1
|
Kanewska A, Lackner I, Friedrich A, Winkelmann M, Rojewski M, Weber B, Preßmar J, Perl M, Schrezenmeier H, Kalbitz M. Immunomodulatory and cardio-protective effects of differentially originated multipotent mesenchymal stroma cells during polymicrobial sepsis in mice. Eur J Trauma Emerg Surg 2025; 51:178. [PMID: 40253667 PMCID: PMC12009780 DOI: 10.1007/s00068-025-02862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/03/2025] [Indexed: 04/22/2025]
Abstract
PURPOSE Sepsis is a life-threatening condition with cardiac complications being an independent predictor of poor outcome. Although their mechanisms have been widely investigated, therapeutic options remain limited. One promising therapeutic tool are mesenchymal stromal cells (MSCs). The aim of this study is to investigate the immunomodulatory effects of human MSCs from two different sources (bone marrow/BMMSC and adipose tissue/ASC) and to evaluate their cardioprotective potential. METHODS 60 adult male C57BL/6 mice were divided into sham, sepsis (cecal ligation puncture (CLP)) and two i.v. treatment groups CLP + human BMMSC and CLP + human ASC with 5 animals in each group. The observation periods were 8, 24 and 72 h. Left ventricular tissue was analyzed histologically, by qPCR (C3ar, C5ar1, Il-1b, Il-6, Il-10, Tlr2, Tlr4, Tnfa, and Nlrp3) and western blot. Cardiac damage markers troponin I and heart fatty acid binding protein (HFABP) were detected in serum by ELISA. RESULTS Troponin I and HFABP were significantly increased in CLP group after 8 h compared to sham. In cardiac tissue the expression of C3ar, C5ar1, Il-1b, Il-6, Il-10, Tlr2, Tlr4, Tnfa and Nlrp3 inflammasome was upregulated up to 24h after CLP compared to sham. After BMMSC treatment, C3ar as well as C5ar, Tlr2 and Il-10 mRNA expression in left ventricle was downregulated compared to CLP, whereas ASC treatment was associated with the downregulation of Il-6 and Nlrp3. CONCLUSIONS CLP-induced polymicrobial sepsis in mice was associated with cardiac damage and increased inflammation in left ventricular tissue. Therapeutic systemic application of human BMMSC and ASC ameliorated damage and inflammation in the heart.
Collapse
Affiliation(s)
- Anna Kanewska
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Ina Lackner
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Traumatology, Hand, Plastic and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Anne Friedrich
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martina Winkelmann
- Institute for Transfusion Medicine, University Medical Center Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service, Ulm, Germany
| | - Markus Rojewski
- Institute for Transfusion Medicine, University Medical Center Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service, Ulm, Germany
| | - Birte Weber
- Department of Trauma Surgery and Orthopedics, University Hospital Frankfurt, Goethe-University, Frankfurt Am Main, Germany
| | - Jochen Preßmar
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Traumatology, Hand, Plastic and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Mario Perl
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Medical Center Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service, Ulm, Germany
| | - Miriam Kalbitz
- Department of Trauma and Orthopedic Surgery, University Hospital Erlangen Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Traumatology, Hand, Plastic and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
- Military Medical City Hospital (MMCH), Doha, Qatar
| |
Collapse
|
2
|
Corrêa-Castro G, Silva-Freitas ML, de Paula L, Soares Pereira L, Dutra MRT, Albuquerque HG, Cota G, de Azevedo Martins C, Da-Cruz AM, Gomes-Silva A, Santos-Oliveira JR. A link between circulating immune complexes and acute kidney injury in human visceral leishmaniasis. Sci Rep 2024; 14:9870. [PMID: 38684845 PMCID: PMC11059367 DOI: 10.1038/s41598-024-60209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Visceral leishmaniasis (VL) is an infectious disease caused by Leishmania infantum. Clinically, VL evolves with systemic impairment, immunosuppression and hyperactivation with hypergammaglobulinemia. Although renal involvement has been recognized, a dearth of understanding about the underlying mechanisms driving acute kidney injury (AKI) in VL remains. We aimed to evaluate the involvement of immunoglobulins (Igs) and immune complexes (CIC) in the occurrence of AKI in VL patients. Fourteen VL patients were evaluated between early treatment and 12 months post-treatment (mpt). Anti-Leishmania Igs, CIC, cystatin C, C3a and C5a were assessed and correlated with AKI markers. Interestingly, high levels of CIC were observed in VL patients up to 6 mpt. Concomitantly, twelve patients met the criteria for AKI, while high levels of cystatin C were observed up to 6 mpt. Plasmatic cystatin C was positively correlated with CIC and Igs. Moreover, C5a was correlated with cystatin C, CIC and Igs. We did not identify any correlation between amphotericin B use and kidney function markers in VL patients, although this association needs to be further explored in subsequent studies. Our data reinforce the presence of an important renal function impairment during VL, suggesting the involvement of Igs, CIC, and C5a in this clinical condition.
