1
|
Frazzini S, Reggi S, Dell’Anno M, Fifi AP, Scaglia E, Ferri I, Rossi L. Chemical-functional characterization of Ascophyllum nodosum and Phymatolithon calcareum and dietary supplementation in post-weaning pigs. Front Vet Sci 2024; 11:1431091. [PMID: 39726581 PMCID: PMC11670372 DOI: 10.3389/fvets.2024.1431091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction As the livestock industry grapples with the need for sustainable land, maintaining production systems, and reducing antimicrobial resistance, the application of functional nutrition emerges as a potential solution. Aim In line with the One Health principles, this study aims to evaluate functional properties of Ascophyllum nodosum and Phymatolithon calcareum, and assess the effects of their dietary supplementation on piglets' health. Materials and methods A chemical-functional characterization was conducted before and after in vitro digestion. Total Polyphenols Content (TPC) and Total Flavonoid Content (TFC) were determined through colorimetric assays, while antioxidant activity was determined using ABTS assay, and the microdilution method was used to evaluate the antimicrobial capacity. For the in vivo trial twenty-four post-weaning pigs (28 ± 2 days, 6.89 ± 0.820 Kg) were enrolled in two homogeneous groups (n = 12/group): control group (CTRL) fed a commercial diet, and treated group (ALGAE) fed commercial diet with the addition of 1.5% of A. nodosum and 0.5% of P. calcareum for 27 days. Weekly, zootechnical performances were assessed monitoring the body weight and the individual feed intake. Fecal samples were collected to evaluate the abundance of total, lactic acid and coliform bacteria through plate counting. Serum were obtained at day 0 and day 27 to assess the antioxidant barrier. Results and discussion The chemical characterization discloses that the minerals' level remains below the maximum thresholds defined for their use in piglets nutrition. TPC was 330.42 ± 21.372 mg TAE/g of the sample and 11.45 ± 0.521 mg TAE/g of the sample for A. nodosum and P. calcareum, respectively, and a similar trend was found in the TFC evaluation (213.85 ± 20.557 and 2.71 ± 0.900 mg CE/g of sample, respectively). Our results also highlighted that polyphenols and flavonoid compounds persisted after in vitro digestion as well as the functional properties. The administration of algae in piglets diet, although it slightly affected feed efficiency in the first period of the trial, did not affect the animal growth in terms of weight and average daily gain. Microbiological analysis of feces showed similar values between the two experimental groups over 27 days. A significantly higher serum antioxidant barrier was registered in ALGAE compared to CTRL group at day 27 (363.26 ± 16.241 vs. 230.69 ± 32.078 HClO/mL, p < 0.05). Conclusion In conclusion, the supplementation with A. nodosum and P. calcareum could be considered a promising dietary strategy to enhance the oxidative barrier in weaned piglets.
Collapse
Affiliation(s)
- Sara Frazzini
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
| | - Serena Reggi
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
| | - Matteo Dell’Anno
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
| | | | - Elena Scaglia
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
- Department of Civil, Environmental, Architectural Engineering and Mathematics (DICATAM), University of Brescia, Brescia, Italy
| | - Irene Ferri
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy
| |
Collapse
|
2
|
Hejna M, Dell'Anno M, Liu Y, Rossi L, Aksmann A, Pogorzelski G, Jóźwik A. Assessment of the antibacterial and antioxidant activities of seaweed-derived extracts. Sci Rep 2024; 14:21044. [PMID: 39251803 PMCID: PMC11383966 DOI: 10.1038/s41598-024-71961-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
In swine farming, animals develop diseases that require the use of antibiotics. In-feed antibiotics as growth promoters have been banned due to the increasing concern of antimicrobial resistance. Seaweeds offer bioactive molecules with antibacterial and antioxidant properties. The aim was to estimate the in vitro properties of seaweed extracts: Ascophyllum nodosum (AN), Palmaria palmata (PP), Ulva lactuca (UL), and 1:1 mixes (ANPP, ANUL, PPUL). Escherichia coli strains were used to test for growth inhibitory activity, and chemical-based assays were performed for antioxidant properties. The treatments were 2 (with/without Escherichia coli) × 2 (F4 + and F18 +) × 5 doses (0, 1.44, 2.87, 5.75, 11.50, and 23.0 mg/mL). Bacteria were supplemented with seaweed extracts, and growth was monitored. The antioxidant activity was assessed with 6 doses (0, 1, 50, 100, 200, 500, and 600 mg/mL) × 6 compounds using two chemical assays. Data were evaluated through SAS. The results showed that AN and UL significantly inhibited (p < 0.05) the growth of F4 + and F18 +. PP and mixes did not display an inhibition of the bacteria growth. AN, PP, UL extracts, and mixes exhibited antioxidant activities, with AN showing the strongest dose-response. Thus, AN and UL seaweed extracts reveal promising antibacterial and antioxidant effects and may be candidates for in-feed additives.
Collapse
Affiliation(s)
- Monika Hejna
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552, Jastrzębiec, Poland.
| | - Matteo Dell'Anno
- Department of Veterinary Medicine and Animal Sciences-DIVAS, Università degli Studi di Milano, Dell'Università 6, 26900, Lodi, Italy
| | - Yanhong Liu
- Department of Animal Science, University of California, 2251 Meyer Hall, One Shields Ave, Davis, CA, 95616, USA
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences-DIVAS, Università degli Studi di Milano, Dell'Università 6, 26900, Lodi, Italy
| | - Anna Aksmann
- Department of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grzegorz Pogorzelski
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552, Jastrzębiec, Poland
| | - Artur Jóźwik
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Postępu 36A, 05-552, Jastrzębiec, Poland
| |
Collapse
|
3
|
Scaglia E, Reggi S, Canala B, Frazzini S, Dell’Anno M, Hejna M, Rossi L. The Effects of Milk Replacer Supplemented with Ascophyllum nodosum as a Novel Ingredient to Prevent Neonatal Diarrhea in Dairy Calves and Improve Their Health Status. Vet Sci 2023; 10:618. [PMID: 37888570 PMCID: PMC10610816 DOI: 10.3390/vetsci10100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Nutrition and health during pre-weaning affect the calves' future fertility, calving age, production, and carrier length. Calves are highly susceptible to neonatal calf diarrhea (NCD), which can be fatal. NCD is due to hypovolemia and acidosis, which may involve anorexia and ataxia. The One Health principle calls for a drastic reduction in antimicrobial use. One approach is to improve animal health and reduce the use of antibiotics and functional ingredients that have beneficial effects due to bioactive compounds. Several functional ingredients and additives can be considered, and, in particular for this study, Ascophyllum nodosum was considered. The present study aimed to evaluate the role of A. nodosum as a functional ingredient implemented into the milk replacer in neonatal calves. Twelve pre-weaned Holstein Frisian calves, housed in twelve individual pens in the same environmental conditions, were divided into two groups of six animals: a control group (CTRL, n = 6) fed with a milk replacer, and a treatment group receiving milk enriched with 10 g of A. nodosum in their diet (TRT, n = 6) for 42 days. The fecal score was evaluated daily (3-0 scale) to monitor the incidence of diarrhea in the two groups. The body weight was evaluated weekly, and every two weeks feces were collected for microbiological evaluation using a selective medium for plate counting of total, lactic acid, and coliform bacteria. To verify the presence of Lactobacillus, Bifidobacterium, and Escherichia coli, real-time qPCR was used. At the beginning and at the end of the trial, blood samples were obtained for serum metabolite analysis. The growth performance did not differ in either of the two groups, but significant differences were observed in the incidence of moderate diarrhea (p-value < 0.0113), where the TRT group showed a lower incidence of cases during the 42-day period. Serum analysis highlighted higher contents of albumin, calcium, phosphorus, and total cholesterol in the TRT group compared to CTRL (p-value < 0.05). In conclusion, implementation of A. nodosum in the diet of calves can lead to better animal welfare and may reduce the use of antibiotics.
