1
|
Luo X, Yang W, Kang Y, Ma S, Fan Y, Du J, Luo H, Wang X, Deng F. Research progress of the intestinal axis in autologous arteriovenous fistula stenosis in maintenance hemodialysis patients. J Vasc Access 2025:11297298251332047. [PMID: 40251786 DOI: 10.1177/11297298251332047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025] Open
Abstract
The number of the patients treated with maintenance hemodialysis (HD) is increasing due to the increasing incidence of end stage renal disease (ESRD). Autologous arteriovenous fistula (AVF) is the preferable modality for long-term vascular access during HD. AVF stenosis is the main cause of AVF dysfunction in HD patients, but its mechanism has not been fully elucidated. Patients with ESRD often have various related complications due to intestinal microbiota disorders and their metabolites, and the intestinal axis reveals various metabolic disorders in patients with chronic kidney disease. This paper analyzes the correlation between intestinal axis abnormalities and AVF stenosis in patients with CKD through three axes: "gut-liver axis," "gut-brain axis," and "gut-spleen axis," to provide clinical significance for elucidating the mechanism of AVF stenosis and for the prevention and treatment of AVF stenosis.
Collapse
Affiliation(s)
- Xuyang Luo
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Sichuan Provincial People's Hospital Xinjin Hospital, Chengdu Xinjin District People's Hospital, Chengdu, China
| | - Wei Yang
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yuwei Kang
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shijie Ma
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Fan
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jiaojiao Du
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Luo
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xudong Wang
- Department of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Nephrology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fei Deng
- Department of Nephrology, Sichuan Provincial People's Hospital Xinjin Hospital, Chengdu Xinjin District People's Hospital, Chengdu, China
| |
Collapse
|
2
|
Zhang R, Wang J, Wu C, Wang L, Liu P, Li P. Lipidomics-based natural products for chronic kidney disease treatment. Heliyon 2025; 11:e41620. [PMID: 39866478 PMCID: PMC11758422 DOI: 10.1016/j.heliyon.2024.e41620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/17/2024] [Accepted: 12/31/2024] [Indexed: 01/28/2025] Open
Abstract
Chronic kidney disease (CKD) is by far the most prevalent disease in the world and is now a major global public health problem because of the increase in diabetes, hypertension and obesity. Traditional biomarkers of kidney function lack sensitivity and specificity for early detection and monitoring of CKD progression, necessitating more sensitive biomarkers for early diagnostic intervention. Dyslipidemia is a hallmark of CKD. Advancements in mass spectrometry (MS)-based lipidomics platforms have facilitated comprehensive analysis of lipids in biological samples and have revealed changes in the lipidome that are associated with metabolic disorders, which can be used as new biomarkers for kidney diseases. It is also critical for the discovery of new therapeutic targets and drugs. In this article, we focus on lipids in CKD, lipidomics methodologies and their applications in CKD. Additionally, we introduce novel biomarkers identified through lipidomics approaches and natural products derived from lipidomics for the treatment of CKD. We believe that our study makes a significant contribution to literature by demonstrating that natural products can improve CKD from a lipidomic perspective.
Collapse
Affiliation(s)
- Rui Zhang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jingjing Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Chenguang Wu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Lifan Wang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
3
|
Chen WY, Zhang JH, Chen LL, Byrne CD, Targher G, Luo L, Ni Y, Zheng MH, Sun DQ. Bioactive metabolites: A clue to the link between MASLD and CKD? Clin Mol Hepatol 2025; 31:56-73. [PMID: 39428978 PMCID: PMC11791555 DOI: 10.3350/cmh.2024.0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024] Open
Abstract
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
Collapse
Affiliation(s)
- Wen-Ying Chen
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia-Hui Zhang
- Department of Pediatric Laboratory, Affiliated Children’s Hospital of Jiangnan University, Wuxi Children’s Hospital, Wuxi, Jiangsu, China
| | - Li-Li Chen
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Christopher D. Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Liang Luo
- Intensive Care Medicine, Jiangnan University Medical Center, Wuxi, China
| | - Yan Ni
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Dan-Qin Sun
- Urologic Nephrology Center, Jiangnan University Medical Center, Wuxi, China
- Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
- Department of Nephrology, Wuxi No.2 People’s Hospital, Wuxi, China
| |
Collapse
|
4
|
Kosicka-Noworzyń K, Romaniuk-Drapała A, Sheng YH, Yohn C, Brunetti L, Kagan L. Obesity-related drug transporter expression alterations in human liver and kidneys. Pharmacol Rep 2024; 76:1429-1442. [PMID: 39412582 PMCID: PMC11582170 DOI: 10.1007/s43440-024-00665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Pathophysiological changes associated with obesity might impact various drug pharmacokinetics (PK) parameters. The liver and kidneys are the primary organs involved in drug clearance, and the function of hepatic and renal transporters is critical to efficient drug elimination (or reabsorption). Considering the impact of an increased BMI on the drug's PK is crucial in directing dosing decisions. Given the critical role of transporters in drug biodisposition, this study investigated how overweight and obesity affect the gene expression of renal and hepatic drug transporters. METHODS Human liver and kidney samples were collected post-mortem from 32 to 28 individuals, respectively, which were divided into the control group (lean subjects; 18.5 ≤ BMI < 25 kg/m2) and the study group (overweight/obese subjects; BMI ≥ 25 kg/m2). Real-time quantitative PCR was performed for the analysis of 84 drug transporters. RESULTS Our results show significant changes in the expression of genes involved in human transporters, both renal and hepatic. In liver tissue, we found that ABCC4 was up-regulated in overweight/obese subjects. In kidney tissue, up-regulation was only observed for ABCC10, while the other differentially expressed genes were down-regulated: ABCA1, ABCC3, and SLC15A1. CONCLUSIONS The observed alterations may be reflected by the differences in drug PK between lean and obese populations. However, these findings need further evaluation through the proteomic and functional study of these transporters in this patient population.
Collapse
Affiliation(s)
- Katarzyna Kosicka-Noworzyń
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Rokietnicka 3, Poznań, 60-806, Poland.
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| | - Aleksandra Romaniuk-Drapała
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, Poznań, 60-806, Poland
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Yi-Hua Sheng
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Christine Yohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Luigi Brunetti
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
5
|
Vandecruys M, De Smet S, De Beir J, Renier M, Leunis S, Van Criekinge H, Glorieux G, Raes J, Vanden Wyngaert K, Nagler E, Calders P, Monbaliu D, Cornelissen V, Evenepoel P, Van Craenenbroeck AH. Revitalizing the Gut Microbiome in Chronic Kidney Disease: A Comprehensive Exploration of the Therapeutic Potential of Physical Activity. Toxins (Basel) 2024; 16:242. [PMID: 38922137 PMCID: PMC11209503 DOI: 10.3390/toxins16060242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Both physical inactivity and disruptions in the gut microbiome appear to be prevalent in patients with chronic kidney disease (CKD). Engaging in physical activity could present a novel nonpharmacological strategy for enhancing the gut microbiome and mitigating the adverse effects associated with microbial dysbiosis in individuals with CKD. This narrative review explores the underlying mechanisms through which physical activity may favorably modulate microbial health, either through direct impact on the gut or through interorgan crosstalk. Also, the development of microbial dysbiosis and its interplay with physical inactivity in patients with CKD are discussed. Mechanisms and interventions through which physical activity may restore gut homeostasis in individuals with CKD are explored.
Collapse
Affiliation(s)
- Marieke Vandecruys
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
| | - Stefan De Smet
- Exercise Physiology Research Group, Department of Movement Sciences, KU Leuven, 3000 Leuven, Belgium;
| | - Jasmine De Beir
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium; (J.D.B.); (P.C.)
| | - Marie Renier
- Group Rehabilitation for Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium; (M.R.); (V.C.)
| | - Sofie Leunis
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
| | - Hanne Van Criekinge
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
| | - Griet Glorieux
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, 3000 Leuven, Belgium;
- VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
| | - Karsten Vanden Wyngaert
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Evi Nagler
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (G.G.); (K.V.W.); (E.N.)
| | - Patrick Calders
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium; (J.D.B.); (P.C.)
| | - Diethard Monbaliu
- Department of Microbiology, Immunology and Transplantation, Abdominal Transplantation, KU Leuven, 3000 Leuven, Belgium; (S.L.); (H.V.C.); (D.M.)