Collapse
Affiliation(s)
- Gabriela Corrêa-Castro
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Núcleo de Ciências Biomédicas Aplicadas, Instituto Federal de Educação, Ciência e Tecnologia, IFRJ, Rio de Janeiro, Brazil
| | | | - Ludmila de Paula
- Hospital Eduardo de Menezes, Fundação Hospitalar do Estado de Minas Gerais, Minas Gerais, Brazil
| | - Leonardo Soares Pereira
- Hospital Eduardo de Menezes, Fundação Hospitalar do Estado de Minas Gerais, Minas Gerais, Brazil
| | | | | | - Glaucia Cota
- Instituto René Rachou, FIOCRUZ, Minas Gerais, Brazil
| | | | - Alda Maria Da-Cruz
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Disciplina de Parasitologia, DMIP, Faculdade de Ciências Médicas, UERJ, Rio de Janeiro, Brazil
- Rede de Pesquisas em Saúde do Estado do Rio de Janeiro, FAPERJ, Rio de Janeiro, Brazil
- Instituto Nacional de Neuroimunomodulação, INCT-NIM-CNPq, Rio de Janeiro, Brazil
| | - Adriano Gomes-Silva
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Pesquisa Clínica em Micobacterioses, Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Joanna Reis Santos-Oliveira
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.
- Núcleo de Ciências Biomédicas Aplicadas, Instituto Federal de Educação, Ciência e Tecnologia, IFRJ, Rio de Janeiro, Brazil.
- Instituto Nacional de Neuroimunomodulação, INCT-NIM-CNPq, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Davies LC, Queckbörner S, Jylhä CE, Andrén AT, Forshell TZP, Blanc KL. Lysis and phenotypic modulation of mesenchymal stromal cells upon blood contact triggers anti-inflammatory skewing of the peripheral innate immune repertoire. Cytotherapy 2023:S1465-3249(23)00954-4. [PMID: 37354149 DOI: 10.1016/j.jcyt.2023.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/29/2023] [Accepted: 05/24/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are used to treat immune-related disorders, including graft-versus-host disease. Upon intravenous infusion, MSCs trigger the instant blood-mediated inflammatory response, resulting in activation of both complement and coagulation cascades, and are rapidly cleared from circulation. Despite no/minimal engraftment, long-term immunoregulatory properties are evident. The aim of this study was to establish the effects of blood exposure on MSC viability and immunomodulatory functions. METHODS Human, bone marrow derived MSCs were exposed to human plasma +/- heat inactivation or whole blood. MSC number, viability and cellular damage was assessed using the JC-1 mitochondrial depolarization assay and annexin V staining. C3c binding and expression of the inhibitory receptors CD46, CD55 and CD59 and complement receptors C3aR and C5aR were evaluated by flow cytometry. MSCs pre-exposed to plasma were cultured with peripheral blood mononuclear cells (PBMCs) and monocyte subsets characterized by flow cytometry. The PBMC and MSC secretome was assessed using enzyme-linked immunosorbent assays against tumor necrosis factor alpha, interleukin (IL)-6 and IL-10. Monocyte recruitment towards the MSC secretome was evaluated using Boyden chambers and screened for chemotactic factors including monocyte chemoattractant protein (MCP)-1. MSC effects on the peripheral immune repertoire was also evaluated in whole blood by flow cytometry. RESULTS Plasma induced rapid lysis of 57% of MSCs, which reduced to 1% lysis with heat inactivation plasma. Of those cells that were not lysed, C3c could be seen bound to the surface of the cells, with a significant swelling of the MSCs and induction of cell death. The MSC secretome reduced monocyte recruitment, in part due to a reduction in MCP-1, and downregulated PBMC tumor necrosis factor alpha secretion while increasing IL-6 levels in the co-culture supernatant. A significant decrease in CD14+ monocytes was evident after MSC addition to whole blood alongside a significant increase in IL-6 levels, with those remaining monocytes demonstrating an increase in classical and decrease in non-classical subsets. This was accompanied by a significant increase in both mononuclear and polymorphonuclear myeloid-derived suppressor cells. CONCLUSIONS This study demonstrates that a significant number of MSCs are rapidly lysed upon contact with blood, with those surviving demonstrating a shift in their phenotype, including a reduction in the secretion of monocyte recruitment factors and an enhanced ability to skew the phenotype of monocytes. Shifts in the innate immune repertoire, towards an immunosuppressive profile, were also evident within whole blood after MSC addition. These findings suggest that exposure to blood components can promote peripheral immunomodulation via multiple mechanisms that persists within the system long after the infused MSCs have been cleared.
