1
|
Thomas PD, Ferrer MF, Lozano MJ, Gómez RM. Comparative genetic analysis of pathogenic and attenuated strains of Junín virus. Genetica 2025; 153:12. [PMID: 39921799 DOI: 10.1007/s10709-025-00228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
Junín virus (JUNV) is a mammarenavirus that causes Argentine hemorrhagic fever (AHF). Mammarenaviruses are RNA viruses with an ambisense, bi-segmented genome containing four genes encoding the glycoproteins (GPC), the nucleoprotein (NP), the RNA polymerase (L) and the matrix protein (Z). Several JUNV strains with different pathogenicity have already been fully sequenced. We performed a comprehensive and comparative analysis of their genetic differences and phylogeny, focusing on the synonymous codon usage patterns of the JUNV proteins. We found a nucleotide identity of > 95% between strains, with significant differences between all genes for GC% and Z and L genes for GC3%. Analysis of relative synonymous codon usage showed that codons AGA and AGG of the amino acid arginine were overrepresented, while CGC, CGA and CGG of arginine, GCG of alanine, ACG of threonine, CCG of proline and TCG of serine were underrepresented in the GPC, NP and L genes. A weak codon usage bias was observed, with GPC having a significantly higher effective number of codons. Moreover, selection could explain at least 83% of the observed bias. Analysis of the codon adaptation index revealed a better adaptation for B cells and kidney and a lower one for endothelial cells. We also observed a possible reassortment event between the MC2 and Romero strains. This work provides a new perspective on the genetic diversity of JUNV strains, which may contribute to the development of new approaches for future research into the evolutionary model, origin and host adaptation of JUNV causing AHF.
Collapse
Affiliation(s)
- Pablo Daniel Thomas
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| | - María Florencia Ferrer
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| | - Mauricio J Lozano
- Laboratorio de Genómica y Ecología Molecular de Microorganismos del Suelo asociados con Plantas, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina.
| | - Ricardo Martín Gómez
- Laboratorio de Patogénesis Viral, Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina.
| |
Collapse
|
2
|
Nunberg JH, Westover JB, York J, Jung KH, Bailey KW, Boardman KM, Li M, Furnell RS, Wasson SR, Murray JS, Kaundal R, Thomas AJ, Gowen BB. Restoration of virulence in the attenuated Candid#1 vaccine virus requires reversion at both positions 168 and 427 in the envelope glycoprotein GPC. J Virol 2024; 98:e0011224. [PMID: 38506509 PMCID: PMC11019782 DOI: 10.1128/jvi.00112-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
Live-attenuated virus vaccines provide long-lived protection against viral disease but carry inherent risks of residual pathogenicity and genetic reversion. The live-attenuated Candid#1 vaccine was developed to protect Argentines against lethal infection by the Argentine hemorrhagic fever arenavirus, Junín virus. Despite its safety and efficacy in Phase III clinical study, the vaccine is not licensed in the US, in part due to concerns regarding the genetic stability of attenuation. Previous studies had identified a single F427I mutation in the transmembrane domain of the Candid#1 envelope glycoprotein GPC as the key determinant of attenuation, as well as the propensity of this mutation to revert upon passage in cell culture and neonatal mice. To ascertain the consequences of this reversion event, we introduced the I427F mutation into recombinant Candid#1 (I427F rCan) and investigated the effects in two validated small-animal models: in mice expressing the essential virus receptor (human transferrin receptor 1; huTfR1) and in the conventional guinea pig model. We report that I427F rCan displays only modest virulence in huTfR1 mice and appears attenuated in guinea pigs. Reversion at another attenuating locus in Candid#1 GPC (T168A) was also examined, and a similar pattern was observed. By contrast, virus bearing both revertant mutations (A168T+I427F rCan) approached the lethal virulence of the pathogenic Romero strain in huTfR1 mice. Virulence was less extreme in guinea pigs. Our findings suggest that genetic stabilization at both positions is required to minimize the likelihood of reversion to virulence in a second-generation Candid#1 vaccine.IMPORTANCELive-attenuated virus vaccines, such as measles/mumps/rubella and oral poliovirus, provide robust protection against disease but carry with them the risk of genetic reversion to the virulent form. Here, we analyze the genetics of reversion in the live-attenuated Candid#1 vaccine that is used to protect against Argentine hemorrhagic fever, an often-lethal disease caused by the Junín arenavirus. In two validated small-animal models, we find that restoration of virulence in recombinant Candid#1 viruses requires back-mutation at two positions specific to the Candid#1 envelope glycoprotein GPC, at positions 168 and 427. Viruses bearing only a single change showed only modest virulence. We discuss strategies to genetically harden Candid#1 GPC against these two reversion events in order to develop a safer second-generation Candid#1 vaccine virus.