- Transplantoux Foundation, 3000 Leuven, Belgium
| | - Véronique Cornelissen
- Group Rehabilitation for Internal Disorders, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium; (M.R.); (V.C.)
| | - Pieter Evenepoel
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
- Department of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Amaryllis H. Van Craenenbroeck
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (M.V.); or (P.E.)
- Department of Nephrology, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
6
|
Yen NTH, Tien NTN, Anh NTV, Le QV, Eunsu C, Kim HS, Moon KS, Nguyen HT, Kim DH, Long NP. Cyclosporine A-induced systemic metabolic perturbations in rats: A comprehensive metabolome analysis. Toxicol Lett 2024; 395:50-59. [PMID: 38552811 DOI: 10.1016/j.toxlet.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024]
Abstract
A better understanding of cyclosporine A (CsA)-induced nephro- and hepatotoxicity at the molecular level is necessary for safe and effective use. Utilizing a sophisticated study design, this study explored metabolic alterations after long-term CsA treatment in vivo. Rats were exposed to CsA with 4, 10, and 25 mg/kg for 4 weeks and then sacrificed to obtain liver, kidney, urine, and serum for untargeted metabolomics analysis. Differential network analysis was conducted to explore the biological relevance of metabolites significantly altered by toxicity-induced disturbance. Dose-dependent toxicity was observed in all biospecimens. The toxic effects were characterized by alterations of metabolites related to energy metabolism and cellular membrane composition, which could lead to the cholestasis-induced accumulation of bile acids in the tissues. The unfavorable impacts were also demonstrated in the serum and urine. Intriguingly, phenylacetylglycine was increased in the kidney, urine, and serum treated with high doses versus controls. Differential correlation network analysis revealed the strong correlations of deoxycytidine and guanosine with other metabolites in the network, which highlighted the influence of repeated CsA exposure on DNA synthesis. Overall, prolonged CsA administration had system-level dose-dependent effects on the metabolome in treated rats, suggesting the need for careful usage and dose adjustment.
Collapse
Affiliation(s)
- Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Nguyen Tran Nam Tien
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Nguyen Thi Van Anh
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Quoc-Viet Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Cho Eunsu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Ho-Sook Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Kyoung-Sik Moon
- Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Dong Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea.
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea.
| |
Collapse
|
7
|
Rojo-Sánchez A, Carmona-Martes A, Díaz-Olmos Y, Santamaría-Torres M, Cala MP, Orozco-Acosta E, Aroca-Martínez G, Pacheco-Londoño L, Navarro-Quiroz E, Pacheco-Lugo LA. Urinary metabolomic profiling of a cohort of Colombian patients with systemic lupus erythematosus. Sci Rep 2024; 14:9555. [PMID: 38664528 PMCID: PMC11045835 DOI: 10.1038/s41598-024-60217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune and multisystem disease with a high public health impact. Lupus nephritis (LN), commonly known as renal involvement in SLE, is associated with a poorer prognosis and increased rates of morbidity and mortality in patients with SLE. Identifying new urinary biomarkers that can be used for LN prognosis or diagnosis is essential and is part of current active research. In this study, we applied an untargeted metabolomics approach involving liquid and gas chromatography coupled with mass spectrometry to urine samples collected from 17 individuals with SLE and no kidney damage, 23 individuals with LN, and 10 clinically healthy controls (HCs) to identify differential metabolic profiles for SLE and LN. The data analysis revealed a differentially abundant metabolite expression profile for each study group, and those metabolites may act as potential differential biomarkers of SLE and LN. The differential metabolic pathways found between the LN and SLE patients with no kidney involvement included primary bile acid biosynthesis, branched-chain amino acid synthesis and degradation, pantothenate and coenzyme A biosynthesis, lysine degradation, and tryptophan metabolism. Receiver operating characteristic curve analysis revealed that monopalmitin, glycolic acid, and glutamic acid allowed for the differentiation of individuals with SLE and no kidney involvement and individuals with LN considering high confidence levels. While the results offer promise, it is important to recognize the significant influence of medications and other external factors on metabolomics studies. This impact has the potential to obscure differences in metabolic profiles, presenting a considerable challenge in the identification of disease biomarkers. Therefore, experimental validation should be conducted with a larger sample size to explore the diagnostic potential of the metabolites found as well as to examine how treatment and disease activity influence the identified chemical compounds. This will be crucial for refining the accuracy and effectiveness of using urine metabolomics for diagnosing and monitoring lupus and lupus nephritis.
Collapse
Affiliation(s)
- Alejandra Rojo-Sánchez
- Life Sciences Research Center, School of Basic and Biomedical Sciences, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Ada Carmona-Martes
- Life Sciences Research Center, School of Basic and Biomedical Sciences, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Yirys Díaz-Olmos
- Health Sciences Division, Medicine Program, Universidad del Norte, Barranquilla, Colombia
| | - Mary Santamaría-Torres
- Metabolomics Core Facility-MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Mónica P Cala
- Metabolomics Core Facility-MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Erick Orozco-Acosta
- Life Sciences Research Center, School of Basic and Biomedical Sciences, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Gustavo Aroca-Martínez
- Life Sciences Research Center, School of Basic and Biomedical Sciences, Universidad Simón Bolívar, Barranquilla, Colombia
- Clínica de la Costa, Barranquilla, Colombia
| | - Leonardo Pacheco-Londoño
- Life Sciences Research Center, School of Basic and Biomedical Sciences, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Elkin Navarro-Quiroz
- Life Sciences Research Center, School of Basic and Biomedical Sciences, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Lisandro A Pacheco-Lugo
- Life Sciences Research Center, School of Basic and Biomedical Sciences, Universidad Simón Bolívar, Barranquilla, Colombia.
| |
Collapse
|
8
|
Dekker SEI, Bierau J, Giera M, Blomberg N, Drenth JPH, Mayboroda OA, de Fijter JW, Soonawala D. Serum bile acids associate with liver volume in polycystic liver disease and decrease upon treatment with lanreotide. Eur J Clin Invest 2024; 54:e14147. [PMID: 38071418 DOI: 10.1111/eci.14147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 03/13/2024]
Abstract
BACKGROUND Polycystic liver disease (PLD) is a common extrarenal manifestation of autosomal dominant polycystic kidney disease (ADPKD). Bile acids may play a role in PLD pathogenesis. We performed a post-hoc exploratory analysis of bile acids in ADPKD patients, who had participated in a trial on the effect of a somatostatin analogue. Our hypothesis was that serum bile acid levels increase in PLD, and that lanreotide, which reduces liver growth, may also reduce bile acid levels. Furthermore, in PLD, urinary excretion of bile acids might contribute to renal disease. METHODS With liquid chromatography-mass spectrometry, 11 bile acids in serum and 6 in urine were quantified in 105 PLD ADPKD patients and 52 age-, sex-, mutation- and eGFR-matched non-PLD ADPKD patients. Sampling was done at baseline and after 120 weeks of either lanreotide or standard care. RESULTS Baseline serum levels of taurine- and glycine-conjugated bile acids were higher in patients with larger livers. In PLD patients, multiple bile acids decreased upon treatment with lanreotide but remained stable in untreated subjects. Changes over time did not correlate with changes in liver volume. Urine bile acid levels did not change and did not correlate with renal disease progression. CONCLUSION In ADPKD patients with PLD, baseline serum bile acids were associated with liver volume. Lanreotide reduced bile acid levels and has previously been shown to reduce liver volume. However, in this study, the decrease in bile acids was not associated with the change in liver volume.
