1
|
Abonashey SG, Hassan HAFM, Shalaby MA, Fouad AG, Mobarez E, El-Banna HA. Formulation, pharmacokinetics, and antibacterial activity of florfenicol-loaded niosome. Drug Deliv Transl Res 2024; 14:1077-1092. [PMID: 37957473 DOI: 10.1007/s13346-023-01459-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
The growing interest in employing nano-sized pharmaceutical formulations in veterinary medicine has prompted the exploration of the novel nanocarriers' ability to augment the therapeutic outcome. In this study, we harnessed niosomes, spherical nanocarriers formed through non-ionic surfactant self-assembly, to enhance the therapeutic efficacy of the broad-spectrum antibiotic florfenicol. Pre-formulation studies were conducted to identify the optimal parameters for preparing florfenicol-loaded niosomes (FLNs). These studies revealed that the formulation that consisted of Span 60, cholesterol, and dihexadecyl phosphate (DDP) at a molar ratio of 1:1:0.1 exhibited the highest entrapment efficiency (%EE) and uniform size distribution. In vitro antibacterial testing demonstrated the niosomal capacity to significantly reduce florfenicol minimum inhibitory concentration (MIC) against E. coli and S. aureus. Pharmacokinetic profiles of free florfenicol and FLN were assessed following oral administration of 30 mg florfenicol/kg body weight to healthy or E. coli-infected chickens. FLN exhibited a substantially higher maximum plasma concentration (Cmax) of florfenicol compared to free florfenicol. Furthermore, FLN showed significantly higher area under the curve (AUC0-t) than free florfenicol as revealed from the relative bioavailability studies. Lethal dose (LD) 50 values for both free florfenicol and FLN exceeded 5 g/kg of body weight, indicating high safety profile. Assessment of mortality protection in mice against lethal E. coli infections showed the significantly higher capability of FLN to improve the survival rate (75%) than free florfenicol (25%). Collectively, these findings demonstrate the niosomal ability to improve the oral bioavailability as well as the antibacterial activity of the incorporated veterinary antibiotic florfenicol.
Collapse
Affiliation(s)
- Shimaa G Abonashey
- Department of Biochemistry, Animal Health Research Institute, Dokki, Giza, Egypt
| | - Hatem A F M Hassan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, Cairo, Egypt.
| | - Mostafa A Shalaby
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Amr Gamal Fouad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Elham Mobarez
- Department of Biochemistry, Animal Health Research Institute, Dokki, Giza, Egypt
| | - Hossny A El-Banna
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Haris M, Hussain T, Mohamed HI, Khan A, Ansari MS, Tauseef A, Khan AA, Akhtar N. Nanotechnology - A new frontier of nano-farming in agricultural and food production and its development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159639. [PMID: 36283520 DOI: 10.1016/j.scitotenv.2022.159639] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 05/27/2023]
Abstract
The potential of nanotechnology for the development of sustainable agriculture has been promising. The initiatives to meet the rising food needs of the rapidly growing world population are mainly powered by sustainable agriculture. Nanoparticles are used in agriculture due to their distinct physicochemical characteristics. The interaction of nanomaterials with soil components is strongly determined in terms of soil quality and plant growth. Numerous research has been carried out to investigate how nanoparticles affect the growth and development of plants. Nanotechnology has been applied to improve the quality and reduce post-harvest loss of agricultural products by extending their shelf life, particularly for fruits and vegetables. This review assesses the latest literature on nanotechnology, which is used as a nano-biofertilizer as seen in the agricultural field for high productivity and better growth of plants, an important source of balanced nutrition for the crop, seed germination, and quality enrichment. Additionally, post-harvest food processing and packaging can benefit greatly from the use of nanotechnology to cut down on food waste and contamination. It also critically discusses the mechanisms involved in nanoparticle absorption and translocation within the plants and the synthesis of green nanoparticles.