Collapse
Affiliation(s)
- Jack H. Nunberg
- Montana Biotechnology Center, University of Montana, Missoula, Montana, USA
| | - Jonna B. Westover
- Department of Animal Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Joanne York
- Montana Biotechnology Center, University of Montana, Missoula, Montana, USA
| | - Kie Hoon Jung
- Department of Animal Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Kevin W. Bailey
- Department of Animal Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Kirsten M. Boardman
- Department of Animal Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Minghao Li
- Department of Animal Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Rachel S. Furnell
- Department of Animal Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Samantha R. Wasson
- Department of Animal Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Justin S. Murray
- Department of Animal Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| | - Rakesh Kaundal
- Department of Plants, Soils, and Climate, Utah State University, Logan, Utah, USA
- Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Aaron J. Thomas
- Department of Animal Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Center for Integrated BioSystems, Utah State University, Logan, Utah, USA
| | - Brian B. Gowen
- Department of Animal Dairy and Veterinary Sciences, Utah State University, Logan, Utah, USA
- Institute for Antiviral Research, Utah State University, Logan, Utah, USA
| |
Collapse
|
3
|
Manning JT, Maruyama J, Wanninger T, Reyna RA, Stevenson HL, Peng BH, Mantlo EK, Huang C, Paessler S. The roles of XJ13 and XJ44-specific mutations within the Candid #1 GPC in Junin virus attenuation. Front Immunol 2023; 14:1172792. [PMID: 37334351 PMCID: PMC10272451 DOI: 10.3389/fimmu.2023.1172792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Junin virus (JUNV) is a member of the Arenaviridae family of viruses and is the pathogen responsible for causing Argentine hemorrhagic fever, a potentially lethal disease endemic to Argentina. A live attenuated vaccine for human use, called Candid#1, is approved only in Argentina. Candid#1 vaccine strain of Junin virus was obtained through serial passage in mouse brain tissues followed by passage in Fetal Rhesus macaque lung fibroblast (FRhL) cells. Previously, the mutations responsible for attenuation of this virus in Guinea pigs were mapped in the gene encoding for glycoprotein precursor (GPC) protein. The resulting Candid#1 glycoprotein complex has been shown to cause endoplasmic reticulum (ER) stress in vitro resulting in the degradation of the GPC. To evaluate the attenuating properties of specific mutations within GPC, we created recombinant viruses expressing GPC mutations specific to key Candid#1 passages and evaluated their pathogenicity in our outbred Hartley guinea pig model of Argentine hemorrhagic fever. Here, we provide evidence that early mutations in GPC obtained through serial passaging attenuate the visceral disease and increase immunogenicity in guinea pigs. Specific mutations acquired prior to the 13th mouse brain passage (XJ13) are responsible for attenuation of the visceral disease while having no impact on the neurovirulence of Junin virus. Additionally, our findings demonstrate that the mutation within an N-linked glycosylation motif, acquired prior to the 44th mouse brain passage (XJ44), is unstable but necessary for complete attenuation and enhanced immunogenicity of Candid#1 vaccine strain. The highly conserved N-linked glycosylation profiles of arenavirus glycoproteins could therefore be viable targets for designing attenuating viruses for vaccine development against other arenavirus-associated illnesses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Slobodan Paessler
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
4
|
Khan T, Muzaffar A, Shoaib RM, Khan A, Waheed Y, Wei DQ. Towards specie-specific ensemble vaccine candidates against mammarenaviruses using optimized structural vaccinology pipeline and molecular modelling approaches. Microb Pathog 2022; 172:105793. [PMID: 36165863 DOI: 10.1016/j.micpath.2022.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022]
Abstract