Collapse
Affiliation(s)
- Elena Scaglia
- Department Civil, Environmental, Architectural Engineering and Mathematics—DICATAM, University of Brescia, 25123 Brescia, Italy;
| | - Serena Reggi
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, 26900 Lodi, Italy; (S.R.); (B.C.); (S.F.); (M.D.)
| | - Benedetta Canala
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, 26900 Lodi, Italy; (S.R.); (B.C.); (S.F.); (M.D.)
| | - Sara Frazzini
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, 26900 Lodi, Italy; (S.R.); (B.C.); (S.F.); (M.D.)
| | - Matteo Dell’Anno
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, 26900 Lodi, Italy; (S.R.); (B.C.); (S.F.); (M.D.)
| | - Monika Hejna
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland;
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences—DIVAS, University of Milan, 26900 Lodi, Italy; (S.R.); (B.C.); (S.F.); (M.D.)
| |
Collapse
|
4
|
Liu G, Li C, Liao S, Guo A, Wu B, Chen H. C500 variants conveying complete mucosal immunity against fatal infections of pigs with Salmonella enterica serovar Choleraesuis C78-1 or F18+ Shiga toxin-producing Escherichia coli. Front Microbiol 2023; 14:1210358. [PMID: 37779705 PMCID: PMC10536267 DOI: 10.3389/fmicb.2023.1210358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Salmonella enterica serovar Choleraesuis (S. Choleraesuis) C500 strain is a live, attenuated vaccine strain that has been used in China for over 40 years to prevent piglet paratyphoid. However, this vaccine is limited by its toxicity and does not offer protection against diseases caused by F18+ Shiga toxin-producing Escherichia coli (STEC), which accounts for substantial economic losses in the swine industry. We recently generated a less toxic derivative of C500 strain with both asd and crp deletion (S. Choleraesuis C520) and assessed its efficacy in mice. In addition, we demonstrate that C520 is also less toxic in pigs and is effective in protecting pigs against S. Choleraesuis when administered orally. To develop a vaccine with a broader range of protection, we prepared a variant of C520 (S. Choleraesuis C522), which expresses rSF, a fusion protein comprised of the fimbriae adhesin domain FedF and the Shiga toxin-producing IIe B domain antigen. For comparison, we also prepared a control vector strain (S. Choleraesuis C521). After oral vaccination of pigs, these strains contributed to persistent colonization of the intestinal mucosa and lymphoid tissues and elicited both cytokine expression and humoral immune responses. Furthermore, oral immunization with C522 elicited both S. Choleraesuis and rSF-specific immunoglobulin G (IgG) and IgA antibodies in the sera and gut mucosa, respectively. To further evaluate the feasibility and efficacy of these strains as mucosal delivery vectors via oral vaccination, we evaluated their protective efficacy against fatal infection with S. Choleraesuis C78-1, as well as the F18+ Shiga toxin-producing Escherichia coli field strain Ee, which elicits acute edema disease. C521 conferred complete protection against fatal infection with C78-1; and C522 conferred complete protection against fatal infection with both C78-1 and Ee. Our results suggest that C520, C521, and C522 are competent to provide complete mucosal immune protection against fatal infection with S. Choleraesuis in swine and that C522 equally qualifies as an oral vaccine vector for protection against F18+ Shiga toxin-producing Escherichia coli.
Collapse
Affiliation(s)
- Guoping Liu
- College of Animal Science, Yangtze University, Jingzhou, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Hubei Institute of Cross Biological Health Industry Technology, Jingzhou, China
| | - Chunqi Li
- College of Animal Science, Yangtze University, Jingzhou, China
- Hubei Institute of Cross Biological Health Industry Technology, Jingzhou, China
| | - Shengrong Liao
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Rossi L, Dell’Anno M, Turin L, Reggi S, Lombardi A, Alborali GL, Filipe J, Riva F, Riccaboni P, Scanziani E, Dall’Ara P, Demartini E, Baldi A. Tobacco Seed-Based Oral Vaccination against Verocytotoxic O138 Escherichia coli as Alternative Approach to Antibiotics in Weaned Piglets. Antibiotics (Basel) 2023; 12:antibiotics12040715. [PMID: 37107076 PMCID: PMC10134994 DOI: 10.3390/antibiotics12040715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Post-weaning diarrhoea and enterotoxaemia caused by Escherichia coli are serious threats in the pig (Sus scrofa domesticus) livestock industry and are responsible for economic losses related to mortality, morbidity and stunted growth. The aim of this study was to evaluate the effect of an engineered tobacco seeds-based edible vaccine in O138 Escherichia coli-challenged piglets throughout a multidisciplinary approach. Thirty-six weaned piglets were enrolled and randomly divided into two experimental groups, a control (C; n = 18) group and a tobacco edible vaccination group (T, n = 18), for 29 days of trial. At days 0, 1, 2, 5 and 14, piglets of the T group were fed with 10 g of the engineered tobacco seeds line expressing F18 and VT2eB antigens, while the C group received wild-type tobacco seeds. After 20 days, 6 piglets/group were orally challenged with the Escherichia coli O138 strain (creating four subgroups: UC = unchallenged control, CC = challenged control, UT = unchallenged tobacco, CT = challenged tobacco) and fed with a high protein diet for 3 consecutive days. Zootechnical, clinical, microbiological, histological and immunological parameters were assayed and registered during the 9 days of post-challenge follow up. At 29 days post-challenge, the CT group displayed a lower average of the sum of clinical scores compared to the CC group (p < 0.05), while the CC group showed a higher average sum of the faecal score (diarrhoea) (p < 0.05) than the CT group. A decreased number of days of shedding of the pathogenic strain was observed in the CT compared to the CC group (p < 0.05). Specific anti-F18 IgA molecules were significantly higher in the CT group compared to the CC group’s faecal samples during the post-challenge period (p < 0.01). In conclusion, edible vaccination with engineered tobacco seeds showed a protective effect on clinical symptoms and diarrhoea incidence during the post-challenge period, characterized by a limited time of pathogenic strain shedding in faeces.