Collapse
Affiliation(s)
- Mohammad Haris
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Touseef Hussain
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; Division. of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Heba I Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt.
| | - Amir Khan
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Moh Sajid Ansari
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Atirah Tauseef
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Abrar Ahmad Khan
- Plant Pathology and Nematology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Naseem Akhtar
- Department of Pharmaceutics, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Qassim 51418, Saudi Arabia
| |
Collapse
|
3
|
The Future of Biomarkers in Veterinary Medicine: Emerging Approaches and Associated Challenges. Animals (Basel) 2022; 12:ani12172194. [PMID: 36077913 PMCID: PMC9454634 DOI: 10.3390/ani12172194] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In this review we seek to outline the role of new technologies in biomarker discovery, particularly within the veterinary field and with an emphasis on ‘omics’, as well as to examine why many biomarkers-despite much excitement-have not yet made it to clinical practice. Further we emphasise the critical need for close collaboration between clinicians, researchers and funding bodies and the need to set clear goals for biomarker requirements and realistic application in the clinical setting, ensuring that biomarker type, method of detection and clinical utility are compatible, and adequate funding, time and sample size are available for all phases of development. Abstract New biomarkers promise to transform veterinary practice through rapid diagnosis of diseases, effective monitoring of animal health and improved welfare and production efficiency. However, the road from biomarker discovery to translation is not always straightforward. This review focuses on molecular biomarkers under development in the veterinary field, introduces the emerging technological approaches transforming this space and the role of ‘omics platforms in novel biomarker discovery. The vast majority of veterinary biomarkers are at preliminary stages of development and not yet ready to be deployed into clinical translation. Hence, we examine the major challenges encountered in the process of biomarker development from discovery, through validation and translation to clinical practice, including the hurdles specific to veterinary practice and to each of the ‘omics platforms–transcriptomics, proteomics, lipidomics and metabolomics. Finally, recommendations are made for the planning and execution of biomarker studies with a view to assisting the success of novel biomarkers in reaching their full potential.
Collapse
|
4
|
Banna AHE, Youssef FS, Elzorba HY, Soliman AM, Mohamed GG, Ismail SH, Mousa MR, Elbanna HA, Osman AS. Evaluation of the wound healing effect of neomycin-silver nano-composite gel in rats. Int J Immunopathol Pharmacol 2022; 36:3946320221113486. [PMID: 35816452 PMCID: PMC9277443 DOI: 10.1177/03946320221113486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives: Both nano silver and neomycin have wound healing properties. Silver nanoparticles have been used as main compounds for therapeutic drug delivery systems against various ailments. The present study aimed to prepare a neomycin silver nano-composite gel easily, rapidly, and cheaply method to improve wound healing. Methods: Forty-five Wistar rats (150-200 g) divided into nine groups: wound untreated, wound fusidic acid treated, wound neomycin treated, three groups with wound and neomycin silver nano-composite gel at 1:1, 1:2, and 1:3 concentrations, respectively, and three groups wound treated silver nano gel at the previous concentrations, respectively. Percentages of wound healing and histopathological examination of the wound area were assessed in all groups. Results: Atomic force microscopy (AFM) and transmission electron microscopy (TEM) images demonstrated the spherical shape of neomycin silver nano-composite gel without aggregation but homogenous dispersion in a gel matrix. Dynamic light scattering (DLS) showed a 4 nm size of nano silver, which agrees with AFM image data analysis but not with TEM image due to the good coating of the gel matrix to silver nanoparticles. Dynamic light scattering Zeta potential was -21 mV, illustrating the high bioactivity of the neomycin silver nano-composite. The groups receiving neomycin silver nano-composite gel showed a significantly higher and dose dependent wound healing compared to other treatment groups. Conclusion: The present work confirmed the potential wound healing activity of neomycin silver nano-composite gel compared to either alone.