Collapse
Affiliation(s)
- Lindsay C Davies
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Suzanna Queckbörner
- Department of Women's and Children's Health, Division of Obstetrics and Gynecology, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
| | - Cecilia E Jylhä
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anton Törnqvist Andrén
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tacha Zi Plym Forshell
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Katarina Le Blanc
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden; CAST, Patient Area Cell Therapies and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Gao Q, Jia F, Li X, Kong Y, Tian Z, Bi L, Li L. Biophysical cues to improve the immunomodulatory capacity of mesenchymal stem cells: The progress and mechanisms. Biomed Pharmacother 2023; 162:114655. [PMID: 37031489 DOI: 10.1016/j.biopha.2023.114655] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can maintain immune homeostasis and many preclinical trials with MSCs have been carried out around the world. In vitro culture of MSCs has been found to result in the decline of immunomodulatory capacity, migration and proliferation. To address these problems, simulating the extracellular environment for preconditioning of MSCs is a promising and inexpensive method. Biophysical cues in the external environment that MSCs are exposed to have been shown to affect MSC migration, residency, differentiation, secretion, etc. We review the main ways in which MSCs exert their immunomodulatory ability, and summarize recent advances in mechanical preconditioning of MSCs to enhance immunomodulatory capacity and related mechanical signal sensing and transduction mechanisms.
Collapse
Affiliation(s)
- Qingyuan Gao
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun 130021, China
| | - Fangru Jia
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Xiangpan Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Yanan Kong
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Zhenya Tian
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun 130021, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
5
|
Stem Cells in Kidney Ischemia: From Inflammation and Fibrosis to Renal Tissue Regeneration. Int J Mol Sci 2023; 24:ijms24054631. [PMID: 36902062 PMCID: PMC10002584 DOI: 10.3390/ijms24054631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Ischemic nephropathy consists of progressive renal function loss due to renal hypoxia, inflammation, microvascular rarefaction, and fibrosis. We provide a literature review focused on kidney hypoperfusion-dependent inflammation and its influence on renal tissue's ability to self-regenerate. Moreover, an overview of the advances in regenerative therapy with mesenchymal stem cell (MSC) infusion is provided. Based on our search, we can point out the following conclusions: 1. endovascular reperfusion is the gold-standard therapy for RAS, but its success mostly depends on treatment timeliness and a preserved downstream vascular bed; 2. anti-RAAS drugs, SGLT2 inhibitors, and/or anti-endothelin agents are especially recommended for patients with renal ischemia who are not eligible for endovascular reperfusion for slowing renal damage progression; 3. TGF-β, MCP-1, VEGF, and NGAL assays, along with BOLD MRI, should be extended in clinical practice and applied to a pre- and post-revascularization protocols; 4. MSC infusion appears effective in renal regeneration and could represent a revolutionary treatment for patients with fibrotic evolution of renal ischemia.
