1
|
Zhou S, Huang J, Zhang H, Song X, Jiang Y, Zhao X, Shen X. Live yeast (Saccharomyces cerevisiae) improves growth performance and liver metabolic status of lactating Hu sheep. J Dairy Sci 2025; 108:3700-3715. [PMID: 39986452 DOI: 10.3168/jds.2024-25829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/19/2025] [Indexed: 02/24/2025]
Abstract
Yeast, a natural starter culture, is widely used to improve digestion function in ruminants. However, whether yeast affects the physiological state of the liver in ruminants is currently unknown. The aim of this study was to investigate the effects of yeast on liver metabolic status and physiological functions of Hu sheep during lactation. A total of 24 lactating Hu sheep were randomly divided into 4 groups with 6 sheep in each group: the control group (normal diet) and the low-, medium-, and high-dose groups, in which each sheep was fed an additional 0.5 g, 1 g, and 2 g yeast per morning, respectively. Blood, liver, small intestine samples were collected for subsequent analysis, and milk production and BW were recorded during the experimental period. The results showed that dietary yeast supplementation mitigated BW loss, enhanced liver function, and increased milk protein and lactose contents in Hu sheep during lactation. Compared with the normal diet, dietary yeast supplementation reduced the content of lipid droplets in the liver, significantly upregulated the expression of lipid β-oxidation-related enzymes (PPARA and CPT1A), and significantly decreased the expression of lipid synthesis-related enzymes (FASN, PPARγ, DGAT1, and DGAT2) in the liver without affecting the capacity of the small intestine to absorb foodborne lipids. In addition, dietary yeast supplementation significantly decreased blood nonesterified free fatty acid content and increased blood glucose and liver expression of key enzymes involved in gluconeogenesis (PCK1α, FBP, and G6PC). These results suggest that dietary yeast supplementation may alleviate weight loss and enhance milk quality in Hu sheep during lactation. Furthermore, it can improve liver metabolic adaptability and protect liver health by regulating lipid metabolism and metabolic glucose homeostasis in the liver. Notably, adding 1 g or 2 g of yeast to the daily diet yields superior effects.
Collapse
Affiliation(s)
- Shendong Zhou
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Jie Huang
- Huzhou Research Institute of Hu Sheep, Huzhou Academy of Agricultural Science, Huzhou, Zhejiang, P. R. China 313000
| | - Hao Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Xiaokun Song
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Yijin Jiang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Xu Zhao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, P. R. China 210095.
| |
Collapse
|
2
|
Soltan Y, Morsy A, Elazab M, El-Nile AE, Hashem N, Sultan M, Hamad Y, El Lail GA, Abo-Sherif S, Dabour N, Kheadr E, Hafez E, Sallam S. Effects of Pichia manshurica yeast supplementation on ruminal fermentation, nutrient degradability, and greenhouse gas emissions in aflatoxin B1 contaminated diets. Trop Anim Health Prod 2024; 56:367. [PMID: 39476267 PMCID: PMC11525284 DOI: 10.1007/s11250-024-04184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024]
Abstract
Yeast feed additives present a natural approach for mitigating ruminal greenhouse gases (GHG) in an environmentally sustainable manner. This study aimed to isolate yeast strains from ruminal fluids capable of reducing GHG from Aflatoxin (AFB1) contaminated diets. Two isolates of Pichia manchuria (FFNLYFC1 and FFNLYFC2) were isolated and identified from the ruminal contents of dairy Zaraibi goats. An in vitro gas production assay was conducted to evaluate the impact of the yeast supplementations on a basal diet contaminated with AFB1 or not. The treatments were control (-AFB1; basal diet without supplements), control with AFB1 contamination (+ AFB1; basal diet containing 20 ppb AFB1), and yeast-supplemented diets (basal diet supplemented with Saccharomyces cerevisiae, and three treatments of P. manchuria [FFNLYFC1, FFNLYFC2, and their mixture at 1:1 ratio (Mix)]. High biological components were detected in abundance of both FFNLYFC1, FFNLYFC2 filtrates (e.g., diisooctyl phthalate). The Mix and FFNLYFC2 of P. manchuria reduced (P < 0.05) methane by 23.5 and 20.8%, respectively, while only Mix inhibited carbon dioxide by 44% compared to the + AFB1 diet. All yeast diets improved (P < 0.05) ammonia concentration, total protozoal and Entodinium spp. counts compared to + AFB1 diet. The Mix exhibited higher (P < 0.05) values of ruminal degraded cellulose, total short-chain fatty acids, acetate and propionate compared to the individual isolates diets. The results suggest synergistic interactions among P. manshurica isolates, leading to enhanced ruminal fermentation and reduced GHG emissions while alleviating the adverse effects of AFB1. Therefore, we recommended the Mix of P. Manchuria as a novel feed additive to ruminant diets.