Collapse
Affiliation(s)
- Ahmed Hossni El Banna
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Fady Sayed Youssef
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Ahmed M Soliman
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Gehad Genidy Mohamed
- Faculty of Nanotechnology for postgraduate studies - Cairo University- Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, Egypt
| | - Sameh Hamed Ismail
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Refaat Mousa
- Medical Pharmacology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Afaf Sayed Osman
- Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Jordan
| |
Collapse
|
5
|
Ali A, Ijaz M, Khan YR, Sajid HA, Hussain K, Rabbani AH, Shahid M, Naseer O, Ghaffar A, Naeem MA, Zafar MZ, Malik AI, Ahmed I. Role of nanotechnology in animal production and veterinary medicine. Trop Anim Health Prod 2021; 53:508. [PMID: 34626253 DOI: 10.1007/s11250-021-02951-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/30/2021] [Indexed: 11/26/2022]
Abstract
Nanotechnology is the discipline and technology of small and specific things that are < 100 nm in size. Because of their extremely miniscule size, any changes in their chemical and physical structure may show higher reactivity and solubility than larger particles. Nanotechnology plays a vital role in every field of life. It is considered one of the most bleeding edge field of scientific research. It has already several applications in a myriad of disciplines while its application in the field of animal production and veterinary medicine is still experimental in nature. But, in recent years, the role of nanotechnology in the aforementioned fields of scientific inquiry has shown great progress. These days, nanotechnology has been employed to revolutionize drug delivery systems and diagnose atypical diseases. Applications of nanoparticle technology in the field of animal reproduction and development of efficacious vaccines have been at the forefront of scientific endeavors. Additionally, their impacts on meat and milk quality are also being judiciously inquired in recent decades. Veterinary nanotechnology has great potential to improve diagnosis and treatment, and provide new tools to this field. This review focuses on some noteworthy applications of nanoparticles in the field of animal production and their future perspectives.
Collapse
Affiliation(s)
- Ahmad Ali
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan.
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yasir Razzaq Khan
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Hina Afzal Sajid
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Kashif Hussain
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Ameer Hamza Rabbani
- Department of Surgery, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Shahid
- Department of Surgery, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Omer Naseer
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Awais Ghaffar
- Department of Clinical Sciences, KBCMA, College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Muhammad Anas Naeem
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Zeeshan Zafar
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Amir Iftikhar Malik
- Department of Clinical Medicine and Surgery, Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Irfan Ahmed
- Department of Animal Nutrition, Faculty of Veterinary & Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
6
|
El-Sayed A, Kamel M. Advanced applications of nanotechnology in veterinary medicine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19073-19086. [PMID: 30547342 DOI: 10.1007/s11356-018-3913-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
The invention of new techniques to manipulate materials at their nanoscale had an evolutionary effect on various medical sciences. At the time, there are thousands of nanomaterials which can be divided according to their shape, origin, or their application. The nanotechnology provided new solutions for old problems. In medical sciences, they are used for diagnostic or therapeutic purposes. They can also be applied in the preparation of nanovaccines and nanoadjuvants. Their use in the treatment of cancer and in gene therapy opened the door for a new era in medicine. Recently, various applications of nanotechnology started to find their way in the veterinary sector. They increasingly invade animal therapeutics, diagnostics, production of veterinary vaccines, farm disinfectants, for animal breeding and reproduction, and even the field of animal nutrition. Their replacement of commonly used antibiotics directly reflects on the public health. By so doing, they minimize the problem of drug resistance in both human and veterinary medicine, and the problem of drug residues in milk and meat. In addition, they have a great economic impact, by minimizing the amounts of discarded milk and the number of culled calves in dairy herds. Nanotechnology was also applied to develop pet care products and hygienic articles. The present review discusses the advantage of using nanomaterials compared to their counterparts, the various classes of nanoparticles, and illustrates the applications and the role of nanotechnology in the field of veterinary medicine.
Collapse
Affiliation(s)
- Amr El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| | - Mohamed Kamel
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt.
| |
Collapse
|
7
|
Youssef FS, El-Banna HA, Elzorba HY, Galal AM. Application of some nanoparticles in the field of veterinary medicine. Int J Vet Sci Med 2019; 7:78-93. [PMID: 32010725 PMCID: PMC6968591 DOI: 10.1080/23144599.2019.1691379] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022] Open
Abstract
Nanotechnology is a fast-growing technology that plays an important great impact on various fields of therapeutic applications. It is capable for solving several problems related to animal health and production. There are different nano-systems such as liposomes, metallic nanoparticles, polymeric micelles, polymeric nanospheres, functionalized fullerenes, carbon nanotubes, dendrimers, polymer-coated nanocrystals and nanoshells. In this review, we mentioned different methods for the preparation and characterization of nanoparticles. This review is concerned mainly on nanoparticle systems for antibiotic delivery which suffer from poor bioavailability and many side effects. Nanoparticles are characterized by many features include their minimal size, colossal surface zone to mass extent. The development of antimicrobials in nanoparticle systems is considered an excellent alternative delivery system for antimicrobials for the treatment of microbial diseases by increasing therapeutic effect and overcoming the side effects. In this paper, we reviewed some antimicrobial nanoparticle preparations and we focused on florfenicol and neomycin nanoparticle preparations as well as chitosan and silver nanoparticles preparations to prepare, characterize and compare their different pharmacological effects.
