1
|
Heringer G, Fernandez RD, Bang A, Cordonnier M, Novoa A, Lenzner B, Capinha C, Renault D, Roiz D, Moodley D, Tricarico E, Holenstein K, Kourantidou M, Kirichenko NI, Adelino JRP, Dimarco RD, Bodey TW, Watari Y, Courchamp F. Economic costs of invasive non-native species in urban areas: An underexplored financial drain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170336. [PMID: 38280594 DOI: 10.1016/j.scitotenv.2024.170336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Urbanization is an important driver of global change associated with a set of environmental modifications that affect the introduction and distribution of invasive non-native species (species with populations transported by humans beyond their natural biogeographic range that established and are spreading in their introduced range; hereafter, invasive species). These species are recognized as a cause of large ecological and economic losses. Nevertheless, the economic impacts of these species in urban areas are still poorly understood. Here we present a synthesis of the reported economic costs of invasive species in urban areas using the global InvaCost database, and demonstrate that costs are likely underestimated. Sixty-one invasive species have been reported to cause a cumulative cost of US$ 326.7 billion in urban areas between 1965 and 2021 globally (average annual cost of US$ 5.7 billion). Class Insecta was responsible for >99 % of reported costs (US$ 324.4 billion), followed by Aves (US$ 1.4 billion), and Magnoliopsida (US$ 494 million). The reported costs were highly uneven with the sum of the five costliest species representing 80 % of reported costs. Most reported costs were a result of damage (77.3 %), principally impacting public and social welfare (77.9 %) and authorities-stakeholders (20.7 %), and were almost entirely in terrestrial environments (99.9 %). We found costs reported for 24 countries. Yet, there are 73 additional countries with no reported costs, but with occurrences of invasive species that have reported costs in other countries. Although covering a relatively small area of the Earth's surface, urban areas represent about 15 % of the total reported costs attributed to invasive species. These results highlight the conservative nature of the estimates and impacts, revealing important biases present in the evaluation and publication of reported data on costs. We emphasize the urgent need for more focused assessments of invasive species' economic impacts in urban areas.
Collapse
Affiliation(s)
- Gustavo Heringer
- Nürtingen-Geislingen University (HfWU), Schelmenwasen 4-8, 72622 Nürtingen, Germany; Programa de Pós-Graduação em Ecologia Aplicada, Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras (UFLA), CEP 37200-900 Lavras, MG, Brazil.
| | - Romina D Fernandez
- Instituto de Ecología Regional, Universidad Nacional de Tucumán-CONICET, CC 34, 4107 Yerba Buena, Tucumán, Argentina
| | - Alok Bang
- Society for Ecology Evolution and Development, Wardha 442001, India; Biology Group, School of Arts and Sciences, Azim Premji University, Bhopal 462022, India
| | - Marion Cordonnier
- Lehrstuhl für Zoologie/Evolutionsbiologie, Univ. Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Ana Novoa
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, CZ-25243 Průhonice, Czech Republic
| | - Bernd Lenzner
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - César Capinha
- Centre of Geographical Studies, Institute of Geography and Spatial Planning, University of Lisbon, Rua Branca Edmée Marques, 1600-276 Lisboa, Portugal; Associate Laboratory Terra, Portugal
| | - David Renault
- University of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR, 6553 Rennes, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - David Roiz
- MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier 34394, France
| | - Desika Moodley
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, CZ-25243 Průhonice, Czech Republic
| | - Elena Tricarico
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, FI, Italy
| | - Kathrin Holenstein
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Melina Kourantidou
- Department of Sociology, Environmental and Business Economics, University of Southern Denmark, Degnevej 14, 6705 Esbjerg Ø, Denmark; UMR 6308, AMURE, Université de Bretagne Occidentale, IUEM, rue Dumont d'Urville, 29280 Plouzané, France
| | - Natalia I Kirichenko
- Sukachev Institute of Forest Siberian Branch of Russian Academy of Sciences, Federal Research Center «Krasnoyarsk Science Center SB RAS», Krasnoyarsk 660036, Russia; Siberian Federal University, Krasnoyarsk 660041, Russia; All-Russian Plant Quarantine Center, Krasnoyarsk branch, Krasnoyarsk 660020, Russia
| | - José Ricardo Pires Adelino
- Laboratório de Ecologia Evolutiva e Conservação, Departamento de Biologia Animal e Vegetal, Universidade Estadual de Londrina, CP 6001, Londrina 86051-970, Brazil
| | - Romina D Dimarco
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Grupo de Ecología de Poblaciones de Insectos, IFAB (INTA-CONICET), Bariloche, RN, Argentina
| | - Thomas W Bodey
- School of Biological Sciences, King's College, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Yuya Watari
- Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190 Gif-Sur-Yvette, France
| |
Collapse
|
2
|
Zou G, Wu B, Chen B, Yang Y, Feng Y, Huang J, Liu Y, Murray PJ, Liu W. What Are the Effects of Moso Bamboo Expansion into Japanese Cedar on Arbuscular Mycorrhizal Fungi: Altering the Community Composition Rather than the Diversity. J Fungi (Basel) 2023; 9:jof9020273. [PMID: 36836387 PMCID: PMC9967659 DOI: 10.3390/jof9020273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
The unbridled expansion of moso bamboo (Phyllostachys edulis) occurs throughout the world and has a series of consequences. However, the effect of bamboo expansion on arbuscular mycorrhizal fungi (AMF) is still poorly understood. We assessed the changes in the AMF community during bamboo expansion into Japanese cedar (Cryptomeria japonica) forests by analyzing AMF in three forest types-Japanese cedar (JC), bamboo-cedar mixed (BC) and moso bamboo (MB)-using 454 pyrosequencing technology. We found that the AMF community composition differed significantly among forest types. The relative abundance of Glomerales decreased from 74.0% in JC to 61.8% in BC and 42.5% in MB, whereas the relative abundance of Rhizophagus increased from 24.9% in JC to 35.9% in BC and 56.7% in MB. Further analysis showed that soil characteristics explained only 19.2% of the AMF community variation among forest types. Hence, vegetation is presumably the main driver of the alteration of the AMF community. The α diversity of AMF was similar between JC and MB, although it was higher in BC. Overall, this research sheds more light on AMF community dynamics during moso bamboo expansion. Our results highlight that the consequences of bamboo expansion in monoculture forests differ from those in mixed forests.
Collapse
Affiliation(s)
- Guiwu Zou
- Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, Nanchang 330045, China
- School of Art and Landscape, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
- Positioning Observation Station of Forest Ecosystem in Lushan, Jiujiang 332000, China
| | - Binsheng Wu
- School of Art and Landscape, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Baodong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaying Yang
- Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, Nanchang 330045, China
- School of Art and Landscape, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Feng
- Administration of Lushan Natural Reserve, Jiujiang 332000, China
| | - Jiahui Huang
- Administration of Lushan Natural Reserve, Jiujiang 332000, China
| | - Yuanqiu Liu
- Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, Nanchang 330045, China
- School of Art and Landscape, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
- Positioning Observation Station of Forest Ecosystem in Lushan, Jiujiang 332000, China
| | - Philip J. Murray
- School of Agriculture, Food and Environment, Royal Agricultural University, Cirencester GL7 6JS, UK
| | - Wei Liu
- Jiangxi Provincial Key Laboratory of Silviculture, Jiangxi Agricultural University, Nanchang 330045, China
- School of Art and Landscape, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
- Positioning Observation Station of Forest Ecosystem in Lushan, Jiujiang 332000, China
- Correspondence: ; Tel.: +86-18679156807
| |
Collapse
|
3
|
SIMONS ARIELLEVI, CALDWELL STEVIE, FU MICHELLE, GALLEGOS JOSE, GATHERU MICHAEL, RICCARDELLI LAURA, TRUONG NHI, VIERA VALERIA. Constructing ecological indices for urban environments using species distribution models. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractIn an increasingly urbanized world, there is a need to study urban areas as their own class of ecosystems as well as assess the impacts of anthropogenic impacts on biodiversity. However, collecting a sufficient number of species observations to estimate patterns of biodiversity in a city can be costly. Here we investigated the use of community science-based data on species occurrences, combined with species distribution models (SDMs), built using MaxEnt and remotely-sensed measures of the environment, to predict the distribution of a number of species across the urban environment of Los Angeles. By selecting species with the most accurate SDMs, and then summarizing these by class, we were able to produce two species richness models (SRMs) to predict biodiversity patterns for species in the class Aves and Magnoliopsida and how they respond to a variety of natural and anthropogenic environmental gradients.We found that species considered native to Los Angeles tend to have significantly more accurate SDMs than their non-native counterparts. For all species considered in this study we found environmental variables describing anthropogenic activities, such as housing density and alterations to land cover, tend to be more influential than natural factors, such as terrain and proximity to freshwater, in shaping SDMs. Using a random forest model we found our SRMs could account for approximately 54% and 62% of the predicted variation in species richness for species in the classes Aves and Magnoliopsida respectively. Using community science-based species occurrences, SRMs can be used to model patterns of urban biodiversity and assess the roles of environmental factors in shaping them.
Collapse
|