Collapse
Affiliation(s)
- Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Matteo Dell’Anno
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Lauretta Turin
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Serena Reggi
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Angela Lombardi
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Giovanni Loris Alborali
- Experimental Zooprophylactic Institute of Lombardy and Emilia Romagna (IZSLER), 25124 Brescia, Italy
| | - Joel Filipe
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Federica Riva
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Pietro Riccaboni
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Eugenio Scanziani
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Paola Dall’Ara
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Eugenio Demartini
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Antonella Baldi
- Department of Veterinary Medicine and Animal Sciences—DIVAS, Università degli Studi di Milano, 26900 Lodi, Italy
| |
Collapse
|
6
|
Caprarulo V, Turin L, Hejna M, Reggi S, Dell’Anno M, Riccaboni P, Trevisi P, Luise D, Baldi A, Rossi L. Protective effect of phytogenic plus short and medium-chain fatty acids-based additives in enterotoxigenic Escherichia coli challenged piglets. Vet Res Commun 2023; 47:217-231. [PMID: 35616772 PMCID: PMC9873745 DOI: 10.1007/s11259-022-09945-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/20/2022] [Indexed: 01/28/2023]
Abstract
Post Weaning Diarrhea (PWD) is the most important multifactorial gastroenteric disease of the weaning in pig livestock. Phytogenic (PHY) natural extracts are largely studied as alternatives to antibiotic treatments in combating the global concern of the antimicrobial resistance. The aim of this study was to evaluate the protective effect of innovative phytogenic premix with or without short and medium chain fatty acids (SCFA and MCFA) in O138 Escherichia coli challenged piglets. Twenty-seven weaned piglets were allotted into four groups fed different diets according to the following dietary treatments: CTRL (n = 13) group fed basal diet, PHY1 (n = 7) fed the basal diet supplemented with 0.2% of phytogenic premix, PHY2 (n = 7) fed the basal diet supplemented with 0.2% of phytogenic premix added with 2000 ppm of SCFA and MCFA. After 6 days of experimental diet feeding, animals were challenged (day 0) with 2 × 109 CFU of E. coli and CTRL group was divided at day 0 into positive (challenged CTRL + ; n = 6) and negative control group (unchallenged CTRL-; n = 7). Body weights were recorded at -14, -6, 0, 4 and 7 days and the feed intake was recorded daily. E. coli shedding was monitored for 4 days post-challenge by plate counting. Fecal consistency was registered daily by a four-point scale (0-3; diarrhea > 1) during the post-challenge period. Tissue samples were obtained for gene expression and histological evaluations at day 7 from four animals per group. Lower average feed intake was observed in CTRL + compared to PHY2 and CTRL during the post-challenge period. Infected groups showed higher E. coli shedding compared to CTRL- during the 4 days post-challenge (p < 0.01). PHY2 showed lower frequency of diarrhea compared to PHY1 and CTRL + from 5 to 7 days post-challenge. No significant alterations among groups were observed in histopathological evaluation. Duodenum expression of occludin tended to be lower in challenged groups compared to CTRL- at 7 days post-challenge (p = 0.066). In conclusion, dietary supplementation of PHY plus SCFA and MCFA revealed encouraging results for diarrhea prevention and growth performance in weaned piglets.
Collapse
Affiliation(s)
- Valentina Caprarulo
- grid.4708.b0000 0004 1757 2822Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy
| | - Lauretta Turin
- grid.4708.b0000 0004 1757 2822Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy
| | - Monika Hejna
- grid.4708.b0000 0004 1757 2822Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy
| | - Serena Reggi
- grid.4708.b0000 0004 1757 2822Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy
| | - Matteo Dell’Anno
- grid.4708.b0000 0004 1757 2822Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy
| | - Pietro Riccaboni
- grid.6292.f0000 0004 1757 1758Department of Agricultural and Food Sciences, University of Bologna, 40126 Bologna, Italy
| | - Paolo Trevisi
- grid.6292.f0000 0004 1757 1758Department of Agricultural and Food Sciences, University of Bologna, 40126 Bologna, Italy
| | - Diana Luise
- grid.6292.f0000 0004 1757 1758Department of Agricultural and Food Sciences, University of Bologna, 40126 Bologna, Italy
| | - Antonella Baldi
- grid.4708.b0000 0004 1757 2822Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy
| | - Luciana Rossi
- grid.4708.b0000 0004 1757 2822Department of Health, Animal Science and Food Safety, University of Milan, 26900 Lodi, Italy
| |
Collapse
|
7
|
Jing C, Wang J, Xie Y, Zhang J, Guo Y, Tian T, Tang J, Ju F, Wang C, Liu Y, Zhang Z, Yang X, Zhang H. Investigation of the growth performance, blood status, gut microbiome and metabolites of rabbit fed with low-nicotine tobacco. Front Microbiol 2022; 13:1026680. [PMID: 36312940 PMCID: PMC9615924 DOI: 10.3389/fmicb.2022.1026680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Tobacco contains a large amount of bioactive ingredients which can be used as source of feed. The objective of this study was to evaluate the effects of dietary addition of low-nicotine tobacco (LNT) on the growth performance, blood status, cecum microbiota and metabolite composition of meat rabbits. A total of 80 Kangda meat rabbits of similar weight were assigned randomly as four groups, and three of them were supplemented with 5%, 10%, and 20% LNT, respectively, with the other one fed with basal diet as control group. Each experiment group with 20 rabbits was raised in a single cage. The experiments lasted for 40 days with a predictive period of 7 days. The results revealed that LNT supplementation had no significant effect on the growth performance, but increased the half carcass weight compared with control group. Dietary supplemention of LNT decreased the triglycerides and cholesterol content in rabbit serum, and significantly increased the plasma concentration of lymphocytes (LYM), monocytes, eosinophils, hemoglobin HGB and red blood cells. In addition, LNT supplementation significantly changed the microbial diversity and richness, and metagenomic analysis showed that LNT supplementation significantly increased Eubacterium_siraeum_group, Alistipes, Monoglobus and Marvinbryantia at genus level. Moreover, LC–MS data analysis identified a total of 308 metabolites that markedly differed after LNT addition, with 190 significantly upregulated metabolites and 118 significantly downregulated metabolites. Furthermore, the correlation analysis showed that there was a significant correlation between the microbial difference and the rabbit growth performance. Overall, these findings provide theoretical basis and data support for the application of LNT in rabbits.
Collapse
Affiliation(s)
- Changliang Jing
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jiahao Wang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yi Xie
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jianhui Zhang
- Sichuan Tobacco Science Research Institute, Chengdu, China
| | - Yixuan Guo
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Tian Tian
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jing Tang
- Institute of Animal Science of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuzhu Ju
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Chunkai Wang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yanhua Liu
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhongfeng Zhang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xingyou Yang
- Sichuan Tobacco Science Research Institute, Chengdu, China
- *Correspondence: Xingyou Yang,
| | - Hongbo Zhang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Hongbo Zhang,
| |
Collapse
|
8
|
Hou HW, Bishop CA, Huckauf J, Broer I, Klaus S, Nausch H, Buyel JF. Seed- and leaf-based expression of FGF21-transferrin fusion proteins for oral delivery and treatment of non-alcoholic steatohepatitis. FRONTIERS IN PLANT SCIENCE 2022; 13:998596. [PMID: 36247628 PMCID: PMC9557105 DOI: 10.3389/fpls.2022.998596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a global disease with no effective medication. The fibroblast growth factor 21 (FGF21) can reverse this liver dysfunction, but requires targeted delivery to the liver, which can be achieved via oral administration. Therefore, we fused FGF21 to transferrin (Tf) via a furin cleavage site (F), to promote uptake from the intestine into the portal vein, yielding FGF21-F-Tf, and established its production in both seeds and leaves of commercial Nicotiana tabacum cultivars, compared their expression profile and tested the bioavailability and bioactivity in feeding studies. Since biopharmaceuticals need to be produced in a contained environment, e.g., greenhouses in case of plants, the seed production was increased in this setting from 239 to 380 g m-2 a-1 seed mass with costs of 1.64 € g-1 by side branch induction, whereas leaves yielded 8,193 g m-2 a-1 leave mass at 0.19 € g-1. FGF21-F-Tf expression in transgenic seeds and leaves yielded 6.7 and 5.6 mg kg-1 intact fusion protein, but also 4.5 and 2.3 mg kg-1 additional Tf degradation products. Removing the furin site and introducing the liver-targeting peptide PLUS doubled accumulation of intact FGF21-transferrin fusion protein when transiently expressed in Nicotiana benthamiana from 0.8 to 1.6 mg kg-1, whereas truncation of transferrin (nTf338) and reversing the order of FGF21 and nTf338 increased the accumulation to 2.1 mg kg-1 and decreased the degradation products to 7% for nTf338-FGF21-PLUS. Application of partially purified nTf338-FGF21-PLUS to FGF21-/- mice by oral gavage proved its transfer from the intestine into the blood circulation and acutely affected hepatic mRNA expression. Hence, the medication of NASH via oral delivery of nTf338-FGF21-PLUS containing plants seems possible.