Collapse
Affiliation(s)
- Yosra Soltan
- Faculty of Agriculture, Alexandria University, Alexandria, Egypt.
| | - Amr Morsy
- Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Mahmoud Elazab
- Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Amr E El-Nile
- Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Nesrein Hashem
- Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Mohamed Sultan
- Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Younis Hamad
- Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | | | | | - Nassra Dabour
- Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Ehab Kheadr
- Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Elsayed Hafez
- Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Sobhy Sallam
- Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Aladdin Helmy S, Mahrous Ebeid H, Ahmed Hanafy M, Mohamed Mahmoud AE, Roshdy Ali El-Tanany R. Rumen Parameters, Nutrients Digestibility and Milk Production of Lactating Boer Goats Fed Diets Containing Clay Minerals. Pak J Biol Sci 2022; 25:755-764. [PMID: 36098202 DOI: 10.3923/pjbs.2022.755.764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
<b>Background and Objective:</b> The inclusion of clay minerals in dairy nutrition is getting attention owing to their proven beneficial effects. The current study aimed to evaluate the effect of dietary supplementation of three different clay minerals (bentonite, zeolite and humic acid) on the performance of lactating Boer goats. <b>Materials and Methods:</b> Twenty lactating Boer goats (having an average body weight ~42.7 kg) were divided into four groups (5 animals each) by using a completely randomized design (CRD). Each group was fed with one of four dietary treatments: Control group with basal ration R1: Consisting of concentrate feed mixture (CFM) and clover hay (50:50%, C:R) on a dry matter (DM) basis, R2: Basal ration plus 1% bentonite, R3: Basal ration plus 1.25% zeolite and R4: Basal ration plus 0.5% humic acid. <b>Results:</b> The results revealed that bentonite and humic acid increased (p<0.05) the nutrient digestibility and nutritive values compared to zeolite and control groups. Ruminal ammonia and total volatile fatty acids (TVFAs) contents increased (p<0.05) with supplementation of bentonite. No effect of clays supplementation was observed on plasma total protein, urea and creatinine, however, it increased (p<0.05) the albumin concentration and albumin/globulin ratios compared to the control while decreasing the plasma globulin contents. Supplementation of humic acid increased (p<0.05) the AST concentrations. Bentonite supplementation recorded the highest milk yield (p<0.05) and composition, while the zeolite group had the lowest values. <b>Conclusion:</b> The present study indicated that the inclusion of clay minerals particularly bentonite (at 1%) can positively affect the performance of lactating Boer goats.
Collapse
|
4
|
Espinosa C, Esteban MÁ. Effect of dietary supplementation with yeast Saccharomyces cerevisiae on skin, serum and liver of gilthead seabream (Sparus aurata L). JOURNAL OF FISH BIOLOGY 2020; 97:869-881. [PMID: 32598025 DOI: 10.1111/jfb.14449] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/17/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
The effect of dietary supplementation with Saccharomyces cerevisiae on gilthead seabream (Sparus aurata L.) was studied. Four replicates of fish (n = 6) were fed with a commercial diet containing 0 (control, no yeast added) or 10 mg per kilogram of heat-killed (30 min, 60°C) S. cerevisiae. After 4 weeks, half of the fish (two replicates) were injured and continued with the same diet. At 3 and 7 days post-wounding, samples of blood, skin mucus, skin and liver were obtained from each fish. The results showed that calcium concentrations were significantly higher (with respect to control fish) in the serum from fish sampled at 3 days post-wounding, whereas antioxidant enzymes in the skin mucus were altered after wounding (at both 3 and 7 days). Histological analyses revealed oedema, signs of inflammation and white cell recruitment together with a reduction in the epidermis layer in the wounded regions of fish fed control diet. Yeast supplementation did not change growth performance and helped maintain the normal serum calcium concentrations in wounded fish. Furthermore, a reduction in inflammation around wounds in the animals fed yeast with respect to that fed control diet was evident in the histological study. Furthermore, increased levels of stress-related gene expression in liver and skin from wounded fish were obtained. Overall, yeast supplementation seemed to be a functional and appropriate dietary additive to improve skin recovery reducing the stress resulting from wounds.