Collapse
Affiliation(s)
- Shosha E I Dekker
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jörgen Bierau
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Niek Blomberg
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Joost P H Drenth
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Oleg A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Johan W de Fijter
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Darius Soonawala
- Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Internal Medicine, Haga Teaching Hospital, The Hague, the Netherlands
| |
Collapse
|
9
|
Yang J, Pontoglio M, Terzi F. Bile Acids and Farnesoid X Receptor in Renal Pathophysiology. Nephron Clin Pract 2024; 148:618-630. [PMID: 38412845 DOI: 10.1159/000538038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Bile acids (BAs) act not only as lipids and lipid-soluble vitamin detergents but also function as signaling molecules, participating in diverse physiological processes. The identification of BA receptors in organs beyond the enterohepatic system, such as the farnesoid X receptor (FXR), has initiated inquiries into their organ-specific functions. Among these organs, the kidney prominently expresses FXR. SUMMARY This review provides a comprehensive overview of various BA species identified in kidneys and delves into the roles of renal apical and basolateral BA transporters. Furthermore, we explore changes in BAs and their potential implications for various renal diseases, particularly chronic kidney disease. Lastly, we center our discussion on FXR, a key BA receptor in the kidney and a potential therapeutic target for renal diseases, providing current insights into the protective mechanisms associated with FXR agonist treatments. KEY MESSAGES Despite the relatively low concentrations of BAs in the kidney, their presence is noteworthy, with rodents and humans exhibiting distinct renal BA compositions. Renal BA transporters efficiently facilitate either reabsorption into systemic circulation or excretion into the urine. However, adaptive changes in BA transporters are evident during cholestasis. Various renal diseases are accompanied by alterations in BA concentrations and FXR expression. Consequently, the activation of FXR in the kidney could be a promising target for mitigating kidney damage.
Collapse
Affiliation(s)
- Jiufang Yang
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France,
| | - Marco Pontoglio
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France
| | - Fabiola Terzi
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France
| |
Collapse
|
10
|
Losartan ameliorates renal interstitial fibrosis through metabolic pathway and Smurfs-TGF-β/Smad. Biomed Pharmacother 2022; 149:112931. [PMID: 36068784 DOI: 10.1016/j.biopha.2022.112931] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 11/22/2022] Open
Abstract
The genesis and development of renal fibrosis involve a variety of pathways closely related to inflammation, cytokines, oxidative stress and metabolic abnormalities. Renal fibrosis is the result of a complex combination of a variety of lesions. Epithelial-mesenchymal transdifferentiation (EMT) of renal tubular epithelial cells is considered the key to renal fibrosis. Losartan is a typical Angiotensin II (ANG II) receptor antagonist and relaxes blood vessels. In this study, we investigated the effects of losartan on Unilateral Ureteral Obstruction (UUO) model mice by studying the changes in the TGF-β/Smad and metabolomics. Male C57BL/6 J mice were intervened with the UUO model and given losartan (10, 20, 30 mg/kg/d) for 28 consecutive days. The results showed that losartan could reduce UUO-induced abnormal serum metabolic spectrum and renal function. It could also improve renal tubular-interstitial injury and fibrosis by reducing tubulointerstitial dilation and collagen deposition. In addition, losartan promoted the expression of Smurf2 and Smurf1, i.e., Smad7 and E3 ubiquitin-linked enzymes, in the nucleus to degrade the type I receptor of TGF-β1 (TβR-I) and P-Smad2/3 to inhibit renal tubular epithelial cells EMT. In summary, these findings indicated that losartan could regulate the TGF-β/Smad and metabolic pathway in UUO model mice through ubiquitination to reduce renal fibrosis.
Collapse
|
11
|
Jovanovich A, Cai X, Frazier R, Bundy JD, He J, Rao P, Lora C, Dobre M, Go A, Shafi T, Feldman HI, Rhee EP, Miyazaki M, Isakova T, Chonchol M. Deoxycholic Acid and Coronary Artery Calcification in the Chronic Renal Insufficiency Cohort. J Am Heart Assoc 2022; 11:e022891. [PMID: 35322682 PMCID: PMC9075491 DOI: 10.1161/jaha.121.022891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
Background Deoxycholic acid (DCA) is a secondary bile acid that may promote vascular calcification in experimental settings. Higher DCA levels were associated with prevalent coronary artery calcification (CAC) in a small group of individuals with advanced chronic kidney disease. Whether DCA levels are associated with CAC prevalence, incidence, and progression in a large and diverse population of individuals with chronic kidney disease stages 2 to 4 is unknown. Methods and Results In the CRIC (Chronic Renal Insufficiency Cohort) study, we evaluated cross-sectional (n=1057) and longitudinal (n=672) associations between fasting serum DCA levels and computed tomographic CAC using multivariable-adjusted regression models. The mean age was 57±12 years, 47% were women, and 41% were Black. At baseline, 64% had CAC (CAC score >0 Agatston units). In cross-sectional analyses, models adjusted for demographics and clinical factors showed no association between DCA levels and CAC >0 compared with no CAC (prevalence ratio per 1-SD higher log DCA, 1.08 [95% CI, 0.91-1.26). DCA was not associated with incident CAC (incidence per 1-SD greater log DCA, 1.08 [95% CI, 0.85-1.39]) or CAC progression (risk for increase in ≥100 and ≥200 Agatston units per year per 1-SD greater log DCA, 1.05 [95% CI, 0.84-1.31] and 1.26 [95% CI, 0.77-2.06], respectively). Conclusions Among CRIC study participants, DCA was not associated with prevalent, incident, or progression of CAC.
Collapse
Affiliation(s)
- Anna Jovanovich
- Renal SectionVA Eastern Colorado Healthcare SystemAuroraCO
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Xuan Cai
- Division of Nephrology/HypertensionNorthwestern UniversityChicagoIL
| | - Rebecca Frazier
- Division of Nephrology/HypertensionNorthwestern UniversityChicagoIL
| | - Josh D. Bundy
- Nephrology and HypertensionTulane UniversityNew OrleansLA
| | - Jiang He
- Nephrology and HypertensionTulane UniversityNew OrleansLA
| | | | - Claudia Lora
- Division of NephrologyUniversity of Illinois at ChicagoChicagoIL
| | - Mirela Dobre
- Division of NephrologyCase Western Reserve UniversityClevelandOH
| | - Alan Go
- Division of ResearchKaiser Permanente Northern CaliforniaOaklandCA
| | - Tariq Shafi
- Division of NephrologyUniversity of MississippiJacksonMI
| | - Harold I. Feldman
- Division of Renal Electrolyte and HypertensionUniversity of PennsylvaniaPhiladelphiaPA
| | - Eugene P. Rhee
- Nephrology DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Makoto Miyazaki
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraCO
| | - Tamara Isakova
- Division of Nephrology/HypertensionNorthwestern UniversityChicagoIL
| | - Michel Chonchol
- Division of Renal Diseases and HypertensionUniversity of Colorado Anschutz Medical CampusAuroraCO
| |
Collapse
|
12
|
Fan RH, Liu CG, Zhang Z, Xing MQ, Han YM, Zhou T, Wang XY, Wang C. Metabolomics analysis of Semen Cuscutae protection of kidney deficient model rats using ultra high-performance liquid chromatography-quadrupole time-of-flight Mass Spectrometry. J Pharm Biomed Anal 2022; 207:114432. [PMID: 34715580 DOI: 10.1016/j.jpba.2021.114432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
The traditional Chinese medicine syndrome "Kidney yang deficiency" is a kind of chronic kidney disease. With the development of society, the incidence of chronic kidney disease is increasing year by year, which also brings great economic pressure to people. Semen Cuscutae is an important traditional Chinese medicine to tonify liver and kidney, mainly used to tonify deficiency of liver and kidney, spleen and kidney deficiency and diarrhea. Although there are a lot of research at the molecular and cellular level to study the Semen Cuscutae on the treatment of Kidney yang deficiency syndrome, but there's no comprehensive research complete with metabolomics method from plasma, feces and urine metabolites aspects. The purpose of this study is to find the potential differential biomarkers of the Kidney yang deficiency model and blank group rats in plasma, urine and feces, and to investigate the mechanism of Semen Cuscutae in the treatment of Kidney yang deficiency syndrome. In this study, ultra high-performance liquid chromatography-quadrupole time-of-flight Mass Spectrometry (UPLC-QTOF/MS) was used to identify potential biomarkers. Through the analysis of metabolic profiles of plasma, urine, and feces, as well as multivariate statistical analysis and pathway analysis, the therapeutic mechanism of Semen Cuscutae for Kidney yang deficiency syndrome was described. The results showed that there were 69 differential metabolites in plasma, 93 differential metabolites in feces and 62 differential metabolites in urine, and the changes of the levels of these biomarkers showed that Semen Cuscutae had a good therapeutic effect on Kidney yang deficiency syndrome. Through the analysis of the channel, the metabolite changes mainly affected the steroid hormone biosynthesis, arachidonic acid metabolism, primary bile acid biosynthesis, sheath lipid metabolism and biosynthesis of tyrosine, phenylalanine metabolism, retinol metabolism,taurine and hypotaurine metabolism, lysine degradation and vitamin B6 metabolism, tryptophan metabolism, terpenoid backbone biosynthesis and starch and sucrose metabolism. Therefore, the results suggested that Semen Cuscutae could exert a good therapeutic effect by reversing the levels of some biomarkers.