Mammarena viruses are emerging pathogenic agents and cause hemorrhagic fevers in humans. These viruses accomplish host immune system evasion to replicate and spread in the host. There are only few available therapeutic options developed for Mammarena Virus (also called MMV). Currently, only a single candidate vaccine called Candid#1 is available against Junin virus. Similarly, the effective treatment Ribavirin is used only in Lassa fever treatments. Herein, immune-informatics pipeline has been used to annotate whole proteome of the seven human infecting Mammarena strains. The extensive immune based analysis reveals specie specific epitopes with a crucial role in immune response induction. This was achieved by construction of immunogenic epitopes (CTL "Cytotoxic T-Lymphocytes", HTL "Helper T-Lymphocytes", and B cell "B-Lymphocytes") based vaccine designs against seven different Mammarena virus species. Furthermore, validation of the vaccine constructs through exploring physiochemical properties was performed to confirm experimental feasibility. Additionally, in-silico cloning and receptor based immune simulation was performed to ensure induction of primary and secondary immune response. This was confirmed through expression of immune factors such as IL, cytokines, and antibodies. The current study provides with novel vaccine designs which needs further demonstrations through potential processing against MMVs. Future studies may be directed towards advanced evaluations to determine the efficacy and safety of the designed vaccines through further experimental procedures.
Collapse
Affiliation(s)
- Taimoor Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | | | | | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, PR China.
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200030, PR China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, PR China; Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, PR China.
| |
Collapse
|
5
|
Lee M, Koma T, Iwasaki M, Urata S. [South American Hemorrhagic Fever viruses and the cutting edge of the vaccine and antiviral development]. Uirusu 2022; 72:7-18. [PMID: 37899233 DOI: 10.2222/jsv.72.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
South American Hemorrhagic Fever is caused by the Arenavirus, which belong to the Family Arenaviridae, genus mammarenavirus, infection at South America. South American Hemorrhagic Fever includes 1. Argentinian Hemorrhagic fever caused by Junin virus, 2. Brazilian hemorrhagic fever caused by Sabia virus, 3. Venezuelan Hemorrhagic fever caused by Guanarito virus, 4. Bolivian Hemorrhagic fever caused by Machupo virus, and 5. Unassigned hemorrhagic fever caused by Chapare virus. These viruses are classified in New World (NW) Arenavirus, which is different from Old World Arenavirus (ex. Lassa virus), based on phylogeny, serology, and geographic differences. In this review, the current knowledge of the biology and the development of the vaccines and antivirals of NW Arenaviruses which cause South American Hemorrhagic Fever will be described.
Collapse
Affiliation(s)
- Meion Lee
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University
| | - Takaaki Koma
- Department of Microbiology, Graduate School of Medicine, Tokushima University
| | - Masaharu Iwasaki
- Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University
| | - Shuzo Urata
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University
| |
Collapse
|
6
|
Holzerland J, Fénéant L, Banadyga L, Hölper JE, Knittler MR, Groseth A. BH3-only sensors Bad, Noxa and Puma are Key Regulators of Tacaribe virus-induced Apoptosis. PLoS Pathog 2020; 16:e1008948. [PMID: 33045019 PMCID: PMC7598930 DOI: 10.1371/journal.ppat.1008948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/30/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Pathogenicity often differs dramatically among even closely related arenavirus species. For instance, Junín virus (JUNV), the causative agent of Argentine hemorrhagic fever (AHF), is closely related to Tacaribe virus (TCRV), which is normally avirulent in humans. While little is known about how host cell pathways are regulated in response to arenavirus infection, or how this contributes to virulence, these two viruses have been found to differ markedly in their ability to induce apoptosis. However, details of the mechanism(s) governing the apoptotic response to arenavirus infections are unknown. Here we confirm that TCRV-induced apoptosis is mitochondria-regulated, with associated canonical hallmarks of the intrinsic apoptotic pathway, and go on to identify the pro- and anti-apoptotic Bcl-2 factors responsible for regulating this process. In particular, levels of the pro-apoptotic BH3-only proteins Noxa and Puma, as well as their canonical transcription factor p53, were strongly increased. Interestingly, TCRV infection also led to the accumulation of the inactive phosphorylated form of another pro-apoptotic BH3-only protein, Bad (i.e. as phospho-Bad). Knockout of Noxa or Puma suppressed apoptosis in response to TCRV infection, whereas silencing of Bad increased apoptosis, confirming that these factors are key regulators of apoptosis induction in response to TCRV infection. Further, we found that while the highly pathogenic JUNV does not induce caspase activation, it still activated upstream pro-apoptotic factors, consistent with current models suggesting that JUNV evades apoptosis by interfering with caspase