Collapse
Affiliation(s)
- Fady Sayed Youssef
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hossny Awad El-Banna
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Ahmed Mohamed Galal
- Pharmacology department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Bio-inspired nanomaterials in agriculture and food: Current status, foreseen applications and challenges. Microb Pathog 2018; 123:196-200. [DOI: 10.1016/j.micpath.2018.07.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/25/2018] [Accepted: 07/12/2018] [Indexed: 02/04/2023]
|
9
|
Kurbanoglu S, Ozkan SA. Electrochemical carbon based nanosensors: A promising tool in pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2017; 147:439-457. [PMID: 28780997 DOI: 10.1016/j.jpba.2017.06.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022]
Abstract
Nanotechnology has become very popular in the sensor fields in recent times. It is thought that the utilization of such technologies, as well as the use of nanosized materials, could well have beneficial effects for the performance of sensors. Nano-sized materials have been shown to have a number of novel and interesting physical and chemical properties. Low-dimensional nanometer-sized materials and systems have defined a new research area in condensed-matter physics within past decades. Apart from the aforesaid categories of materials, there exist various materials of different types for fabricating nanosensors. Carbon is called as a unique element, due to its magnificent applications in many areas. Carbon is an astonishing element that can be found many forms including graphite, diamond, fullerenes, and graphene. This review provides an overview of some of the important and recent developments brought about by the application of carbon based nanostructures to nanotechnology for both chemical and biological sensor development and their application in pharmaceutical and biomedical area.
Collapse
Affiliation(s)
- Sevinc Kurbanoglu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100, Tandogan, Ankara, Turkey
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100, Tandogan, Ankara, Turkey.
| |
Collapse
|
10
|
Nanomaterial Impact, Toxicity and Regulation in Agriculture, Food and Environment. SUSTAINABLE AGRICULTURE REVIEWS 2017. [DOI: 10.1007/978-3-319-58496-6_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Cunha MV, Inácio J. Nucleic-acid testing, new platforms and nanotechnology for point-of-decision diagnosis of animal pathogens. Methods Mol Biol 2015; 1247:253-83. [PMID: 25399103 PMCID: PMC7122192 DOI: 10.1007/978-1-4939-2004-4_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Accurate disease diagnosis in animals is crucial for animal well-being but also for preventing zoonosis transmission to humans. In particular, livestock diseases may constitute severe threats to humans due to the particularly high physical contact and exposure and, also, be the cause of important economic losses, even in non-endemic countries, where they often arise in the form of rapid and devastating epidemics. Rapid diagnostic tests have been used for a long time in field situations, particularly during outbreaks. However, they mostly rely on serological approaches, which may confirm the exposure to a particular pathogen but may be inappropriate for point-of-decision (point-of-care) settings when emergency responses supported on early and accurate diagnosis are required. Moreover, they often exhibit modest sensitivity and hence significantly depend on later result confirmation in central or reference laboratories. The impressive advances observed in recent years in materials sciences and in nanotechnology, as well as in nucleic-acid synthesis and engineering, have led to an outburst of new in-the-bench and prototype tests for nucleic-acid testing towards point-of-care diagnosis of genetic and infectious diseases. Manufacturing, commercial, regulatory, and technical nature issues for field applicability more likely have hindered their wider entrance into veterinary medicine and practice than have fundamental science gaps. This chapter begins by outlining the current situation, requirements, difficulties, and perspectives of point-of-care tests for diagnosing diseases of veterinary interest. Nucleic-acid testing, particularly for the point of care, is addressed subsequently. A range of valuable signal transduction mechanisms commonly employed in proof-of-concept schemes and techniques born on the analytical chemistry laboratories are also described. As the essential core of this chapter, sections dedicated to the principles and applications of microfluidics, lab-on-a-chip, and nanotechnology for the development of point-of-care tests are presented. Microdevices already applied or under development for application in field diagnosis of animal diseases are reviewed.
