smooth lipopolysaccharide or native hapten polysaccharide tests in areas where S19 vaccination is implemented is a misinterpretation that overlooks scientific and practical evidence.
Collapse
|