Collapse
Affiliation(s)
- Rong-Hua Fan
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province 11034, China.
| | - Chen-Guang Liu
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province 11034, China
| | - Ze Zhang
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province 11034, China
| | - Mei-Qi Xing
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province 11034, China
| | - Yu-Mo Han
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province 11034, China
| | - Tao Zhou
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province 11034, China
| | - Xin-Yue Wang
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province 11034, China
| | - Chen Wang
- Department of Health Inspection, College of Public Health, Shenyang Medical College, Shenyang, Liaoning Province 11034, China
| |
Collapse
|
13
|
Frazier R, Cai X, Lee J, Bundy JD, Jovanovich A, Chen J, Deo R, Lash JP, Anderson AH, Go AS, Feldman HI, Shafi T, Rhee EP, Miyazaki M, Chonchol M, Isakova T. Deoxycholic Acid and Risks of Cardiovascular Events, ESKD, and Mortality in CKD: The CRIC Study. Kidney Med 2022; 4:100387. [PMID: 35072049 PMCID: PMC8767130 DOI: 10.1016/j.xkme.2021.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rationale & Objective Elevated levels of deoxycholic acid (DCA) are associated with adverse outcomes and may contribute to vascular calcification in patients with chronic kidney disease (CKD). We tested the hypothesis that elevated levels of DCA were associated with increased risks of cardiovascular disease, CKD progression, and death in patients with CKD. Study Design Prospective observational cohort study. Setting & Participants We included 3,147 Chronic Renal Insufficiency Cohort study participants who had fasting DCA levels. The average age was 59 ± 11 years, 45.3% were women, 40.6% were African American, and the mean estimated glomerular filtration rate was 42.5 ± 16.0 mL/min/1.73 m2. Predictor Fasting DCA levels in Chronic Renal Insufficiency Cohort study participants. Outcomes Risks of atherosclerotic and heart failure events, end-stage kidney disease (ESKD), and all-cause mortality. Analytical Approach We used Tobit regression to identify predictors of DCA levels. We used Cox regression to examine the association between fasting DCA levels and clinical outcomes. Results The strongest predictors of elevated DCA levels in adjusted models were increased age and nonuse of statins. The associations between log-transformed DCA levels and clinical outcomes were nonlinear. After adjustment, DCA levels above the median were independently associated with higher risks of ESKD (HR, 2.67; 95% CI, 1.51-4.74) and all-cause mortality (HR, 2.13; 95% CI, 1.25-3.64). DCA levels above the median were not associated with atherosclerotic and heart failure events, and DCA levels below the median were not associated with clinical outcomes. Limitations We were unable to measure DCA longitudinally or in urinary or fecal samples, and we were unable to measure other bile acids. We also could not measure many factors that affect DCA levels. Conclusions In 3,147 participants with CKD stages 2-4, DCA levels above the median were independently associated with ESKD and all-cause mortality.
Collapse
|
14
|
Baek J, He C, Afshinnia F, Michailidis G, Pennathur S. Lipidomic approaches to dissect dysregulated lipid metabolism in kidney disease. Nat Rev Nephrol 2022; 18:38-55. [PMID: 34616096 PMCID: PMC9146017 DOI: 10.1038/s41581-021-00488-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 01/03/2023]
Abstract
Dyslipidaemia is a hallmark of chronic kidney disease (CKD). The severity of dyslipidaemia not only correlates with CKD stage but is also associated with CKD-associated cardiovascular disease and mortality. Understanding how lipids are dysregulated in CKD is, however, challenging owing to the incredible diversity of lipid structures. CKD-associated dyslipidaemia occurs as a consequence of complex interactions between genetic, environmental and kidney-specific factors, which to understand, requires an appreciation of perturbations in the underlying network of genes, proteins and lipids. Modern lipidomic technologies attempt to systematically identify and quantify lipid species from biological systems. The rapid development of a variety of analytical platforms based on mass spectrometry has enabled the identification of complex lipids at great precision and depth. Insights from lipidomics studies to date suggest that the overall architecture of free fatty acid partitioning between fatty acid oxidation and complex lipid fatty acid composition is an important driver of CKD progression. Available evidence suggests that CKD progression is associated with metabolic inflexibility, reflecting a diminished capacity to utilize free fatty acids through β-oxidation, and resulting in the diversion of accumulating fatty acids to complex lipids such as triglycerides. This effect is reversed with interventions that improve kidney health, suggesting that targeting of lipid abnormalities could be beneficial in preventing CKD progression.
Collapse
Affiliation(s)
- Judy Baek
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Chenchen He
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Farsad Afshinnia
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Subramaniam Pennathur
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Integrated gut microbiota and fecal metabolomics reveal the renoprotective effect of Rehmanniae Radix Preparata and Corni Fructus on adenine-induced CKD rats. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1174:122728. [PMID: 33975272 DOI: 10.1016/j.jchromb.2021.122728] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/18/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022]
Abstract
Rehmanniae Radix Preparata (RR) and Corni Fructus (CF), well-known traditional Chinese medicines (TCMs), were generally used together in the clinical practices to treat chronic kidney disease (CKD) with synergistic effects for thousands of years, but their combination mechanism remains largely unknown so far. Recent evidences have implicated intestinal flora as potential targets for the therapy of CKD. In this study, the CKD rat model was induced by adenine. The levels of proteinuria, serum creatine (SCr), blood urea nitrogen (BUN) and creatinine clearance (Ccr) were used to assess the cooperation effect of RR and CF. Furthermore, high-throughput 16S ribosomal RNA (rRNA) gene sequencing combined with fecal metabonomics based on UPLC-Q-TOF-MS/MS were applied to explore the variations of intestinal flora and their metabolic profiles. 16S rRNA gene sequencing data indicated that CKD rats treated with RR, CF and RC showed the differences in the composition of gut microbiota. The abundance of beneficial bacteria including Ruminococcaceae UCG-014, Ruminococcus 1, Prevotellaceae_NK3B31_group, Lachnospiraceae NK4A136 group and Lachnospiraceae UCG-001 were elevated in various degrees, while the opportunistic pathogen such as Desulfovibrio was markedly decreased after the treatment. Moreover, fecal metabolite profiles revealed 15 different metabolites associated with CKD. These metabolites were mainly involved in the related metabolic pathways such as amino acid metabolism, bile acids metabolism and glycerophospholipid metabolism. The results implied that gut flora and their metabolites might play a vital role in the progress of CKD, which provided a potential target for the development of novel drugs for the therapy of CKD.