Collapse
Affiliation(s)
- Hsuan-Wu Hou
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Christopher A. Bishop
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Jana Huckauf
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Inge Broer
- Chair for Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Henrik Nausch
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Johannes F. Buyel
- Department Bioprocess Engineering, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute of Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
9
|
Translational Approach to Induce and Evaluate Verocytotoxic E. coli O138 Based Disease in Piglets. Animals (Basel) 2021; 11:ani11082415. [PMID: 34438872 PMCID: PMC8388622 DOI: 10.3390/ani11082415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 01/21/2023] Open
Abstract
Simple Summary The aim of the study was to set up experimental conditions to simulate the simultaneous outbreak of post-weaning diarrhea and enterotoxaemia in weaned piglets, through verocytotoxic O138 Escherichia coli challenge. Zootechnical, clinical, microbiological, histological and immunological parameters were evaluated along the follow-up of control and infected groups. Results showed that experimental infection significantly affected the clinical status. Infected animals showed significant higher total median scores of epiphora, vitality, hair irregularity, oedema and depression; in addition, they displayed evident inflammatory infiltrate of lymphocytes, and follicular hyperplasia, increase of IgG in the intestinal crypts and CD3-positive T cells in intestinal epithelium. The infection model, carried out on receptor-mediated susceptible piglets, allowed to identify a discriminative panel of clinical symptoms related to Escherichia coli O138 infection and could be used to assess the protective effect of antibiotic alternatives. Abstract Pig livestock was influenced by several global concerns that imposed a re-thinking of the farming system, which included the reduction in chemical dependency and the development of antimicrobial alternatives. Post-weaning diarrhea and enterotoxaemia caused by Escherichia coli, are serious threats that are responsible for the economic losses related to mortality, morbidity and stunted growth in weaning piglets. The aim of the study was to set up experimental conditions to simulate the simultaneous outbreak of post-weaning diarrhea and enterotoxaemia in weaned piglets, through verocytotoxic O138 Escherichia coli challenge, with a multidisciplinary approach. Eighteen piglets susceptible to F18 VTEC infection were selected by polymerase chain reaction for polymorphism on the fucosyltransferase 1 gene and randomly divided in two experimental groups, non-infected controls (C; n = 6) and infected ones (I; n = 12) and housed into individual pens at the same environmental conditions for 29 days. At day 20, I pigs were orally inoculated with Escherichia coli O138 and fed a high protein ration for 3 days. Zootechnical, clinical, microbiological, histological and immunological parameters were evaluated along the follow up (3 and 9 days). Experimental infection, confirmed by bacteria faecal shedding of the I group, significantly affected the clinical status. The I group showed significantly higher total scores, corresponding to medians of the sum of daily scores from days 1 to 3 (Σ3) and 1 to 9 (Σ9) post infection, epiphora, vitality, hair irregularity, oedema and depression. Histological examination showed evident inflammatory infiltrate of lymphocytes, and follicular hyperplasia in I pigs; in the same group, the immunohistochemical and immunological assays revealed an increase in IgG in the intestinal crypts and CD3-positive T cells in intestinal epithelium. The experimental Escherichia coli infection in controlled conditions is crucial for both the evaluation of innovative compounds and the elucidation of the mechanisms associated with the persistence of antibacterial resistant strains. In conclusion, the adopted infection model, carried out on receptor-mediated susceptible piglets, allowed us to identify a discriminative panel of clinical symptoms related to Escherichia coli O138 infection, and could be used to assess the protective effect of antibiotic alternatives.
Collapse
|
10
|
Dell’Anno M, Giromini C, Reggi S, Cavalleri M, Moscatelli A, Onelli E, Rebucci R, Sundaram TS, Coranelli S, Spalletta A, Baldi A, Rossi L. Evaluation of Adhesive Characteristics of L. plantarum and L. reuteri Isolated from Weaned Piglets. Microorganisms 2021; 9:1587. [PMID: 34442665 PMCID: PMC8400209 DOI: 10.3390/microorganisms9081587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 11/24/2022] Open
Abstract
Limosilactobacillus reuteri and Lactiplantibacillus plantarum strains, previously isolated from weaned piglets, were considered for the evaluation of their adhesive characteristics. Lactobacilli were treated with LiCl in order to remove the surface protein layer, and probiotic activity was compared with those of untreated strains. The autoaggregation, co-aggregation to E. coli F18+, and adhesive abilities of LiCl-treated Limosilactobacillus reuteri and Lactiplantibacillus plantarum were significantly inhibited (p < 0.05) compared with the respective untreated strain. The hydrophobic and basic phenotypes were observed due to the strong affinity to chloroform and low adherence to ethyl acetate. In particular, L. plantarum showed higher hydrophobicity compared to L. reuteri, which may reflect their different colonizing ability. After treatment with LiCl to remove surface proteins, the adherence capabilities of L. reuteri and L. casei on IPEC-J2 cells decreased significantly (p < 0.001) and L. reuteri adhered more frequently. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that both L. reuteri and L. plantarum had several bands ranging from 20 to 100 kDa. Two-dimensional gel electrophoresis showed an acidic profile of the surface-layer polypeptides for both bacterial strains, and more studies are needed to characterize their profile and functions. The results confirm the pivotal role of surface proteins in the probiotic potential of L. reuteri and L. plantarum.
Collapse
Affiliation(s)
- Matteo Dell’Anno
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Carlotta Giromini
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Serena Reggi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Mariagrazia Cavalleri
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Alessandra Moscatelli
- Department of Biosciences, Università Degli Studi di Milano, 20133 Milan, Italy; (A.M.); (E.O.)
| | - Elisabetta Onelli
- Department of Biosciences, Università Degli Studi di Milano, 20133 Milan, Italy; (A.M.); (E.O.)
| | - Raffaella Rebucci
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Tamil Selvi Sundaram
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Simona Coranelli
- Biotecnologie B.T. Srl, Todi, 06059 Perugia, Italy; (S.C.); (A.S.)
| | - Ambra Spalletta
- Biotecnologie B.T. Srl, Todi, 06059 Perugia, Italy; (S.C.); (A.S.)
| | - Antonella Baldi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Luciana Rossi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| |
Collapse
|
11
|
Hejna M, Kovanda L, Rossi L, Liu Y. Mint Oils: In Vitro Ability to Perform Anti-Inflammatory, Antioxidant, and Antimicrobial Activities and to Enhance Intestinal Barrier Integrity. Antioxidants (Basel) 2021; 10:antiox10071004. [PMID: 34201645 PMCID: PMC8300686 DOI: 10.3390/antiox10071004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
The objectives of the study were to test the biological activities of peppermint and spearmint oils via (i) measuring in vitro anti-inflammatory effects with porcine alveolar macrophages (PAMs), (ii) determining the barrier integrity of IPEC-J2 by analyzing transepithelial electrical resistance (TEER), (iii) testing their antioxidant activities, and (iv) investigating the antimicrobial activity against enterotoxigenic Escherichia coli (ETEC) F18+. Briefly, (i) macrophages were seeded at 106 cells/mL and treated (24 h) with mint oils and lipopolysaccharide (LPS). The treatments were 2 (0 or 1 μg/mL of LPS) × 5 (0, 25, 50, 100, 200 µg/mL of mint oils). The supernatants were collected for TNF-α and IL-1β measurement by ELISA; (ii) IPEC-J2 cells were seeded at 5 × 105 cells/mL and treated with mint oils (0, 25, 50, 100, and 200 μg/mL). TEER (Ωcm2) was measured at 0, 24, 48, and 72 h; (iii) the antioxidant activity was assessed (0, 1, 50, 100, 200, 500, and 600 mg/mL) using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and reducing power assays; (iv) overnight-grown ETEC F18+ were quantified (CFU/mL) after supplementing with peppermint and spearmint oils (0, 1.44, 2.87, 5.75, 11.50, and 23.00 mg/mL). All data were analyzed using the MIXED procedure. Both mint oils significantly inhibited (p < 0.05) IL-1β and TNF-α secretion from LPS-stimulated PAMs. Mint oil treatments did not affect TEER in IPEC-J2. Spearmint and peppermint oils exhibited (p < 0.05) strong antioxidant activities in DPPH and reducing power assays. Both mint oils also dose-dependently inhibited (p < 0.05) the growth of ETEC F18+ in vitro. The results of the study indicated that both mint oils are great candidate feed additives due to their in vitro anti-inflammatory, antioxidant, and antimicrobial effects. Further research is needed to evaluate their efficacy in vivo.