activation through a nucleoprotein-mediated decoy function. This new mechanistic insight into the role that individual BH3-only proteins and their regulation play in controlling apoptotic fate in arenavirus-infected cells provides an important experimental framework for future studies aimed at dissecting differences in the apoptotic responses between arenaviruses, their connection to other cell signaling events and ultimately the relationship of these processes to pathogenesis. Arenaviruses are important zoonotic pathogens that present a serious threat to human health. While some virus species cause severe disease, resulting in hemorrhagic fever and/or neurological symptoms, other closely related species exhibit little or no pathogenicity. The basis for these dramatically different outcomes is insufficiently understood, but investigations of host cell responses have suggested that apoptosis, i.e. non-inflammatory programmed cell death, is regulated differently between pathogenic and apathogenic arenaviruses. However, many questions remain regarding how these viruses interact with cell death pathways upon infection. Here we demonstrate that apoptosis induced by the avirulent Tacaribe virus (TCRV), proceeds via the mitochondria (i.e. the intrinsic apoptotic signaling pathway), and is regulated by a combination of factors that appear to balance activation (i.e. Noxa and Puma) and inactivation (i.e. Bad-P) of this cascade. During TCRV infection, the balance of these pro- and anti-apoptotic signals shifts the equilibrium late in the infection towards cell death. Importantly, we also found that the highly pathogenic Junín virus (JUNV), which does not trigger caspase activation or apoptotic cell death, nonetheless induces pro-apoptotic factors, thus supporting the existence of a specific mechanism by which this virus is able to evade apoptosis at late stages in this process.
Collapse
Affiliation(s)
- Julia Holzerland
- Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald—Isle of Riems, Germany
| | - Lucie Fénéant
- Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald—Isle of Riems, Germany
| | - Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Julia E. Hölper
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald—Isle of Riems, Germany
| | - Michael R. Knittler
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald—Isle of Riems, Germany
| | - Allison Groseth
- Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Greifswald—Isle of Riems, Germany
- * E-mail:
| |
Collapse
|
7
|
Hallam SJ, Manning JT, Maruyama J, Seregin A, Huang C, Walker DH, de la Torre JC, Paessler S. A single mutation (V64G) within the RING Domain of Z attenuates Junin virus. PLoS Negl Trop Dis 2020; 14:e0008555. [PMID: 32976538 PMCID: PMC7540883 DOI: 10.1371/journal.pntd.0008555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/07/2020] [Accepted: 07/02/2020] [Indexed: 01/15/2023] Open
Abstract
Junin virus (JUNV) is a New World arenavirus that is the causative agent of Argentine hemorrhagic fever (AHF). Candid#1 (Can) is a live-attenuated vaccine strain of JUNV that since its introduction has resulted in a marked decrease in AHF incidence within the endemic regions of the Pampas in Argentina. Originally, the viral determinants and mechanisms of Can attenuation were not well understood. Recent work has identified the glycoprotein as the major attenuating factor for Can. The establishment of attenuating strategies based on any of the other viral proteins, however, has not been pursued. Here, we document the role of Can Z resulting in incompatibilities with wild type JUNV that results in decreased growth in vitro. In addition, this incompatibility results in attenuation of the virus in the guinea pig model. Further, we identify a single mutation (V64G) in the Z protein that is able to confer this demonstrated attenuation. By establishing and characterizing a novel attenuation strategy for New World mammarenaviruses, we hope to aid future vaccine development for related emerging pathogens including Machupo virus (MACV), Guanarito virus (GTOV), and Sabia virus (SABV). The continual development of safe, effective vaccines against emerging diseases is one of the greatest challenges facing the scientific community. The New World group of mammarenaviruses contains multiple human pathogens, each capable of causing severe hemorrhagic disease. Among these, only Junin virus has a distributed vaccine. By utilizing this vaccine, we are able to determine vaccine development strategies for related New World viruses that represent an emerging threat. Here we demonstrate that manipulation of the viral Z protein is able to produce an incompatibility that ultimately attenuates the virus. This provides yet another tool for future vaccine development to further global public health.