Collapse
|
16
|
Wang YN, Hu HH, Zhang DD, Wu XQ, Liu JL, Guo Y, Miao H, Zhao YY. The Dysregulation of Eicosanoids and Bile Acids Correlates with Impaired Kidney Function and Renal Fibrosis in Chronic Renal Failure. Metabolites 2021; 11:127. [PMID: 33672315 PMCID: PMC7926759 DOI: 10.3390/metabo11020127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Chronic renal failure (CRF) is an irreversible deterioration of the renal functions that characterized by fluid electrolyte unbalance and metabolic-endocrine dysfunctions. Increasing evidence demonstrated that metabolic disturbances, especially dyslipidemia and profound changes in lipid and lipoprotein metabolism were involved in CRF. Identification of lipids associated with impaired kidney functions may play important roles in the understanding of biochemical mechanism and CRF treatment. Ultra-performance liquid chromatography coupled with high-definition mass spectrometry-based lipidomics was performed to identify important differential lipids in adenine-induced CRF rats and investigate the undergoing anti-fibrotic mechanism of Polyporus umbellatus (PPU) and ergone (ERG). Linear correlation analysis was performed between lipid species intensities and creatinine levels in serum. Adenine-induced rats exhibited declining kidney function and renal fibrosis. Compared with control rats, a panel of lipid species was identified in the serum of CRF rats. Our further study demonstrated that eight lipids, including leukotrienes and bile acids, presented a strong linear correlation with serum creatinine levels. In addition, receiver operating characteristics analysis showed that eight lipids exhibited excellent area under the curve for differentiating CRF from control rats, with high sensitivity and specificity. The aberrant changes of clinical biochemistry data and dysregulation of eight lipids could be significantly improved by the administration of PPU and ergone. In conclusion, CRF might be associated with the disturbance of leukotriene metabolism, bile acid metabolism and lysophospholipid metabolism. The levels of eicosanoids and bile acids could be used for indicating kidney function impairment in CRF. PPU could improve renal functions and either fully or partially reversed the levels of eicosanoids and bile acids.
Collapse
Affiliation(s)
- Yan-Ni Wang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi’an 710069, China; (Y.-N.W.); (H.-H.H.); (D.-D.Z.); (X.-Q.W.); (J.-L.L.)
| | - He-He Hu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi’an 710069, China; (Y.-N.W.); (H.-H.H.); (D.-D.Z.); (X.-Q.W.); (J.-L.L.)
| | - Dan-Dan Zhang
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi’an 710069, China; (Y.-N.W.); (H.-H.H.); (D.-D.Z.); (X.-Q.W.); (J.-L.L.)
| | - Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi’an 710069, China; (Y.-N.W.); (H.-H.H.); (D.-D.Z.); (X.-Q.W.); (J.-L.L.)
| | - Jian-Ling Liu
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi’an 710069, China; (Y.-N.W.); (H.-H.H.); (D.-D.Z.); (X.-Q.W.); (J.-L.L.)
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, 1700 Lomas Blvd NE, Albuquerque, NM 87131, USA;
| | - Hua Miao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi’an 710069, China; (Y.-N.W.); (H.-H.H.); (D.-D.Z.); (X.-Q.W.); (J.-L.L.)
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi’an 710069, China; (Y.-N.W.); (H.-H.H.); (D.-D.Z.); (X.-Q.W.); (J.-L.L.)
| |
Collapse
|
17
|
Metabolomic analysis of uremic pruritus in patients on hemodialysis. PLoS One 2021; 16:e0246765. [PMID: 33577623 PMCID: PMC7880487 DOI: 10.1371/journal.pone.0246765] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Pruritus is a common debilitating symptom experienced by hemodialysis patients. Treatment is difficult because the cause of uremic pruritus is not known. This study addressed the hypothesis that pruritus is caused by solutes that accumulate in the plasma when the kidneys fail. We sought to identify solutes responsible for uremic pruritus using metabolomic analysis to compare the plasma of hemodialysis patients with severe pruritus versus mild/no pruritus. Pruritus severity in hemodialysis patients was assessed using a 100-mm visual analogue scale (VAS), with severe pruritus defined as >70 mm and mild/no pruritus defined as <10 mm. Twelve patients with severe pruritus (Itch) and 24 patients with mild/no pruritus (No Itch) were included. Pre-treatment plasma and plasma ultrafiltrate were analyzed using an established metabolomic platform (Metabolon, Inc.). To identify solutes associated with pruritus, we compared the average peak area of each solute in the Itch patients to that of the No Itch patients using the false discovery rate (q value) and principal component analysis. Dialysis vintage, Kt/Vurea, and serum levels of calcium, phosphorus, PTH, albumin, ferritin, and hemoglobin were similar in the Itch and No Itch patients. Metabolomic analysis identified 1,548 solutes of which 609 were classified as uremic. No difference in the plasma or plasma ultrafiltrate levels of any solute or group of solutes was found between the Itch and No Itch patients. Metabolomic analysis of hemodialysis patients did not reveal any solutes associated with pruritus. A limitation of metabolomic analysis is that the solute of interest may not be included in the metabolomic platform’s chemical library. A role for uremic solutes in pruritus remains to be established.
Collapse
|
18
|
Howlett-Prieto Q, Langer C, Rezania K, Soliven B. Modulation of immune responses by bile acid receptor agonists in myasthenia gravis. J Neuroimmunol 2020; 349:577397. [PMID: 32979707 DOI: 10.1016/j.jneuroim.2020.577397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 01/13/2023]
Abstract
Bile acids bind to multiple receptors, including Takeda G protein-coupled receptor 5 (TGR5) and farnesoid-X-receptors alpha (FXRα). We compared the response of PBMCs to the activation of these receptors in healthy controls and myasthenic patients. We found that TGR5 is a more potent negative regulator of T cell cytokine response than FXRα in both groups. In contrast, TGR5 and FXRα agonists elicit distinct B cell responses in myasthenia compared to controls, specifically on the frequency of IL-6+ B cells and regulatory B cells, as well as IL-10 secretion from PBMCs. We propose that TGR5 is a potential therapeutic target in myasthenia.
Collapse
Affiliation(s)
- Quentin Howlett-Prieto
- Department of Neurology, The University of Chicago, Chicago, IL 60637, United States of America
| | - Collin Langer
- Department of Neurology, The University of Chicago, Chicago, IL 60637, United States of America
| | - Kourosh Rezania
- Department of Neurology, The University of Chicago, Chicago, IL 60637, United States of America
| | - Betty Soliven
- Department of Neurology, The University of Chicago, Chicago, IL 60637, United States of America.
| |
Collapse
|
19
|
Wei H, Wang L, An Z, Xie H, Liu W, Du Q, Guo Y, Wu X, Li S, Shi Y, Zhang X, Liu H. QiDiTangShen granules modulated the gut microbiome composition and improved bile acid profiles in a mouse model of diabetic nephropathy. Biomed Pharmacother 2020; 133:111061. [PMID: 33378964 DOI: 10.1016/j.biopha.2020.111061] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
QiDiTangShen granules (QDTS), a traditional Chinese herbal medicine, have been used in clinical practice for treating diabetic kidney disease for several years. In our previous study, we have demonstrated that QDTS displayed good efficacy on reducing proteinuria in mice with diabetic nephropathy (DN). However, the exact mechanism by which QDTS exerts its reno-protection remains largely unknown. To ascertain whether QDTS could target the gut microbiota-bile acid axis, the db/db mice were adopted as a mouse model of DN. After a 12-week of treatment, we found that QDTS significantly reduced urinary albumin excretion (UAE), and attenuated the pathological injuries of kidney in the db/db mice, while the body weight and blood glucose levels of those mice were not affected. In addition, we found that QDTS significantly altered the gut microbiota composition, and decreased serum levels of total bile acid (TBA) and BA profiles such as β-muricholic acid (β-MCA), taurocholic acid (TCA), tauro β-muricholic acid (Tβ-MCA) and deoxycholic acid (DCA). These BAs are associated with the activation of farnesoid X receptor (FXR), which is highly expressed in kidney. However, there was no significant difference between QDTS-treated and -untreated db/db mice regarding the renal expression of FXR, indicating that other mechanisms may be involved. Conclusively, our study revealed that QDTS significantly alleviated renal injuries in mice with DN. The gut microbiota-bile acid axis may be an important target for the reno-protection of QDTS in DN, but the specific mechanism merits further study.