Collapse
Affiliation(s)
- Mónica V. Cunha
- Instituto Nacional de Investigação Agrária e Veterinária, IP and Centro de Biologia Ambiental, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - João Inácio
- Instituto Nacional de Investigação Agrária e Veterinária, IP, Lisboa, Portugal and School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
12
|
|
13
|
Morales MI, Rico CM, Hernandez-Viezcas JA, Nunez JE, Barrios AC, Tafoya A, Flores-Marges JP, Peralta-Videa JR, Gardea-Torresdey JL. Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6224-30. [PMID: 23799644 DOI: 10.1021/jf401628v] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Studies have shown that CeO₂ nanoparticles (NPs) can be accumulated in plants without modification, which could pose a threat for human health. In this research, cilantro (Coriandrum sativum L.) plants were germinated and grown for 30 days in soil amended with 0 to 500 mg kg⁻¹ CeO₂ NPs and analyzed by spectroscopic techniques and biochemical assays. At 125 mg kg⁻¹, plants produced longer roots (p ≤ 0.05), and at 500 mg kg⁻¹, there was higher Ce accumulation in tissues (p ≤ 0.05). At 125 mg, catalase activity significantly increased in shoots and ascorbate peroxidase in roots (p ≤ 0.05). The FTIR analyses revealed that at 125 mg kg⁻¹ the CeO₂ NPs changed the chemical environment of carbohydrates in cilantro shoots, for which changes in the area of the stretching frequencies were observed. This suggests that the CeO₂ NPs could change the nutritional properties of cilantro.
Collapse
Affiliation(s)
- Maria Isabel Morales
- Department of Chemistry, The University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hong J, Peralta-Videa JR, Gardea-Torresdey JL. Nanomaterials in Agricultural Production: Benefits and Possible Threats? ACS SYMPOSIUM SERIES 2013. [DOI: 10.1021/bk-2013-1124.ch005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jie Hong
- Environmental Science and Engineering PhD Program and The University of Texas at El Paso, 500 West University Ave., El Paso, Texas 79968
- Chemistry Department, The University of Texas at El Paso, 500 West University Ave., El Paso, Texas 79968
| | - Jose R. Peralta-Videa
- Environmental Science and Engineering PhD Program and The University of Texas at El Paso, 500 West University Ave., El Paso, Texas 79968
- Chemistry Department, The University of Texas at El Paso, 500 West University Ave., El Paso, Texas 79968
| | - Jorge L. Gardea-Torresdey
- Environmental Science and Engineering PhD Program and The University of Texas at El Paso, 500 West University Ave., El Paso, Texas 79968
- Chemistry Department, The University of Texas at El Paso, 500 West University Ave., El Paso, Texas 79968
| |
Collapse
|
15
|
Singh Sekh B. Nanoprobes and Their Applications in Veterinary Medicine and Animal Health. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/rjnn.2012.1.16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Stebounova LV, Morgan H, Grassian VH, Brenner S. Health and safety implications of occupational exposure to engineered nanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 4:310-21. [PMID: 22131295 DOI: 10.1002/wnan.174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The rapid growth and commercialization of nanotechnology are currently outpacing health and safety recommendations for engineered nanomaterials. As the production and use of nanomaterials increase, so does the possibility that there will be exposure of workers and the public to these materials. This review provides a summary of current research and regulatory efforts related to occupational exposure and medical surveillance for the nanotechnology workforce, focusing on the most prevalent industrial nanomaterials currently moving through the research, development, and manufacturing pipelines. Their applications and usage precedes a discussion of occupational health and safety efforts, including exposure assessment, occupational health surveillance, and regulatory considerations for these nanomaterials.
Collapse
Affiliation(s)
- Larissa V Stebounova
- Nanoscience and Nanotechnology Institute, The University of Iowa, Iowa City, IA, USA
| | | | | | | |
Collapse
|