Collapse
Affiliation(s)
- Steven J. Hallam
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - John T. Manning
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexey Seregin
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Cheng Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, Scripps University, La Jolla, California, United States of America
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Institute for Human Infections and Immunity, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
8
|
Ziegler CM, Dang L, Eisenhauer P, Kelly JA, King BR, Klaus JP, Manuelyan I, Mattice EB, Shirley DJ, Weir ME, Bruce EA, Ballif BA, Botten J. NEDD4 family ubiquitin ligases associate with LCMV Z's PPXY domain and are required for virus budding, but not via direct ubiquitination of Z. PLoS Pathog 2019; 15:e1008100. [PMID: 31710650 PMCID: PMC6874086 DOI: 10.1371/journal.ppat.1008100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/21/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Viral late domains are used by many viruses to recruit the cellular endosomal sorting complex required for transport (ESCRT) to mediate membrane scission during viral budding. Unlike the P(S/T)AP and YPX(1–3)L late domains, which interact directly with the ESCRT proteins Tsg101 and ALIX, the molecular linkage connecting the PPXY late domain to ESCRT proteins is unclear. The mammarenavirus lymphocytic choriomeningitis virus (LCMV) matrix protein, Z, contains only one late domain, PPXY. We previously found that this domain in LCMV Z, as well as the ESCRT pathway, are required for the release of defective interfering (DI) particles but not infectious virus. To better understand the molecular mechanism of ESCRT recruitment by the PPXY late domain, affinity purification-mass spectrometry was used to identify host proteins that interact with the Z proteins of the Old World mammarenaviruses LCMV and Lassa virus. Several Nedd4 family E3 ubiquitin ligases interact with these matrix proteins and in the case of LCMV Z, the interaction was PPXY-dependent. We demonstrated that these ligases directly ubiquitinate LCMV Z and mapped the specific lysine residues modified. A recombinant LCMV containing a Z that cannot be ubiquitinated maintained its ability to produce both infectious virus and DI particles, suggesting that direct ubiquitination of LCMV Z alone is insufficient for recruiting ESCRT proteins to mediate virus release. However, Nedd4 ligases appear to be important for DI particle release suggesting that ubiquitination of targets other than the Z protein itself is required for efficient viral ESCRT recruitment. Enveloped viruses derive their lipid bilayer from either the cellular plasma membrane or an intracellular organelle during the process of viral budding in which a virus particle is formed at a membrane. Many enveloped viruses recruit the cellular endosomal sorting complex required for transport (ESCRT) in order to efficiently cut the membrane that connects a newly budded, but not released, virus particle from its parent membrane. Late domains, which are short protein motifs found in numerous enveloped viruses, specifically recruit ESCRT for this process. Two types of late domains accomplish this by binding directly to ESCRT proteins. A third late domain, PPXY, recruits ESCRT proteins through an unknown, indirect linkage. In this study, we sought to identify proteins that may bridge the PPXY late domain and ESCRT proteins. We found that Nedd4 family ubiquitin ligases interact with the PPXY domain in the mammarenavirus Z protein resulting in ubiquitination of Z at two lysine residues. However, Z ubiquitination was largely dispensable for the virus. Conversely, Nedd4 ubiquitin ligases were critical during infection suggesting that the most important contribution made to virus release by Nedd4 ligases is not direct ubiquitination of the viral matrix protein, but possibly the ubiquitination of cellular proteins or other viral proteins.