Collapse
Affiliation(s)
- Huili Wei
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Lin Wang
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Zhichao An
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Huidi Xie
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Weijing Liu
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Qing Du
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Yan Guo
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Xi Wu
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Sicheng Li
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Yang Shi
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China
| | - Xianhui Zhang
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China; Health Management Center, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Dongsibei Road No. 279, Dongcheng District, Beijing, 100700, China.
| | - Hongfang Liu
- Department of Endocrinology and Nephrology, Renal Research Institute of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Haiyuncang Road No. 5, Beijing, 100700, China.
| |
Collapse
|
20
|
Liu J, Qu J, Chen H, Ge P, Jiang Y, Xu C, Chen H, Shang D, Zhang G. The pathogenesis of renal injury in obstructive jaundice: A review of underlying mechanisms, inducible agents and therapeutic strategies. Pharmacol Res 2020; 163:105311. [PMID: 33246170 DOI: 10.1016/j.phrs.2020.105311] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022]
Abstract
Kidney injury is one of the main complications of obstructive jaundice (OJ) and its pathogenesis has not been clarified. As an independent risk factor for OJ associated with significant morbidity and mortality, it can be mainly divided into two types of morphological injury and functional injury. We called these dysfunctions caused by OJ-induced kidney injury as OJKI. However, the etiology of OJKI is still not fully clear, and research studies on how OJKI becomes a facilitated factor of OJ are limited. This article reviews the underlying pathological mechanism from five aspects, including metabolisms of bile acids, hemodynamic disturbances, oxidative stress, inflammation and the organic transporter system. Some nephrotoxic drugs and measures that can enhance or reduce the renal function with potential intervention in perioperative periods to alleviate the incidence of OJKI were also described. Furthermore, a more in-depth study on the pathogenesis of OJKI from multiple aspects for exploring more targeted treatment measures were further put forward, which may provide new methods for the prevention and treatment of clinical OJKI and improve the prognosis.
Collapse
Affiliation(s)
- Jiayue Liu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Jialin Qu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Haiyang Chen
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Peng Ge
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Yuankuan Jiang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Caiming Xu
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Hailong Chen
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Dong Shang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China; Department of General Surgery, Pancreatic-Biliary Center, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China
| | - Guixin Zhang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China.
| |
Collapse
|
21
|
Guan T, Xin Y, Zheng K, Wang R, Zhang X, Jia S, Li S, Cao C, Zhao X. Metabolomics analysis of the effects of quercetin on renal toxicity induced by cadmium exposure in rats. Biometals 2020; 34:33-48. [PMID: 33033991 DOI: 10.1007/s10534-020-00260-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023]
Abstract
This study aims to explore the protective effects of quercetin against cadmium-induced nephrotoxicity utilizing metabolomics methods. Male Sprague-Dawley rats were randomly assigned to six groups: control, different dosages of quercetin (10 and 50 mg/kg·bw, respectively), CdCl2 (4.89 mg/kg·bw) and different dosages quercetin plus CdCl2 groups. After 12 weeks, the kidneys were collected for metabolomics analysis and histopathology examination. In total, 11 metabolites were confirmed, the intensities of which significantly changed (up-regulated or down-regulated) compared with the control group (p < 0.00067). These metabolites include xanthosine, uric acid (UA), guanidinosuccinic acid (GSA), hypoxanthine (Hyp), 12-hydroxyeicosatetraenoic acid (tetranor 12-HETE), taurocholic acid (TCA), hydroxyphenylacetylglycine (HPAG), deoxyinosine (DI), ATP, formiminoglutamic acid (FIGLU) and arachidonic acid (AA). When high-dose quercetin and cadmium were given to rats concurrently, the intensities of above metabolites significantly restored (p < 0.0033 or p < 0.00067). The results showed quercetin attenuated Cd-induced nephrotoxicity by regulating the metabolism of lipids, amino acids, and purine, inhibiting oxidative stress, and protecting kidney functions.
Collapse
Affiliation(s)
- Tong Guan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Youwei Xin
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Kai Zheng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Ruijuan Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Xia Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Siqi Jia
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Siqi Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Can Cao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China.
| | - Xiujuan Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
22
|
Compositional and Functional Adaptations of Intestinal Microbiota and Related Metabolites in CKD Patients Receiving Dietary Protein Restriction. Nutrients 2020; 12:nu12092799. [PMID: 32932711 PMCID: PMC7551076 DOI: 10.3390/nu12092799] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022] Open
Abstract
The relationship between change of gut microbiota and host serum metabolomics associated with low protein diet (LPD) has been unraveled incompletely in CKD patients. Fecal 16S rRNA gene sequencing and serum metabolomics profiling were performed. We reported significant changes in the β-diversity of gut microbiota in CKD patients having LPD (CKD-LPD, n = 16). We identified 19 genera and 12 species with significant differences in their relative abundance among CKD-LPD patients compared to patients receiving normal protein diet (CKD-NPD, n = 27) or non-CKD controls (n = 34), respectively. CKD-LPD had a significant decrease in the abundance of many butyrate-producing bacteria (family Lachnospiraceae and Bacteroidaceae) associated with enrichment of functional module of butanoate metabolism, leading to concomitant reduction in serum levels of SCFA (acetic, heptanoic and nonanoic acid). A secondary bile acid, glyco λ-muricholic acid, was significantly increased in CKD-LPD patients. Serum levels of indoxyl sulfate and p-cresyl sulfate did not differ among groups. The relationship between abundances of microbes and metabolites remained significant in subset of resampling subjects of comparable characteristics. Enrichment of bacterial gene markers related to D-alanine, ketone bodies and glutathione metabolism was noted in CKD-LPD patients. Our analyses reveal signatures and functions of gut microbiota to adapt dietary protein restriction in renal patients.
Collapse
|
23
|
Changes in the Fecal Metabolome Are Associated with Feeding Fiber Not Health Status in Cats with Chronic Kidney Disease. Metabolites 2020; 10:metabo10070281. [PMID: 32660033 PMCID: PMC7407581 DOI: 10.3390/metabo10070281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 11/25/2022] Open
Abstract
The objective was to determine the effects of feeding different fiber sources to cats with chronic kidney disease (CKD) compared with healthy cats (both n = 10) on fecal metabolites. A cross-over within split-plot study design was performed using healthy and CKD cats (IRIS stage 1, 2, and 3). After cats were fed a complete and balanced dry food designed to aid in the management of renal disease for 14 days during a pre-trial period, they were randomly assigned to two fiber treatments for 4 weeks each. The treatment foods were formulated similar to pre-trial food and contained 0.500% betaine, 0.586% oat beta glucan, and either 0.407% short chain fructooligosaccharides (scFOS) fiber or 3.44% apple pomace. Both treatment foods had similar crude fiber (2.0 and 2.1% for scFOS and apple pomace, respectively) whereas soluble fiber was 0.8 and 1.6%, respectively. At baseline, CKD had very little impact on the fecal metabolome. After feeding both fiber sources, some fecal metabolite concentrations were significantly different compared with baseline. Many fecal uremic toxins decreased, although in healthy cats some increased; and some more so when feeding apple pomace compared with scFOS, e.g., hippurate, 4-hydroxyhippurate, and 4-methylcatechol sulfate; the latter was also increased in CKD cats. Changes in secondary bile acid concentrations were more numerous in healthy compared with CKD cats, and cats in both groups had greater increases in some secondary bile acids after consuming apple pomace compared with scFOS, e.g., tauroursodeoxycholate and hyocholate. Although changes associated with feeding fiber were more significant than changes associated with disease status, differential modulation of the gut-kidney axis using dietary fiber may benefit cats.