Collapse
|
6
|
Clinicopathological features and prognostic significance of C5aR in human solid tumors: a Meta-analysis. BMC Cancer 2021; 21:1136. [PMID: 34688269 PMCID: PMC8540875 DOI: 10.1186/s12885-021-08883-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND C5aR has been extensively studied in recent years as an essential component of the complement system. However, the role of C5aR in tumors has not been sufficiently investigated and summarized. The aim of this meta-analysis was to investigate the prognostic value of C5aR in solid tumors as well as the correlation between C5aR and clinicopathological features. METHODS Relevant study collection was performed in PubMed, Embase, Web of Science, BIOSIS Previews, Cochrane Library until July 10, 2021. Pooled hazard ratios (HRs), odds ratios (ORs), and 95% confidence intervals (CIs) were calculated. Sensitivity analyses were performed to assess the robustness of this study, while publication bias was tested by Begg's and Egger's tests. RESULTS A total of 11 studies involving 1577 patients were included in the study. Our results suggest that the high-level C5aR expression in tumor tissue predicted unsatisfactory overall survival (OS) (HR = 1.92, 95% CI:1.47-2.50, P < 0.001) and recurrence-free survival (RFS) (HR = 2.19, 95% CI:1.47-3.27, P < 0.001). Besides, a higher level of C5aR expression was associated with larger tumor size (OR = 1.58, 95% CI: 1.18-2.10, P = 0.002) and the occurrence of metastases in lymph nodes (OR = 1.99, 95% CI: 1.46-2.72, P<0.001), whereas it was independent of tumor stage, vascular invasion and tumor differentiation. CONCLUSION In conclusion, C5aR may be a potential biomarker for evaluating tumor prognosis and treatment.
Collapse
|
7
|
Calcat-i-Cervera S, Sanz-Nogués C, O'Brien T. When Origin Matters: Properties of Mesenchymal Stromal Cells From Different Sources for Clinical Translation in Kidney Disease. Front Med (Lausanne) 2021; 8:728496. [PMID: 34616756 PMCID: PMC8488400 DOI: 10.3389/fmed.2021.728496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced therapy medicinal products (ATMPs) offer new prospects to improve the treatment of conditions with unmet medical needs. Kidney diseases are a current major health concern with an increasing global prevalence. Chronic renal failure appears after many years of impairment, which opens a temporary window to apply novel therapeutic approaches to delay or halt disease progression. The immunomodulatory, anti-inflammatory, and pro-regenerative properties of mesenchymal stromal cells (MSCs) have sparked interest for their use in cell-based regenerative therapies. Currently, several early-phase clinical trials have been completed and many are ongoing to explore MSC safety and efficacy in a wide range of nephropathies. However, one of the current roadblocks to the clinical translation of MSC therapies relates to the lack of standardization and harmonization of MSC manufacturing protocols, which currently hinders inter-study comparability. Studies have shown that cell culture processing variables can have significant effects on MSC phenotype and functionality, and these are highly variable across laboratories. In addition, heterogeneity within MSC populations is another obstacle. Furthermore, MSCs may be isolated from several sources which adds another variable to the comparative assessment of outcomes. There is now a growing body of literature highlighting unique and distinctive properties of MSCs according to the tissue origin, and that characteristics such as donor, age, sex and underlying medical conditions may alter the therapeutic effect of MSCs. These variables must be taken into consideration when developing a cell therapy product. Having an optimal scale-up strategy for MSC manufacturing is critical for ensuring product quality while minimizing costs and time of production, as well as avoiding potential risks. Ideally, optimal scale-up strategies must be carefully considered and identified during the early stages of development, as making changes later in the bioprocess workflow will require re-optimization and validation, which may have a significant long-term impact on the cost of the therapy. This article provides a summary of important cell culture processing variables to consider in the scale-up of MSC manufacturing as well as giving a comprehensive review of tissue of origin-specific biological characteristics of MSCs and their use in current clinical trials in a range of renal pathologies.