Collapse
Affiliation(s)
- Christopher M. Ziegler
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Loan Dang
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Philip Eisenhauer
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Jamie A. Kelly
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Benjamin R. King
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Joseph P. Klaus
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Inessa Manuelyan
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, United States of America
| | - Ethan B. Mattice
- Cellular, Molecular and Biomedical Sciences Graduate Program, University of Vermont, Burlington, Vermont, United States of America
| | - David J. Shirley
- Ixis LLC, Data Science Division, Burlington, Vermont, United States of America
| | - Marion E. Weir
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Emily A. Bruce
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
| | - Bryan A. Ballif
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Jason Botten
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, Vermont, United States of America
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
9
|
Brisse ME, Ly H. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors. Front Immunol 2019; 10:372. [PMID: 30918506 PMCID: PMC6424867 DOI: 10.3389/fimmu.2019.00372] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Hemorrhagic fevers (HF) resulting from pathogenic arenaviral infections have traditionally been neglected as tropical diseases primarily affecting African and South American regions. There are currently no FDA-approved vaccines for arenaviruses, and treatments have been limited to supportive therapy and use of non-specific nucleoside analogs, such as Ribavirin. Outbreaks of arenaviral infections have been limited to certain geographic areas that are endemic but known cases of exportation of arenaviruses from endemic regions and socioeconomic challenges for local control of rodent reservoirs raise serious concerns about the potential for larger outbreaks in the future. This review synthesizes current knowledge about arenaviral evolution, ecology, transmission patterns, life cycle, modulation of host immunity, disease pathogenesis, as well as discusses recent development of preventative and therapeutic pursuits against this group of deadly viral pathogens.
Collapse
Affiliation(s)
- Morgan E Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
10
|
Tang K, He S, Zhang X, Guo J, Chen Q, Yan F, Banadyga L, Zhu W, Qiu X, Guo Y. Tangeretin, an extract from Citrus peels, blocks cellular entry of arenaviruses that cause viral hemorrhagic fever. Antiviral Res 2018; 160:87-93. [PMID: 30339847 DOI: 10.1016/j.antiviral.2018.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 11/16/2022]
Abstract
The family Arenaviridae consists of numerous enveloped RNA viruses with ambisense coding strategies. Eight arenaviruses, including Lassa virus, are known to cause severe and fatal viral hemorrhagic fever (VHF) in humans, yet vaccines and treatments for disease caused by arenaviruses are very limited. In this study, we screened a natural product library consisting of 131 compounds and identified tangeretin, a polymethoxylated flavone widely present in citrus fruit peels, as a Lassa virus entry inhibitor that blocks viral fusion. Further analyses demonstrated the efficacy of tangeretin against seven other VHF-causing arenaviruses, suggesting that this compound, which has a history of medical usage, could be used to develop an effective therapeutic to treat infection and disease caused by Lassa virus and related viruses.
Collapse
Affiliation(s)
- Ke Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Xiaoyu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jiamei Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Feihu Yan
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Science, Changchun, 130122, China
| | - Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Wenjun Zhu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada.