Collapse
Affiliation(s)
- Cristóbal Espinosa
- Department of Cell Biology and Histology, Faculty of Biology, Immunobiology for Aquaculture Group, University of Murcia, Murcia, Spain
| | - Maria Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Immunobiology for Aquaculture Group, University of Murcia, Murcia, Spain
| |
Collapse
|
5
|
Sauerwein H, Blees T, Zamarian V, Catozzi C, Müller U, Sadri H, Dänicke S, Frahm J, Ceciliani F. Acute phase proteins and markers of oxidative status in water buffalos during the transition from late pregnancy to early lactation. Vet Immunol Immunopathol 2020; 228:110113. [PMID: 32871407 DOI: 10.1016/j.vetimm.2020.110113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 01/03/2023]
Abstract
The transition period, from pregnancy to lactation, implies comprehensive metabolic and endocrine changes including a systemic inflammatory reaction and oxidative stress around calving in dairy cows. The aim of the present study was a longitudinal characterization of the serum concentration of acute phase proteins (APP), i.e., haptoglobin (Hp), serum amyloid A (SAA) and acidic glycoprotein (AGP), as well as of markers for oxidative stress in another large dairy animal, i.e. water buffalo, during the transition from late pregnancy to early lactation. As indicators of oxidative status, derivatives of reactive oxygen metabolites (dROM), ferric reducing ability (FRAP), thiobarbituric acid reactive substances (TBARS), and advanced oxidation protein products (AOPP) were determined in serum. Indicators for metabolic stress included nonesterified fatty acids (NEFA), ß-hydroxybutyrate (BHB) and adiponectin. Bovine specific ELISA methods for Hp and adiponectin were adapted and validated for their application to water buffalo samples. Blood samples were collected weekly from 11 pluriparous water buffalo cows (lactation number 4.6 ± 1.6; daily milk yield 9.0 ± 1.9 kg; means ± SD) from 6 weeks (wk) ante partum (ap) until 8 wk post partum (pp). The maximum concentrations of Hp were observed in wk 1 pp, followed by a decrease towards values lower than before calving starting from wk 3 pp. The concentrations of SAA also peaked in wk 1 pp and then returned to basal values. The AGP serum concentrations increased suddenly from the first to the second wk pp and remained elevated for all the observation period. Indicators of oxidative status which changed in concentration during the transition period were dROM, AOPP and the oxidative stress index (OSi) (dROM/FRAP ratio). Briefly, dROM and AOPP values were lower pp as compared to ap, and OSi was largely following the pattern of dROM due to the constant FRAP values. The TBARS values did not change during the observation period. From the metabolic indicators, adiponectin was not changing with time, whereas greater NEFA and BHB values were observed ap than pp. The time course of NEFA and of some indicators for oxidative status (dROM, OSi and AOPP) point to greater metabolic load in late pregnancy as compared with the first wk of lactation - contrary to the common situation in dairy cows. Both BHB and NEFA values remained below the thresholds applied for dairy cows to define subclinical or clinical ketosis, thus indicating that the buffaloes included in this study were not under metabolic stress. The increase in concentration of the APP around calving supports the concept that an inflammatory reaction is a physiological epiphenomenon of the onset of lactation in water buffalos that is independent of metabolic stress.
Collapse
Affiliation(s)
- Helga Sauerwein
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany.
| | - Thomas Blees
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
| | - Valentina Zamarian
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milano, Italy
| | - Carlotta Catozzi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milano, Italy
| | - Ute Müller
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, Bonn, Germany
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Jana Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Fabrizio Ceciliani
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
6
|
Heidari M, Kafi M, Mirzaei A, Asaadi A, Mokhtari A. Effects of follicular fluid of preovulatory follicles of repeat breeder dairy cows with subclinical endometritis on oocyte developmental competence. Anim Reprod Sci 2019; 205:62-69. [PMID: 31005360 DOI: 10.1016/j.anireprosci.2019.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/23/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
The aims of the present study were to determine the concentrations of lipopolysaccharide (LPS), hormonal progesterone, estradiol-17β, insulin growth factor (IGF-1) and magnesium in the serum and the preovulatory follicle follicular fluid (FF) in repeat breeder (RB) cows without (nSCE) or with subclinical endometritis (SCE), and further to examine the effects of this FF on developmental competence of cattle oocytes. In Experiment 1, 13 of 23 clinically healthy Holstein RB cows were identified (uterine PMNs) to have SCE. The cows were estrous synchronized, and 6-12 h after detection of standing estrus, FF and blood of the preovulatory follicles were collected. The mean (±SD) LPS (862.3 ± 148.1 compared with 1063.4 ± 262.8 EU/ml, P = 0.04) and estradiol-17β (188.9 ± 15.8 compared with 162.0 ± 31.5 ng/ml, P = 0.02) concentrations of FF was different between nSCE and SCE cows. In Experiment 2, FF of RB cows with relatively lesser (nSCE, n = 4) and greater (SCE, n = 4) percentages of uterine PMNs was separately added to the oocyte maturation medium for in vitro embryo production. Addition of FF from SCE cows to the oocyte maturation medium resulted in a lesser rate of development to the blastocyst stage than that of the nSCE cows (21.9 ± 1.8 compared with 27.8 ± 2.5%, P < 0.05). Results of the present study indicate greater FF LPS concentration may result in a lesser quality microenvironment milieu for the final stages of oocyte maturation in RB dairy cows with subclinical endometritis. In addition, supplementation of oocyte maturation medium with FF of preovulatory follicles from RB cows with subclinical endometritis resulted in a lesser potential of in vitro oocyte developmental competence.
Collapse
Affiliation(s)
- Mahdi Heidari
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mojtaba Kafi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Abdolah Mirzaei
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Aniseh Asaadi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | |
Collapse
|