Collapse
Affiliation(s)
- Monika Hejna
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste 2, 20134 Milan, Italy;
- Department of Animal Science, University of California, Davis, 4302 Meyer Hall, One Shields Ave, Davis, CA 95616, USA;
| | - Lauren Kovanda
- Department of Animal Science, University of California, Davis, 4302 Meyer Hall, One Shields Ave, Davis, CA 95616, USA;
| | - Luciana Rossi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Via Trentacoste 2, 20134 Milan, Italy;
- Correspondence: (L.R.); (Y.L.); Tel.: +41-61-683-77-34 (L.R.); +1-530-752-4275 (Y.L.); Fax: +41-61-302-89-18 (L.R.); +1-530-752-0175 (Y.L.)
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, 4302 Meyer Hall, One Shields Ave, Davis, CA 95616, USA;
- Correspondence: (L.R.); (Y.L.); Tel.: +41-61-683-77-34 (L.R.); +1-530-752-4275 (Y.L.); Fax: +41-61-302-89-18 (L.R.); +1-530-752-0175 (Y.L.)
| |
Collapse
|
12
|
Dell’Anno M, Callegari ML, Reggi S, Caprarulo V, Giromini C, Spalletta A, Coranelli S, Sgoifo Rossi CA, Rossi L. Lactobacillus plantarum and Lactobacillus reuteri as Functional Feed Additives to Prevent Diarrhoea in Weaned Piglets. Animals (Basel) 2021; 11:ani11061766. [PMID: 34204784 PMCID: PMC8231520 DOI: 10.3390/ani11061766] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Antimicrobial resistance is an increasing global concern. Effective alternatives that could replace and reduce antimicrobial treatments in farming have therefore become crucial for animal, human and environmental health. In swine farming, weaning is a stressful phase where piglets can develop multifactorial enteric disorders that require antibiotic treatments. Functional nutrition could thus represent a valuable alternative to reduce and tackle antibiotic resistance. This study assesses the effects of Lactobacillus plantarum and Lactobacillus reuteri on in-feed supplementation in weaned piglets. After weaning, piglets were allotted to four experimental groups fed a basal diet (CTRL) and a basal diet supplemented with 2 × 108 CFU/g of L. plantarum (PLA), L. reuteri and a combination of the two strains (P+R) for 28 days. Zootechnical performance and diarrhoea occurrence were recorded. Microbiological and serum metabolism analyses of faeces and blood samples were performed. Supplemented groups with lactobacilli showed a lower occurrence of diarrhoea and improved faecal consistency compared to the control. The PLA group registered the lowest diarrhoea frequency during the 28-day experimental period. The results suggest that dietary administration of L. plantarum and L. reuteri could prevent the occurrence of diarrhoea in weaned piglets. Abstract The effects of Lactobacillus plantarum and Lactobacillus reuteri and their combination were assessed in weaned piglets. Three hundred and fifty weaned piglets (Landrace × Large White), balanced in terms of weight and sex, were randomly allotted to four experimental groups (25 pens, 14 piglets/pen). Piglets were fed a basal control diet (CTRL, six pens) and a treatment diet supplemented with 2 × 108 CFU/g of L. plantarum (PLA, 6 pens), 2 × 108 CFU/g L. reuteri (REU, six pens) and the combination of both bacterial strains (1 × 108 CFU/g of L. plantarum combined with 1 × 108 CFU/g of L. reuteri, P+R, 7 pens) for 28 days. Body weight and feed intake were recorded weekly. Diarrhoea occurrence was assessed weekly by the faecal score (0–3; considering diarrhoea ≥ 2). At 0 and 28 days, faecal samples were obtained from four piglets per pen for microbiological analyses and serum samples were collected from two piglets per pen for serum metabolic profiling. Treatments significantly reduced diarrhoea occurrence and decreased the average faecal score (0.94 ± 0.08 CTRL, 0.31 ± 0.08 PLA, 0.45 ± 0.08 REU, 0.27 ± 0.08 P+R; p < 0.05). The PLA group registered the lowest number of diarrhoea cases compared to other groups (20 cases CTRL, 5 cases PLA, 8 cases REU, 10 cases P+R; p < 0.01). After 28 days, the globulin serum level increased in PLA compared to the other groups (24.91 ± 1.09 g/L CTRL, 28.89 ± 1.03 g/L PLA, 25.91 ± 1.03 g/L REU, 25.31 ± 1.03 g/L P+R; p < 0.05). L. plantarum and L. reuteri could thus be considered as interesting functional additives to prevent diarrhoea occurrence in weaned piglets.
Collapse
Affiliation(s)
- Matteo Dell’Anno
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (C.G.); (C.A.S.R.); (L.R.)
- Correspondence:
| | - Maria Luisa Callegari
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Serena Reggi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (C.G.); (C.A.S.R.); (L.R.)
| | - Valentina Caprarulo
- Department of Molecular and Translational Medicine (DMMT), Università degli Studi di Brescia, 25123 Brescia, Italy;
| | - Carlotta Giromini
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (C.G.); (C.A.S.R.); (L.R.)
| | | | | | - Carlo Angelo Sgoifo Rossi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (C.G.); (C.A.S.R.); (L.R.)
| | - Luciana Rossi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (C.G.); (C.A.S.R.); (L.R.)
| |
Collapse
|
13
|
Dell’Anno M, Reggi S, Caprarulo V, Hejna M, Sgoifo Rossi CA, Callegari ML, Baldi A, Rossi L. Evaluation of Tannin Extracts, Leonardite and Tributyrin Supplementation on Diarrhoea Incidence and Gut Microbiota of Weaned Piglets. Animals (Basel) 2021; 11:1693. [PMID: 34204108 PMCID: PMC8229630 DOI: 10.3390/ani11061693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
The effects of the dietary administration of a combination of Quebracho and Chestnut tannins, leonardite and tributyrin were evaluated in weaned piglets. A total of 168 weaned piglets (Landrace × Large White) were randomly allotted to two experimental groups (6 pens/group, 14 piglets/pen). Animals were fed a basal control diet (CTRL) and a treatment diet (MIX) supplemented with 0.75% tannin extracts, 0.25% leonardite and 0.20% tributyrin for 28 days. Individual body weight and feed intake were recorded weekly. Diarrhoea incidence was recorded by a faecal scoring scale (0-3; considering diarrhoea ≥ 2). At 0 and 28 days, faecal samples were obtained from four piglets/pen for microbiological and chemical analyses of faecal microbiota, which were then assessed by V3-V4 region amplification sequencing. At 28 days, blood from two piglets/pen was sampled to evaluate the serum metabolic profile. After 28 days, a reduction in diarrhoea incidence was observed in the MIX compared to CTRL group (p < 0.05). In addition, compared to CTRL, MIX showed a higher lactobacilli:coliform ratio and increased Prevotella and Fibrobacter genera presence (p < 0.01). The serum metabolic profile showed a decreased level of low-density lipoproteins in the treated group (p < 0.05). In conclusion, a combination of tannin extract, leonardite and tributyrin could decrease diarrhoea incidence and modulate the gut microbiota.