Collapse
|
24
|
Jia S, Guan T, Zhang X, Liu Y, Liu Y, Zhao X. Serum metabonomics analysis of quercetin against the toxicity induced by cadmium in rats. J Biochem Mol Toxicol 2020; 34:e22448. [PMID: 31967702 DOI: 10.1002/jbt.22448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/28/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
This study aimed to investigate the protective effect of quercetin against the toxicity induced by chronic exposure to low levels of cadmium in rats by an ultra performance liquid chromatography mass spectrometer. Rats were randomly divided into six groups as follows: control group (C), low dose of quercetin group (Q1: 10 mg/kg·bw), high dose of quercetin group (Q2: 50 mg/kg·bw), cadmium chloride group (D), low dose of quercetin plus cadmium chloride group (DQ1), and high dose of quercetin plus cadmium chloride group (DQ2). Cadmium chloride (CdCl2 ) was administered to rats by drinking water ad libitum in a concentration of 40 mg/L. The final amount of CdCl2 ingested was estimated from the water consumption data to be 4.85, 4.91, and 4.89 mg/kg·bw/day, for D, DQ1, and DQ2 groups, respectively. After a 12-week treatment, the serum samples of rats were collected for metabonomics analysis. Ten potential biomarkers were identified for which intensities were significantly increased or reduced as a result of the treatment. These metabolites included isorhamnetin 4'-O-glucuronide, 3-indolepropionic acid, tetracosahexaenoic acid, lysophosphatidylcholine (LysoPC) (20:5), lysoPC (18:3), lysophosphatidylethanolamine (LysoPE) (20:5/0:0), bicyclo-prostaglandin E2, sulpholithocholylglycine, lithocholyltaurine, and glycocholic acid. Results indicated that quercetin exerted a protective effect against cadmium-induced toxicity by regulating lipid and amino acid metabolism, enhancing the antioxidant defense system and protecting liver and kidney function.
Collapse
Affiliation(s)
- Siqi Jia
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Tong Guan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Xia Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Yajing Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Yanli Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Xiujuan Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Li R, Zeng L, Xie S, Chen J, Yu Y, Zhong L. Targeted metabolomics study of serum bile acid profile in patients with end-stage renal disease undergoing hemodialysis. PeerJ 2019; 7:e7145. [PMID: 31245185 PMCID: PMC6585905 DOI: 10.7717/peerj.7145] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/18/2019] [Indexed: 12/12/2022] Open
Abstract
Background Bile acids are important metabolites of intestinal microbiota, which have profound effects on host health. However, whether metabolism of bile acids is involved in the metabolic complications of end-stage renal disease (ESRD), and the effects of bile acids on the prognosis of ESRD remain obscure. Therefore, this study investigated the relationship between altered bile acid profile and the prognosis of ESRD patients. Methods A targeted metabolomics approach based on ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to determine the changes in serum bile acids between ESRD patients (n = 77) and healthy controls (n = 30). Univariate and multivariate statistical analyses were performed to screen the differential proportions of bile acids between the two groups. Results Six differentially expressed bile acids were identified as potential biomarkers for differentiating ESRD patients from healthy subjects. The decreased concentrations of chenodeoxycholic acid, deoxycholic acid and cholic acid were significantly associated with dyslipidemia in ESRD patients. Subgroup analyses revealed that the significantly increased concentrations of taurocholic acid, taurochenodeoxycholic acid, taurohyocholic acid and tauro α-muricholic acid were correlated to the poor prognosis of ESRD patients. Conclusions The serum bile acid profile of ESRD patients differed significantly from that of healthy controls. In addition, the altered serum bile acid profile might contribute to the poor prognosis and metabolic complications of ESRD patients.
Collapse
Affiliation(s)
- Rong Li
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zeng
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuqin Xie
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianwei Chen
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Yu
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Zhong
- Department of Nephrology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Zhao J, Zhang QL, Shen JH, Wang K, Liu J. Magnesium lithospermate B improves the gut microbiome and bile acid metabolic profiles in a mouse model of diabetic nephropathy. Acta Pharmacol Sin 2019; 40:507-513. [PMID: 29941869 PMCID: PMC6461985 DOI: 10.1038/s41401-018-0029-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/17/2018] [Indexed: 12/13/2022]
Abstract
Magnesium lithospermate B (MLB) is a new drug marketed in China to treat angina, but its low oral bioavailability limits its clinical application to the intravenous route. Paradoxically, orally administered low-dose MLB was found to alleviate kidney injury in diabetic nephropathy (DN) rats, but its mechanism of action remains unknown. In recent years, the kidney-gut axis has been suspected to be involved in kidney damage pathogenesis, potentially representing a non-classical pathway for pharmacologic intervention. To ascertain whether MLB targets the kidney-gut axis, streptozotocin (STZ)-treated mice were prepared as a mouse model of DN. The STZ mice were treated with MLB (50 mg kg-1 d-1, p.o.) for 8 weeks. Twenty-four-hour urinary albumin was detected to mirror kidney function. At week 4, 6, 8, feces were collected; bile acids (BAs) were quantified to examine the alterations in the BA metabolic profiles, and bacterial 16S rRNA gene fragments were sequenced to identify alterations in gut microbial composition. In STZ mice, 24-h urinary albumin levels and total fecal BAs, especially cholic acids (CAs) and deoxycholic acids (DCAs) were greatly increased, and the gut microbiome was dramatically shifted compared with control mice. Oral administration of MLB significantly decreased 24-h urinary albumin levels and total BAs, CAs and DCAs, and reversed CA:TCA (taurocholic acid) and DCA:CA ratios. It also changed the microbiome composition in STZ mice based on operational units. Thus the therapeutic effect of MLB on kidney injury might be attributed (at least partially) to its ability to modulate the disordered gut microbiome and BA metabolism.
Collapse
Affiliation(s)
- Jing Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qing-Li Zhang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian-Hua Shen
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jia Liu
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
27
|
Wei R, Ross AB, Su M, Wang J, Guiraud SP, Draper CF, Beaumont M, Jia W, Martin FP. Metabotypes Related to Meat and Vegetable Intake Reflect Microbial, Lipid and Amino Acid Metabolism in Healthy People. Mol Nutr Food Res 2018; 62:e1800583. [PMID: 30098305 DOI: 10.1002/mnfr.201800583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/25/2018] [Indexed: 01/05/2023]
Abstract
SCOPE The objective of this study is to develop a new methodology to identify the relationship between dietary patterns and metabolites indicative of food intake and metabolism. METHODS AND RESULTS Plasma and urine samples from healthy Swiss subjects (n = 89) collected over two time points are analyzed for a panel of host-microbial metabolites using GC- and LC-MS. Dietary intake is evaluated using a validated food frequency questionnaire. Dietary pattern clusters and relationships with metabolites are determined using Non-Negative Matrix Factorization (NNMF) and Sparse Generalized Canonical Correlation Analysis (SGCCA). Use of NNMF allows detection of latent diet clusters in this population, which describes a high intake of meat or vegetables. SGCCA associates these clusters to i) diet-host microbial and lipid associated bile acid metabolism, and ii) essential amino acid metabolism. CONCLUSION This novel application of NNMF and SGCCA allows detection of distinct metabotypes for meat and vegetable dietary patterns in a heterogeneous population. As many of the metabolites associated with meat or vegetable intake are the result of host-microbiota interactions, the findings support a role for microbiota mediating the metabolic imprinting of different dietary choices.