Collapse
Affiliation(s)
| | | | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), CÚRAM, Biomedical Science Building, National University of Ireland, Galway, Ireland
| |
Collapse
|
8
|
Wen Y, Shen F, Wu H. Role of C5a and C5aR in doxorubicin-induced cardiomyocyte senescence. Exp Ther Med 2021; 22:1114. [PMID: 34504568 PMCID: PMC8383765 DOI: 10.3892/etm.2021.10548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/11/2021] [Indexed: 01/10/2023] Open
Abstract
Doxorubicin (DOX) is an efficacious antineoplastic drug; however, its use is limited due to its cardiotoxicity. Cardiomyocyte senescence is considered to be a key factor in the development of DOX-related cardiomyopathy. Complement component 5a (C5a) and the C5a receptor (C5aR) have been reported to play a key role in the process of cellular senescence. However, to the best of our knowledge, the exact role of C5a and C5aR in cellular senescence in the heart remains largely unknown. Reverse transcription-quantitative (RT-q)PCR and western blot assays were used to analyze the expression levels of C5a and C5aR in H9c2 embryonic rat cardiomyocytes and AC16 human cardiomyocyte-like cells. The cells were treated with DOX and a C5aR antagonist (C5aRA). The expression of TNF-α and IFN-γ was determined using ELISA and western blotting. The levels of reactive oxygen species (ROS) were also measured using ELISA. Cellular senescence was determined using senescence-associated β-galactosidase (SA-β-gal) staining and by analyzing the protein expression levels of p53, p16, p21 and insulin-like growth factor-binding protein 3 (IGFBP3). The expression levels of C5a and C5aR were found to be upregulated during the DOX-induced senescence of H9c2 and AC16 cardiomyocytes. Treatment with C5aRA downregulated TNF-α and IFN-γ expression, in addition to ROS levels. Furthermore, C5aRA prevented DOX-induced cellular senescence and decreased the levels of positive SA-β-gal staining in H9c2 and AC16 cardiomyocytes, in addition to downregulating the expression levels of p53, p16, p21 and IGFBP3. C5aRA also increased the telomere length and telomerase activity in H9c2 and AC16 cardiomyocytes following DOX stimulation. In conclusion, the findings of the present study indicated that C5a and C5aR may play a key role in cardiomyocyte senescence, and treatment with C5aRA may be an effective method for preventing DOX-induced cardiomyocyte aging.
Collapse
Affiliation(s)
- Yahui Wen
- Medical Care Ward, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, P.R. China
| | - Feiyan Shen
- Department of Cardiology, QingPu District Central Hospital, Shanghai 201700, P.R. China
| | - Haibin Wu
- Department of Outpatients, Shenzhen Traditional Chinese Medicine Hospital, Guangdong Shenzhen Health Management Center, Shenzhen, Guangdong 518033, P.R. China
| |
Collapse
|
9
|
Tang H, Zhang P, Zeng L, Zhao Y, Xie L, Chen B. Mesenchymal stem cells ameliorate renal fibrosis by galectin-3/Akt/GSK3β/Snail signaling pathway in adenine-induced nephropathy rat. Stem Cell Res Ther 2021; 12:409. [PMID: 34271976 PMCID: PMC8283866 DOI: 10.1186/s13287-021-02429-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Tubulointerstitial fibrosis (TIF) is one of the main pathological features of various progressive renal damages and chronic kidney diseases. Mesenchymal stromal cells (MSCs) have been verified with significant improvement in the therapy of fibrosis diseases, but the mechanism is still unclear. We attempted to explore the new mechanism and therapeutic target of MSCs against renal fibrosis based on renal proteomics. METHODS TIF model was induced by adenine gavage. Bone marrow-derived MSCs was injected by tail vein after modeling. Renal function and fibrosis related parameters were assessed by Masson, Sirius red, immunohistochemistry, and western blot. Renal proteomics was analyzed using iTRAQ-based mass spectrometry. Further possible mechanism was explored by transfected galectin-3 gene for knockdown (Gal-3 KD) and overexpression (Gal-3 OE) in HK-2 cells with lentiviral vector. RESULTS MSCs treatment clearly decreased the expression of α-SMA, collagen type I, II, III, TGF-β1, Kim-1, p-Smad2/3, IL-6, IL-1β, and TNFα compared with model rats, while p38 MAPK increased. Proteomics showed that only 40 proteins exhibited significant differences (30 upregulated, 10 downregulated) compared MSCs group with the model group. Galectin-3 was downregulated significantly in renal tissues and TGF-β1-induced rat tubular epithelial cells and interstitial fibroblasts, consistent with the iTRAQ results. Gal-3 KD notably inhibited the expression of p-Akt, p-GSK3β and snail in TGF-β1-induced HK-2 cells fibrosis. On the contrary, Gal-3 OE obviously increased the expression of p-Akt, p-GSK3β and snail. CONCLUSION The mechanism of MSCs anti-renal fibrosis was probably mediated by galectin-3/Akt/GSK3β/Snail signaling pathway. Galectin-3 may be a valuable target for treating renal fibrosis.