Collapse
Affiliation(s)
- Matteo Dell’Anno
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| | - Serena Reggi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| | - Valentina Caprarulo
- Department of Molecular and Translational Medicine (DMMT), Università Degli Studi di Brescia, 25123 Brescia, Italy;
| | - Monika Hejna
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| | - Carlo Angelo Sgoifo Rossi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| | - Maria Luisa Callegari
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Antonella Baldi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| | - Luciana Rossi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (S.R.); (M.H.); (C.A.S.R.); (A.B.); (L.R.)
| |
Collapse
|
14
|
Heavy-Metal Phytoremediation from Livestock Wastewater and Exploitation of Exhausted Biomass. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052239. [PMID: 33668294 PMCID: PMC7956449 DOI: 10.3390/ijerph18052239] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022]
Abstract
Sustainable agriculture is aimed at long-term crop and livestock production with a minimal impact on the environment. However, agricultural practices from animal production can contribute to global pollution due to heavy metals from the feed additives that are used to ensure the nutritional requirements and also promote animal health and optimize production. The bioavailability of essential mineral sources is limited; thus, the metals are widely found in the manure. Via the manure, metallic ions can contaminate livestock wastewater, drastically reducing its potential recycling for irrigation. Phytoremediation, which is an efficient and cost-effective cleanup technique, could be implemented to reduce the wastewater pollution from livestock production, in order to maintain the water conservation. Plants use various strategies for the absorption and translocation of heavy metals, and they have been widely used to remediate livestock wastewater. In addition, the pollutants concentrated in the plants can be exhausted and used as heat to enhance plant growth and further concentrate the metals, making recycling a possible option. The biomass of the plants can also be used for biogas production in anaerobic fermentation. Combining phytoremediation and biorefinery processes would add value to both approaches and facilitate metal recovery. This review focuses on the concept of agro-ecology, specifically the excessive use of heavy metals in animal production, the various techniques and adaptations of the heavy-metal phytoremediation from livestock wastewater, and further applications of exhausted phytoremediated biomass.
Collapse
|
15
|
Caprarulo V, Giromini C, Rossi L. Review: Chestnut and quebracho tannins in pig nutrition: the effects on performance and intestinal health. Animal 2020; 15:100064. [PMID: 33516022 DOI: 10.1016/j.animal.2020.100064] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Natural extracts are frequently adopted as a valuable alternative to antibiotics in intensive animal farming. Their diverse bioactive constituents such as phytosterols, glucosinolates, carotenoids and polyphenols have shown antioxidant, anti-inflammatory and antibacterial effects. Tannins are the largest class of polyphenol compounds of plant extracts, which can be classified into two hydrolysable or condensed subgroups. Poultry and swine nutrition are the most important sectors in which tannins have been used, firstly adopting tannin-rich feedstuffs and more recently, using tannin extracts from different plants. Several commercial products are available containing tannins extracted from the European chestnut tree (Castanea sativa Mill.) and the American quebracho (Schinopsis spp.). Tannins extracted from these plants have been applied on intensive swine farms due to their ability to improve animal performance and health. These positive and prominent effects are frequently associated with the antinutritional effects in reducing feed palatability, digestibility and protein utilization of feed. Some criticisms and contrasting results regarding pig performance and intestinal health have been reported. This paper provides an overview of the effects of chestnut and quebracho tannins on growth performance and intestinal health of pigs in order to clarify the appropriate dosage and response in the various physiological stages.
Collapse
Affiliation(s)
- V Caprarulo
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy.
| | - C Giromini
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; CRC I-WE (Coordinating Research Center: Innovation for Well-Being and Environment), Università degli Studi di Milano, 20134 Milan, Italy
| | - L Rossi
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy
| |
Collapse
|
16
|
Caprarulo V, Hejna M, Giromini C, Liu Y, Dell’Anno M, Sotira S, Reggi S, Sgoifo-Rossi CA, Callegari ML, Rossi L. Evaluation of Dietary Administration of Chestnut and Quebracho Tannins on Growth, Serum Metabolites and Fecal Parameters of Weaned Piglets. Animals (Basel) 2020; 10:E1945. [PMID: 33105748 PMCID: PMC7690424 DOI: 10.3390/ani10111945] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
In pig livestock, alternatives to in-feed antibiotics are needed to control enteric infections. Plant extracts such as tannins can represent an alternative as a natural source of functional compounds. The aim of this study was to evaluate the in vitro digestibility and in vivo effects of oral supplementation of combined chestnut (Ch) and quebracho (Qu) tannins in order to establish if they can induce a positive effect on weaned piglets' performance, metabolic status and fecal parameters. In vitro digestibility (dry matter, DM) of diets was calculated using a multi-step enzymatic technique. In vitro digested diet samples were further tested on an intestinal porcine enterocyte cell line (IPEC-J2). Weaned piglets (n = 120; 28 ± 2 day old) were randomly allotted to two groups (12 pens in total with 10 pigs per pen): control (Ctrl) and treatment (Ch/Qu). After one week of adaptation (day 0), 35-day-old piglets in the Ctrl group were fed a Ctrl diet and the Ch/Qu group were fed with 1.25% Ch/Qu for 40 days. Body weight and feed intake per pen were recorded weekly. At day 40, blood and fecal samples were collected. Principal metabolic parameters were evaluated from blood samples by enzymatic colorimetric analysis. Total phenolic compounds, urea, and ammonia in feces were analyzed (Megazyme International, Bray, Ireland). In vitro digestibility and cell viability assays showed that the inclusion of 1.25% Ch/Qu slightly reduced diet digestibility compared with the Ctrl diet, while intestinal cell viability was not altered with low concentrations of Ch/Qu digesta compared with Ctrl. In vivo results did not show any adverse effects of Ch/Qu on feed intake and growth performance, confirming that dietary inclusion of Ch/Qu at a concentration of 1.25% did not impair animal performance. The decreased diet DM digestibility in the Ch/Qu diet may cause increased serum concentration of albumin (Ctrl: 19.30 ± 0.88; Ch/Qu: 23.05 ± 0.88) and albumin/globulin ratio (Ctrl: 0.58 ± 0.04; Ch/Qu: 0.82 ± 0.04), but decreased creatinine (Ctrl: 78.92 ± 4.18; Ch/Qu: 54.82 ± 4.18) and urea (Ctrl: 2.18 ± 0.19; Ch/Qu: 0.95 ± 0.19) compared with Ctrl. Pigs in the Ch/Qu group contained higher (p < 0.05) concentrations of fecal phenolic compounds and nitrogen than the Ctrl group, while fecal ammonia and urea were not affected by tannins. In conclusion, Ch/Qu tannin supplementation did not influence growth performance. Although lower digestibility was observed in the diet supplemented with Ch/Qu tannins, Ch/Qu supplementation did not show any adverse effect on intestinal epithelial cell viability.