Collapse
Affiliation(s)
- Runmin Wei
- University of Hawaii Cancer Center (UHCC), Honolulu, HI, 96813, USA.,Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Alastair B Ross
- Analytical Science Department, Nestlé Research Center, Lausanne, Switzerland.,Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - MingMing Su
- University of Hawaii Cancer Center (UHCC), Honolulu, HI, 96813, USA
| | - Jingye Wang
- University of Hawaii Cancer Center (UHCC), Honolulu, HI, 96813, USA
| | - Seu-Ping Guiraud
- Nutrition and Metabolic health Department, Nestle Institute of Health Sciences (NIHS), Lausanne, Switzerland
| | - Colleen Fogarty Draper
- Nutrition and Metabolic health Department, Nestle Institute of Health Sciences (NIHS), Lausanne, Switzerland
| | - Maurice Beaumont
- Clinical Development Unit, Nestlé Research Center, Lausanne, Switzerland
| | - Wei Jia
- University of Hawaii Cancer Center (UHCC), Honolulu, HI, 96813, USA
| | - Francois-Pierre Martin
- Nutrition and Metabolic health Department, Nestle Institute of Health Sciences (NIHS), Lausanne, Switzerland
| |
Collapse
|
28
|
Hu L, Bo L, Zhang M, Li S, Zhao X, Sun C. Metabonomics analysis of serum from rats given long-term and low-level cadmium by ultra-performance liquid chromatography-mass spectrometry. Xenobiotica 2017; 48:1079-1088. [PMID: 29143552 DOI: 10.1080/00498254.2017.1397811] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
1. This study evaluated the toxicity of chronic exposure to low-level cadmium (Cd) in rats using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Forty male Sprague-Dawley rats were randomly assigned to four groups, namely, the control group, low-dose group (0.13 mg/kg·bw), middle-dose group (0.8 mg/kg·bw) and high-dose group (4.89 mg/kg·bw). The rats continuously received CdCl2 via drinking water for 24 weeks. Serum samples were collected for metabonomics analysis. The data generated from the UPLC-MS was analysed using principal components analysis (PCA) and partial least-squares discriminant analysis (PLS-DA). PLS-DA model with satisfactory explanatory and predictive ability is capable of discriminating the treatment groups from the control group. 2. Finally, the 10 metabolites were identified and showed significant changes in some treatment groups compared with that in the control group (p < 0.0167 or p < 0.003). Exposure to Cd resulted in increased intensities of lysophosphatidic acid (P-16:0e/0:0), glycocholic acid, bicyclo-prostaglandin E2, lithocholyltaurine, sulfolithocholylglycine, lysophosphatidylethanolamine (20:5/0:0) and lysophosphatidylcholine (20:0), as well as decreased intensities of 3-indolepropionic acid, phosphatidylcholine (18:4/18:0) and 15S-hydroxyeicosatrienoic acid in rat serum. 3. Results suggest that exposure to Cd can cause disturbances in the lipid metabolism, amino acid metabolism, nervous system, antioxidant defence system, liver and kidney function.
Collapse
Affiliation(s)
- Liyan Hu
- a Department of Nutrition and Food Hygiene , Public Health College, Harbin Medical University , Harbin , China
| | - Lu Bo
- a Department of Nutrition and Food Hygiene , Public Health College, Harbin Medical University , Harbin , China
| | - Meiyan Zhang
- a Department of Nutrition and Food Hygiene , Public Health College, Harbin Medical University , Harbin , China
| | - Siqi Li
- a Department of Nutrition and Food Hygiene , Public Health College, Harbin Medical University , Harbin , China
| | - Xiujuan Zhao
- a Department of Nutrition and Food Hygiene , Public Health College, Harbin Medical University , Harbin , China
| | - Changhao Sun
- a Department of Nutrition and Food Hygiene , Public Health College, Harbin Medical University , Harbin , China
| |
Collapse
|
29
|
Bush KT, Wu W, Lun C, Nigam SK. The drug transporter OAT3 (SLC22A8) and endogenous metabolite communication via the gut-liver-kidney axis. J Biol Chem 2017; 292:15789-15803. [PMID: 28765282 DOI: 10.1074/jbc.m117.796516] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/27/2017] [Indexed: 12/12/2022] Open
Abstract
The organic anion transporters OAT1 (SLC22A6) and OAT3 (SLC22A8) have similar substrate specificity for drugs, but it is far from clear whether this holds for endogenous substrates. By analysis of more than 600 metabolites in the Oat3KO (Oat3 knockout) by LC/MS, we demonstrate OAT3 involvement in the movement of gut microbiome products, key metabolites, and signaling molecules, including those flowing through the gut-liver-kidney axis. Major pathways affected included those involved in metabolism of bile acids, flavonoids, nutrients, amino acids (including tryptophan-derivatives that are uremic toxins), and lipids. OAT3 is also critical in elimination of liver-derived phase II metabolites, particularly those undergoing glucuronidation. Analysis of physicochemical features revealed nine distinct metabolite groups; at least one member of most clusters has been previously validated in transport assays. In contrast to drugs interacting with the OATs, endogenous metabolites accumulating in the Oat1KO (Oat1 knockout) versus Oat3KO have distinct differences in their physicochemical properties; they are very different in size, number of rings, hydrophobicity, and molecular complexity. Consistent with the Remote Sensing and Signaling Hypothesis, the data support the importance of the OAT transporters in inter-organ and inter-organismal remote communication via transporter-mediated movement of key metabolites and signaling molecules (e.g. gut microbiome-to-intestine-to-blood-to-liver-to-kidney-to-urine). We discuss the possibility of an intimate connection between OATs and metabolite sensing and signaling pathways (e.g. bile acids). Furthermore, the metabolomics and pathway analysis support the view that OAT1 plays a greater role in kidney proximal tubule metabolism and OAT3 appears relatively more important in systemic metabolism, modulating levels of metabolites flowing through intestine, liver, and kidney.
Collapse
Affiliation(s)
| | | | - Christina Lun
- Biology, University of California San Diego, La Jolla, California 92093
| | | |
Collapse
|
30
|
Chen H, Cao G, Chen DQ, Wang M, Vaziri ND, Zhang ZH, Mao JR, Bai X, Zhao YY. Metabolomics insights into activated redox signaling and lipid metabolism dysfunction in chronic kidney disease progression. Redox Biol 2016; 10:168-178. [PMID: 27750081 PMCID: PMC5066525 DOI: 10.1016/j.redox.2016.09.014] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 01/25/2023] Open
Abstract
Early detection is critical in prevention and treatment of kidney disease. However currently clinical laboratory and histopathological tests do not provide region-specific and accurate biomarkers for early detection of kidney disease. The present study was conducted to identify sensitive biomarkers for early detection and progression of tubulo-interstitial nephropathy in aristolochic acid I-induced rats at weeks 4, 8 and 12. Biomarkers were validated using aristolochic acid nephropathy (AAN) rats at week 24, adenine-induced chronic kidney disease (CKD) rats and CKD patients. Compared with control rats, AAN rats showed anemia, increased serum urea and creatinine, progressive renal interstitial fibrosis, activation of nuclear factor-kappa B, and up-regulation of pro-inflammatory, pro-oxidant, and pro-fibrotic proteins at weeks 8 and 12. However, no significant difference was found at week 4. Metabolomics identified 12-ketodeoxycholic acid, taurochenodesoxycholic acid, LPC(15:0) and docosahexaenoic acid as biomarkers for early detection of tubulo-interstitial nephropathy. With prolonging aristolochic acid I exposure, LPE(20:2), cholic acid, chenodeoxycholic acid and LPC(17:0) were identified as biomarkers for progression from early to advanced AAN and lysoPE(22:5), indoxyl sulfate, uric acid and creatinine as biomarkers of advanced AAN. These biomarkers were reversed by treatment of irbesartan and ergone in AAN rats at week 24 and adenine-induced CKD rats. In addition, these biomarkers were also reversed by irbesartan treatment in CKD patients.
Collapse
Affiliation(s)
- Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Gang Cao
- Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ming Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, MedSci 1, C352, UCI Campus, Irvine, CA 92897, USA
| | - Zhi-Hao Zhang
- National Center for Natural Products Research, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Jia-Rong Mao
- Department of Nephrology, the Affiliated Hospital of Shaanxi Institute of Traditional Chinese Medicine, No. 2 Xihuamen, Xi'an, Shaanxi 710003, China
| | - Xu Bai
- Solution Centre, Waters Technologies (Shanghai) Ltd., No. 1000 Jinhai Road, Shanghai 201203, PR China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|