Collapse
Affiliation(s)
- Huajun Tang
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, No.1, Section 1, Lingxiang Road, Matan Long District, Luzhou, Sichuan, People's Republic of China, 646000
| | - Peiyue Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, No.1, Section 1, Lingxiang Road, Matan Long District, Luzhou, Sichuan, People's Republic of China, 646000
| | - Lianlin Zeng
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, No.1, Section 1, Lingxiang Road, Matan Long District, Luzhou, Sichuan, People's Republic of China, 646000
| | - Yu Zhao
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, No.1, Section 1, Lingxiang Road, Matan Long District, Luzhou, Sichuan, People's Republic of China, 646000
| | - Libo Xie
- Department of Urology, Sichuan Clinical Research Center for Nephropathy, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
| | - Bo Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, No.1, Section 1, Lingxiang Road, Matan Long District, Luzhou, Sichuan, People's Republic of China, 646000.
| |
Collapse
|
10
|
Han Q, Wang X, Ding X, He J, Cai G, Zhu H. Immunomodulatory Effects of Mesenchymal Stem Cells on Drug-Induced Acute Kidney Injury. Front Immunol 2021; 12:683003. [PMID: 34149721 PMCID: PMC8213363 DOI: 10.3389/fimmu.2021.683003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
Drug-induced nephrotoxicity is an important and increasing cause of acute kidney injury (AKI), which accounts for approximately 20% of hospitalized patients. Previous reviews studies on immunity and AKI focused mainly on ischemia-reperfusion (IR), whereas no systematic review addressing drug-induced AKI and its related immune mechanisms is available. Recent studies have provided a deeper understanding on the mechanisms of drug-induced AKI, among which acute tubular interstitial injury induced by the breakdown of innate immunity was reported to play an important role. Emerging research on mesenchymal stem cell (MSC) therapy has revealed its potential as treatment for drug-induced AKI. MSCs can inhibit kidney damage by regulating the innate immune balance, promoting kidney repair, and preventing kidney fibrosis. However, it is important to note that there are various sources of MSCs, which impacts on the immunomodulatory ability of the cells. This review aims to address the immune pathogenesis of drug-induced AKI versus that of IR-induced AKI, and to explore the immunomodulatory effects and therapeutic potential of MSCs for drug-induced AKI.
Collapse
Affiliation(s)
- Qiuxia Han
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Xiaochen Wang
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaonan Ding
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Jun He
- Department of Genetics, Changsha Hospital for Maternal and Child Health Care, Hunan, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Hanyu Zhu
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
11
|
Human placental mesenchymal stem cells improve stroke outcomes via extracellular vesicles-mediated preservation of cerebral blood flow. EBioMedicine 2020; 63:103161. [PMID: 33348090 PMCID: PMC7753936 DOI: 10.1016/j.ebiom.2020.103161] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/30/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
Background Besides long-term trans-differentiation into neural cells, benefits of stem cell therapy (SCT) in ischemic stroke may include secretion of protective factors, which partly reflects extracellular vesicle (EVs) released by stem cell. However, the mechanism(s) by which stem cells/EVs limit stroke injury have yet to be fully defined. Methods We evaluated the protection effect of human placenta mesenchymal stem cells (hPMSC) as a potential form of SCT in experimental ischemic stroke ‘transient middle cerebral artery occusion (MCAO)/reperfusion’ mice model. Findings We found for the first time that intraperitoneal administration of hPMSCs or intravenous hPMSC-derived EVs, given at the time of reperfusion, significantly protected the ipsilateral hemisphere from ischemic injury. This protection was associated with significant restoration of normal blood flow to the post-MCAO brain. More importantly, EVs derived from hPMSC promote paracrine-based protection of SCT in the MCAO model in a cholesterol/lipid-dependent manner. Interpretation Together, our results demonstrated beneficial effects of hPMSC/EVs in experimental stroke models which could permit the rapid “translation” of these cells into clinical trials in the near-term.