Collapse
Affiliation(s)
- Valentina Caprarulo
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| | - Monika Hejna
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
- Department of Animal Science, University of California, Davis, CA 95616, USA;
| | - Carlotta Giromini
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA;
| | - Matteo Dell’Anno
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| | - Stefania Sotira
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| | - Serena Reggi
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| | - Carlo Angelo Sgoifo-Rossi
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| | - Maria Luisa Callegari
- Department of sustainable food process, Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Luciana Rossi
- Department of Health, Animal Science and Food Safety, University of Milan, 20133 Milan, Italy; (V.C.); (C.G.); (M.D.); (S.S.); (S.R.); (C.A.S.-R.); (L.R.)
| |
Collapse
|
17
|
Dell’Anno M, Hejna M, Sotira S, Caprarulo V, Reggi S, Pilu R, Miragoli F, Callegari ML, Panseri S, Rossi L. Evaluation of leonardite as a feed additive on lipid metabolism and growth of weaned piglets. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Reggi S, Giromini C, Dell’Anno M, Baldi A, Rebucci R, Rossi L. In Vitro Digestion of Chestnut and Quebracho Tannin Extracts: Antimicrobial Effect, Antioxidant Capacity and Cytomodulatory Activity in Swine Intestinal IPEC-J2 Cells. Animals (Basel) 2020; 10:ani10020195. [PMID: 31979207 PMCID: PMC7070574 DOI: 10.3390/ani10020195] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/27/2022] Open
Abstract
Quebracho (Qu) and chestnut (Ch) are natural sources of tannins and they are currently used in animal nutrition as feed ingredients. However, to date the bio-accessibility, antimicrobial, antioxidant, and intestinal epithelial cell stimulatory doses of Qu and Ch have not been determined. Our study investigates the antioxidant and E. coli F4+ and F18+ growth inhibitory activity of Qu, Ch, and their combinations after solubilization in water (to evaluate the already bio-accessible molecules) and after simulated gastro-intestinal digestion in vitro. The effect of an in vitro digested Ch and Qu combination was also tested on intestinal epithelial IPEC-J2 cells experimentally stressed with hydrogen peroxide (H2O2) and Dextran Sodium Sulfate (DSS). The results showed that undigested Qu and Ch alone, and in combination, exerted a valuable antioxidant capacity and E. coli F4+ and F18+ growth inhibitory activity. The concentration of 1200 µg/mL exhibited the highest E. coli growth inhibitory activity for all the samples tested. In addition, after in vitro digestion, Qu and Qu50%-Ch50% maintained E. coli growth inhibitory activity and a modest antioxidant capacity. Three hours pre-treatment with in vitro digested Qu50%-Ch50% counteracted the H2O2 and DSS experimentally-induced stress in the intestinal IPEC-J2 cells. Ch and Qu tannin extracts, particularly when combined, may exert E. coli F4+ and F18+ growth inhibitory activity and valuable antioxidant and cell viability modulation activities.
Collapse
|
19
|
Hejna M, Moscatelli A, Onelli E, Baldi A, Pilu S, Rossi L. Evaluation of concentration of heavy metals in animal rearing system. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1642806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Monika Hejna
- Dipartimento di Scienze veterinarie per la salute, la produzione animale e la sicurezza alimentare, Università degli Studi di Milano, Milano, Italy
| | | | - Elisabetta Onelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Antonella Baldi
- Dipartimento di Scienze veterinarie per la salute, la produzione animale e la sicurezza alimentare, Università degli Studi di Milano, Milano, Italy
| | - Salvatore Pilu
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Milano, Italy
| | - Luciana Rossi
- Dipartimento di Scienze veterinarie per la salute, la produzione animale e la sicurezza alimentare, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
20
|
Luise D, Lauridsen C, Bosi P, Trevisi P. Methodology and application of Escherichia coli F4 and F18 encoding infection models in post-weaning pigs. J Anim Sci Biotechnol 2019; 10:53. [PMID: 31210932 PMCID: PMC6567477 DOI: 10.1186/s40104-019-0352-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023] Open
Abstract
The enterotoxigenic Escherichia coli (ETEC) expressing F4 and F18 fimbriae are the two main pathogens associated with post-weaning diarrhea (PWD) in piglets. The growing global concern regarding antimicrobial resistance (AMR) has encouraged research into the development of nutritional and feeding strategies as well as vaccination protocols in order to counteract the PWD due to ETEC. A valid approach to researching effective strategies is to implement piglet in vivo challenge models with ETEC infection. Thus, the proper application and standardization of ETEC F4 and F18 challenge models represent an urgent priority. The current review provides an overview regarding the current piglet ETEC F4 and F18 challenge models; it highlights the key points for setting the challenge protocols and the most important indicators which should be included in research studies to verify the effectiveness of the ETEC challenge. Based on the current review, it is recommended that the setting of the model correctly assesses the choice and preconditioning of pigs, and the timing and dosage of the ETEC inoculation. Furthermore, the evaluation of the ETEC challenge response should include both clinical parameters (such as the occurrence of diarrhea, rectal temperature and bacterial fecal shedding) and biomarkers for the specific expression of ETEC F4/F18 (such as antibody production, specific F4/F18 immunoglobulins (Igs), ETEC F4/F18 fecal enumeration and analysis of the F4/F18 receptors expression in the intestinal brush borders). On the basis of the review, the piglets’ response upon F4 or F18 inoculation differed in terms of the timing and intensity of the diarrhea development, on ETEC fecal shedding and in the piglets’ immunological antibody response. This information was considered to be relevant to correctly define the experimental protocol, the data recording and the sample collections. Appropriate challenge settings and evaluation of the response parameters will allow future research studies to comply with the replacement, reduction and refinement (3R) approach, and to be able to evaluate the efficiency of a given feeding, nutritional or vaccination intervention in order to combat ETEC infection.
Collapse
Affiliation(s)
- Diana Luise
- 1Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Charlotte Lauridsen
- 2Faculty of Science and Technology, Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Paolo Bosi
- 1Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- 1Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Abstract
The aim of this review is to focus the attention on the nutrition ecology of the heavy metals and on the major criticisms related to the heavy metals content in animal feeds, manure, soil and animal-origin products. Heavy metals are metallic elements that have a high density that have progressively accumulated in the food chain with negative effects for human health. Some metals are essential (Fe, I, Co, Zn, Cu, Mn, Mo, Se) to maintain various physiological functions and are usually added as nutritional additives in animal feed. Other metals (As, Cd, F, Pb, Hg) have no established biological functions and are considered as contaminants/undesirable substances. The European Union adopted several measures in order to control their presence in the environment, as a result of human activities such as: farming, industry or food processing and storage contamination. The control of the animal input could be an effective strategy to reduce human health risks related to the consumption of animal-origin products and the environmental pollution by manure. Different management of raw materials and feed, animal species as well as different legal limits can influence the spread of heavy metals. To set up effective strategies against heavy metals the complex interrelationships in rural processes, the widely variability of farming practices, the soil and climatic conditions must be considered. Innovative and sustainable approaches have discussed for the heavy metal nutrition ecology to control the environmental pollution from livestock-related activities.
Collapse
|
22
|
Onelli E, Moscatelli A, Gagliardi A, Zaninelli M, Bini L, Baldi A, Caccianiga M, Reggi S, Rossi L. Retarded germination of Nicotiana tabacum seeds following insertion of exogenous DNA mimics the seed persistent behavior. PLoS One 2017; 12:e0187929. [PMID: 29216220 PMCID: PMC5720674 DOI: 10.1371/journal.pone.0187929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/09/2017] [Indexed: 01/23/2023] Open
Abstract
Tobacco seeds show a coat-imposed dormancy in which the seed envelope tissues (testa and endosperm) impose a physical constraint on the radicle protrusion. The germination-limiting process is represented by the endosperm rupture which is induced by cell-wall weakening. Transgenic tobacco seeds, obtained by insertion of exogenous genes codifying for seed-based oral vaccines (F18 and VT2eB), showed retarded germination with respect to the wild type and modified the expression of endogenous proteins. Morphological and proteomic analyses of wild type and transgenic seeds revealed new insights into factors influencing seed germination. Our data showed that the interference of exogenous DNA influences the germination rather than the dormancy release, by modifying the maturation process. Dry seeds of F18 and VT2eB transgenic lines accumulated a higher amount of reserve and stress-related proteins with respect to the wild type. Moreover, the storage proteins accumulated in tobacco F18 and VT2eB dry seeds have structural properties that do not enable the early limited proteolysis observed in the wild type. Morphological observations by electron and light microscopy revealed a retarded mobilization of the storage material from protein and lipid bodies in transgenic seeds, thus impairing water imbibition and embryo elongation. In addition, both F18 and VT2eB dry seeds are more rounded than the wild type. Both the morphological and biochemical characteristics of transgenic seeds mimic the seed persistent profile, in which their roundness enables them to be buried in the soil, while the higher content of storage material enables the hypocotyl to elongate more and the cotyledons to emerge.