Collapse
|
12
|
Li M, Jiang T, Zhang W, Xie W, Guo T, Tang X, Zhang J. Human umbilical cord MSC-derived hepatocyte growth factor enhances autophagy in AOPP-treated HK-2 cells. Exp Ther Med 2020; 20:2765-2773. [PMID: 32765771 PMCID: PMC7401891 DOI: 10.3892/etm.2020.8998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation may serve as an important treatment modality in chronic kidney disease (CKD); however, the underlying mechanisms remain unclear. Advanced oxidation protein products (AOPP) have been demonstrated to induce renal tubular epithelial cell (RTEC) injury via autophagy inhibition. Therefore, the present study was performed to investigate the role of human umbilical cord-derived MSCs (hUC-MSCs) in RTEC autophagy. AOPP-treated HK-2 cells were co-cultured with hUC-MSCs or treated with recombinant humanized hepatocyte growth factor (HGF). Western blotting was used to detect the levels of autophagy-and PI3K/AKT/mTOR signaling pathway-related proteins, and immunofluorescence staining was used to detect the levels of autophagy-related proteins. The HGF protein levels in HK-2 cells and the hUC-MSC co-culture system were measured. The cells were subsequently treated with tivantinib, an HGF competitive inhibitor, and the levels of autophagy-related proteins were detected. Microtubule-associated protein 1 light chain 3B (LC3B) II/LC3B I (LC3II/LC3I) and beclin 1 protein levels were increased, while p62, PI3K, phosphorylated (p)-AKT and the p-mTOR protein levels were decreased in AOPP-treated HK-2 cells co-cultured with hUC-MSC, compared with the group treated with AOPP only. Furthermore, HGF expression was increased in AOPP-treated HK-2 cells co-cultured with hUC-MSC, compared with the group treated with AOPP alone. When HGF activity was inhibited using tivantinib, these effects on LC3II/LC3I, beclin 1, p62, PI3K, p-AKT, and p-mTOR expression were partially reversed. Furthermore, the effects of tivantinib were reversed by Ly294002. In conclusion, the present study revealed that hUC-MSCs partially reversed AOPP-mediated inhibition of autophagy in HK-2 cells via secretion of HGF, indicating that hUC-MSCs may serve as a potential therapy for preventing the progression of CKD.
Collapse
Affiliation(s)
- Minhui Li
- Blood Purification Center, Nanhai Hospital of Southern Medical University, Foshan, Guangdong 528244, P.R. China
| | - Tingting Jiang
- Department of Nephrology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, P.R. China
| | - Wenying Zhang
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Wei Xie
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Tingting Guo
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Xun Tang
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Jun Zhang
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
13
|
Zilberman-Itskovich S, Efrati S. Mesenchymal Stromal Cell Uses for Acute Kidney Injury-Current Available Data and Future Perspectives: A Mini-Review. Front Immunol 2020; 11:1369. [PMID: 32793191 PMCID: PMC7385060 DOI: 10.3389/fimmu.2020.01369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
There is growing evidence concerning the potential use of mesenchymal stromal cells (MSCs) for different tissue injuries. Initially, the intended physiological use of MSCs was due to their ability to differentiate and replace damaged cells. However, MSCs have multiple effects, including being able to significantly modulate immunological responses. MSCs are currently being tested for neurodegenerative diseases, graft vs. host disease, kidney injury, and other chronic unremitting tissue damage. Using MSCs in acute tissue damage is only now being studied. Acute kidney injury (AKI) is a common cause of morbidity and mortality. After the primary insult, overactivation of the immune system culminates in additional secondary potentially permanent kidney damage. MSCs have the potential to ameliorate the secondary damage, and recent studies have shed important light on their mechanisms of action. This article summarizes the basics of MSCs therapy, the newly discovered mechanisms of action, and their potential application in the setting of AKI.
Collapse
Affiliation(s)
- Shani Zilberman-Itskovich
- Nephrology Division, Assaf-Harofeh (Shamir) Medical Center, Be'er Ya'akov, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shai Efrati
- Nephrology Division, Assaf-Harofeh (Shamir) Medical Center, Be'er Ya'akov, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
14
|
Zilberman-Itskovich S, Abu-Hamad R, Zarura R, Sova M, Hachmo Y, Stark M, Neuman S, Slavin S, Efrati S. Human mesenchymal stromal cells ameliorate complement induced inflammatory cascade and improve renal functions in a rat model of ischemia-reperfusion induced acute kidney injury. PLoS One 2019; 14:e0222354. [PMID: 31513644 PMCID: PMC6741994 DOI: 10.1371/journal.pone.0222354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/27/2019] [Indexed: 01/24/2023] Open
Abstract
Introduction The primary rational for using mesenchymal stromal cells (MSCs) to rejuvenate damaged tissue is mostly based on their capacity to trans-differentiate and repair injured organs. However, previous studies have demonstrated that MSCs are beneficial even at very early stages, before differentiation and proliferation can be expected. The aim of the current study was to investigate the multifaceted immunological effects of systemically administrating MSCs in the setting of acute kidney injury (AKI) induced by ischemic-reperfusion (I/R). Methods A rat model of I/R induced AKI was used. The rats underwent a unilateral nephrectomy with simultaneously clamping the contralateral kidney for 60 minutes. Four treatment groups received intravenously, increasing doses of human MSCs and after 48 hours, the rats were sacrificed. Blood was taken to evaluate renal functions and to measure systemic inflammatory markers. Kidneys were taken for histopathologic examinations and evaluations of intra-renal complement activation and inflammatory mediators. Results Renal functions improved in U shaped dose dependent manner. Mean serum creatinine levels were 4.5, 2.9, 2.6, 1.7 and 4.1 mg/dL in I/R + placebo, I/R + 150x103 cells, I/R + 250x103 cells, I/R + 500x103 cells and I/R + 1,000x103 cells respectfully (p-values<0.05). Urea demonstrated consistent results with the same U shape improvement manner. The extensive activation of the complement system was ameliorated in the MSCs treatment groups. In addition, MSCs significantly decreased intra-renal levels of IL-1β and TNF-α. It should be noted that the highest doses of MSCs induced renal hypoxia, marked by the Hypoxy-probe staining. Conclusions The early beneficial effect of MSCs in the setting of AKI may be attributed to their immunomodulatory effects. Safe treatment with MSCs can block the deleterious activation of the complement cascade and alleviate the hazardous inflammatory mediator-related cascade.
Collapse
Affiliation(s)
- Shani Zilberman-Itskovich
- Nephrology Division, Assaf-Harofeh Medical Center, Zerifin, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| | - Ramzia Abu-Hamad
- Nephrology Division, Assaf-Harofeh Medical Center, Zerifin, Israel
| | - Rina Zarura
- Nephrology Division, Assaf-Harofeh Medical Center, Zerifin, Israel
| | - Marina Sova
- Nephrology Division, Assaf-Harofeh Medical Center, Zerifin, Israel
| | - Yafit Hachmo
- Nephrology Division, Assaf-Harofeh Medical Center, Zerifin, Israel
| | - Moshe Stark
- Nephrology Division, Assaf-Harofeh Medical Center, Zerifin, Israel
| | - Sara Neuman
- Biotherapy International, The Center for Innovative Cancer Immunotherapy & Regenerative Medicine, Weizmann Center, Tel Aviv, Israel
| | - Shimon Slavin
- Biotherapy International, The Center for Innovative Cancer Immunotherapy & Regenerative Medicine, Weizmann Center, Tel Aviv, Israel
| | - Shai Efrati
- Nephrology Division, Assaf-Harofeh Medical Center, Zerifin, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
15
|
Stem Cells to Modulate IR: a Regenerative Medicine-Based Approach to Organ Preservation. CURRENT TRANSPLANTATION REPORTS 2019. [DOI: 10.1007/s40472-019-00240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Barzegar M, Kaur G, Gavins FNE, Wang Y, Boyer CJ, Alexander JS. Potential therapeutic roles of stem cells in ischemia-reperfusion injury. Stem Cell Res 2019; 37:101421. [PMID: 30933723 DOI: 10.1016/j.scr.2019.101421] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
Ischemia-reperfusion injury (I/RI), produced by an initial interruption of organ blood flow and its subsequent restoration, contributes significantly to the pathophysiologies of stroke, myocardial infarction, renal I/RI, intestinal I/RI and liver I/RI, which are major causes of disability (including transplant failure) and even mortality. While the restoration of blood flow is required to restore oxygen and nutrient requirements, reperfusion often triggers local and systemic inflammatory responses and subsequently elevate the ischemic insult where the duration of ischemia determines the magnitude of I/RI damage. I/RI increases vascular leakage, changes transcriptional and cell death programs, drives leukocyte entrapment and inflammation and oxidative stress in tissues. Therapeutic approaches which reduce complications associated with I/RI are desperately needed to address the clinical and economic burden created by I/RI. Stem cells (SC) represent ubiquitous and uncommitted cell populations with the ability to self-renew and differentiate into one or more developmental 'fates'. Like immune cells, stem cells can home to and penetrate I/R-injured tissues, where they can differentiate into target tissues and induce trophic paracrine signaling which suppress injury and maintain tissue functions perturbed by ischemia-reperfusion. This review article summarizes the present use and possible protective mechanisms underlying stem cell protection in diverse forms of ischemia-reperfusion.
Collapse
Affiliation(s)
- M Barzegar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - G Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - F N E Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Y Wang
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA; Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - C J Boyer
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - J S Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA.
| |
Collapse
|