Collapse
Affiliation(s)
| | | | - Assunta Gagliardi
- Laboratory of Functional Proteomic, Department of Life Science, University of Siena, Siena, Italy
| | - Mauro Zaninelli
- Department of Human Sciences and Quality of Life Promotion, Università Telematica San Raffaele Roma, Italy, Rome, Italy
| | - Luca Bini
- Laboratory of Functional Proteomic, Department of Life Science, University of Siena, Siena, Italy
| | - Antonella Baldi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| | | | | | - Luciana Rossi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
23
|
Shahid N, Daniell H. Plant-based oral vaccines against zoonotic and non-zoonotic diseases. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2079-2099. [PMID: 27442628 PMCID: PMC5095797 DOI: 10.1111/pbi.12604] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 05/10/2023]
Abstract
The shared diseases between animals and humans are known as zoonotic diseases and spread infectious diseases among humans. Zoonotic diseases are not only a major burden to livestock industry but also threaten humans accounting for >60% cases of human illness. About 75% of emerging infectious diseases in humans have been reported to originate from zoonotic pathogens. Because antibiotics are frequently used to protect livestock from bacterial diseases, the development of antibiotic-resistant strains of epidemic and zoonotic pathogens is now a major concern. Live attenuated and killed vaccines are the only option to control these infectious diseases and this approach has been used since 1890. However, major problems with this approach include high cost and injectable vaccines is impractical for >20 billion poultry animals or fish in aquaculture. Plants offer an attractive and affordable platform for vaccines against animal diseases because of their low cost, and they are free of attenuated pathogens and cold chain requirement. Therefore, several plant-based vaccines against human and animals diseases have been developed recently that undergo clinical and regulatory approval. Plant-based vaccines serve as ideal booster vaccines that could eliminate multiple boosters of attenuated bacteria or viruses, but requirement of injectable priming with adjuvant is a current limitation. So, new approaches like oral vaccines are needed to overcome this challenge. In this review, we discuss the progress made in plant-based vaccines against zoonotic or other animal diseases and future challenges in advancing this field.
Collapse
Affiliation(s)
- Naila Shahid
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry Daniell
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Ayrle H, Mevissen M, Kaske M, Nathues H, Gruetzner N, Melzig M, Walkenhorst M. Medicinal plants--prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review. BMC Vet Res 2016; 12:89. [PMID: 27268043 PMCID: PMC4896019 DOI: 10.1186/s12917-016-0714-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/30/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Gastrointestinal and respiratory diseases in calves and piglets lead to significant economic losses in livestock husbandry. A high morbidity has been reported for diarrhea (calves ≤ 35%; piglets ≤ 50%) and for respiratory diseases (calves ≤ 80%; piglets ≤ 40%). Despite a highly diverse etiology and pathophysiology of these diseases, treatment with antimicrobials is often the first-line therapy. Multi-antimicrobial resistance in pathogens results in international accordance to strengthen the research in novel treatment options. Medicinal plants bear a potential as alternative or additional treatment. Based on the versatile effects of their plant specific multi-component-compositions, medicinal plants can potentially act as 'multi-target drugs'. Regarding the plurality of medicinal plants, the aim of this systematic review was to identify potential medicinal plant species for prevention and treatment of gastrointestinal and respiratory diseases and for modulation of the immune system and inflammation in calves and piglets. RESULTS Based on nine initial sources including standard textbooks and European ethnoveterinary studies, a total of 223 medicinal plant species related to the treatment of gastrointestinal and respiratory diseases was identified. A defined search strategy was established using the PRISMA statement to evaluate 30 medicinal plant species starting from 20'000 peer-reviewed articles published in the last 20 years (1994-2014). This strategy led to 418 references (257 in vitro, 84 in vivo and 77 clinical trials, thereof 48 clinical trials in veterinary medicine) to evaluate effects of medicinal plants and their efficacy in detail. The findings indicate that the most promising candidates for gastrointestinal diseases are Allium sativum L., Mentha x piperita L. and Salvia officinalis L.; for diseases of the respiratory tract Echinacea purpurea (L.) MOENCH, Thymus vulgaris L. and Althea officinalis L. were found most promising, and Echinacea purpurea (L.) MOENCH, Camellia sinensis (L.) KUNTZE, Glycyrrhiza glabra L. and Origanum vulgare L. were identified as best candidates for modulation of the immune system and inflammation. CONCLUSIONS Several medicinal plants bear a potential for novel treatment strategies for young livestock. There is a need for further research focused on gastrointestinal and respiratory diseases in calves and piglets, and the findings of this review provide a basis on plant selection for future studies.
Collapse
Affiliation(s)
- Hannah Ayrle
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, postbox 219, Frick, 5070, Switzerland. .,Division Veterinary Pharmacology & Toxicology, Department Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, Bern, 3012, Switzerland.
| | - Meike Mevissen
- Division Veterinary Pharmacology & Toxicology, Department Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Laenggassstrasse 124, Bern, 3012, Switzerland
| | - Martin Kaske
- Department of Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| | - Heiko Nathues
- Department of Clinical Veterinary Medicine, Swine Clinic, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland
| | - Niels Gruetzner
- Department of Clinical Veterinary Medicine, Swine Clinic, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, Bern, 3012, Switzerland
| | - Matthias Melzig
- Dahlem Centre of Plant Sciences, Institute of Pharmacy, Freie Universität Berlin, Koenigin-Luise-Strasse 2 + 4, Berlin, 14195, Germany
| | - Michael Walkenhorst
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, postbox 219, Frick, 5070, Switzerland
| |
Collapse
|
25
|
The case for plant-made veterinary immunotherapeutics. Biotechnol Adv 2016; 34:597-604. [PMID: 26875776 DOI: 10.1016/j.biotechadv.2016.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/14/2016] [Accepted: 02/11/2016] [Indexed: 12/11/2022]
Abstract
The excessive use of antibiotics in food animal production has contributed to resistance in pathogenic bacteria, thereby triggering regulations and consumer demands to limit their use. Alternatives for disease control are therefore required that are cost-effective and compatible with intensive production. While vaccines are widely used and effective, they are available against a minority of animal diseases, and development of novel vaccines and other immunotherapeutics is therefore needed. Production of such proteins recombinantly in plants can provide products that are effective and safe, can be orally administered with minimal processing, and are easily scalable with a relatively low capital investment. The present report thus advocates the use of plants for producing vaccines and antibodies to protect farm animals from diseases that have thus far been managed with antibiotics; and highlights recent advances in product efficacy, competitiveness, and regulatory approval.
Collapse
|
26
|
Hernández M, Rosas G, Cervantes J, Fragoso G, Rosales-Mendoza S, Sciutto E. Transgenic plants: a 5-year update on oral antipathogen vaccine development. Expert Rev Vaccines 2014; 13:1523-36. [PMID: 25158836 DOI: 10.1586/14760584.2014.953064] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The progressive interest in transgenic plants as advantageous platforms for the production and oral delivery of vaccines has led to extensive research and improvements in this technology over recent years. In this paper, the authors examine the most significant advances in this area, including novel approaches for higher yields and better containment, and the continued evaluation of new vaccine prototypes against several infectious diseases. The use of plants to deliver vaccine candidates against viruses, bacteria, and eukaryotic parasites within the last 5 years is discussed, focusing on innovative expression strategies and the immunogenic potential of new vaccines. A brief section on the state of the art in mucosal immunity is also included.
Collapse
Affiliation(s)
- Marisela Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 México, DF, México
| | | | | | | | | | | |
Collapse
|