| | - Ying Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
11
|
A Proteomics Survey of Junín Virus Interactions with Human Proteins Reveals Host Factors Required for Arenavirus Replication. J Virol 2018; 92:JVI.01565-17. [PMID: 29187543 DOI: 10.1128/jvi.01565-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/22/2017] [Indexed: 12/17/2022] Open
Abstract
Arenaviruses are negative-strand, enveloped RNA viruses that cause significant human disease. In particular, Junín mammarenavirus (JUNV) is the etiologic agent of Argentine hemorrhagic fever. At present, little is known about the cellular proteins that the arenavirus matrix protein (Z) hijacks to accomplish its various functions, including driving the process of virus release. Furthermore, there is little knowledge regarding host proteins incorporated into arenavirus particles and their importance for virion function. To address these deficiencies, we used mass spectrometry to identify human proteins that (i) interact with the JUNV matrix protein inside cells or within virus-like particles (VLPs) and/or (ii) are incorporated into bona fide JUNV strain Candid#1 particles. Bioinformatics analyses revealed that multiple classes of human proteins were overrepresented in the data sets, including ribosomal proteins, Ras superfamily proteins, and endosomal sorting complex required for transport (ESCRT) proteins. Several of these proteins were required for the propagation of JUNV (ADP ribosylation factor 1 [ARF1], ATPase, H+ transporting, lysosomal 38-kDa, V0 subunit d1 [ATP6V0D1], and peroxiredoxin 3 [PRDX3]), lymphocytic choriomeningitis mammarenavirus (LCMV) (Rab5c), or both viruses (ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide [ATP5B] and IMP dehydrogenase 2 [IMPDH2]). Furthermore, we show that the release of infectious JUNV particles, but not LCMV particles, requires a functional ESCRT pathway and that ATP5B and IMPDH2 are required for JUNV budding. In summary, we have provided a large-scale map of host machinery that associates with JUNV and identified key human proteins required for its propagation. This data set provides a resource for the field to guide antiviral target discovery and to better understand the biology of the arenavirus matrix protein and the importance of host proteins for virion function.IMPORTANCE Arenaviruses are deadly human pathogens for which there are no U.S. Food and Drug Administration-approved vaccines and only limited treatment options. Little is known about the host proteins that are incorporated into arenavirus particles or that associate with its multifunctional matrix protein. Using Junín mammarenavirus (JUNV), the causative agent of Argentine hemorrhagic fever, as a model organism, we mapped the human proteins that are incorporated into JUNV particles or that associate with the JUNV matrix protein. Functional analysis revealed host machinery that is required for JUNV propagation, including the cellular ESCRT pathway. This study improves our understanding of critical arenavirus-host interactions and provides a data set that will guide future studies to better understand arenavirus pathogenesis and identify novel host proteins that can be therapeutically targeted.
Collapse
|
12
|
A Map of the Arenavirus Nucleoprotein-Host Protein Interactome Reveals that Junín Virus Selectively Impairs the Antiviral Activity of Double-Stranded RNA-Activated Protein Kinase (PKR). J Virol 2017; 91:JVI.00763-17. [PMID: 28539447 DOI: 10.1128/jvi.00763-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/12/2017] [Indexed: 11/20/2022] Open
Abstract
Arenaviruses are enveloped negative-strand RNA viruses that cause significant human disease. These viruses encode only four proteins to accomplish the viral life cycle, so each arenavirus protein likely plays unappreciated accessory roles during infection. Here we used immunoprecipitation and mass spectrometry to identify human proteins that interact with the nucleoproteins (NPs) of the Old World arenavirus lymphocytic choriomeningitis virus (LCMV) and the New World arenavirus Junín virus (JUNV) strain Candid #1. Bioinformatic analysis of the identified protein partners of NP revealed that host translation appears to be a key biological process engaged during infection. In particular, NP associates with the double-stranded RNA (dsRNA)-activated protein kinase (PKR), a well-characterized antiviral protein that inhibits cap-dependent protein translation initiation via phosphorylation of eIF2α. JUNV infection leads to increased expression of PKR as well as its redistribution to viral replication and transcription factories. Further, phosphorylation of PKR, which is a prerequisite for its ability to phosphorylate eIF2α, is readily induced by JUNV. However, JUNV prevents this pool of activated PKR from phosphorylating eIF2α, even following exposure to the synthetic dsRNA poly(I·C), a potent PKR agonist. This blockade of PKR function is highly specific, as LCMV is unable to similarly inhibit eIF2α phosphorylation. JUNV's ability to antagonize the antiviral activity of PKR appears to be complete, as silencing of PKR expression has no impact on viral propagation. In summary, we provide a detailed map of the host machinery engaged by arenavirus NPs and identify an antiviral pathway that is subverted by JUNV.IMPORTANCE Arenaviruses are important human pathogens for which FDA-approved vaccines do not exist and effective antiviral therapeutics are needed. Design of antiviral treatment options and elucidation of the mechanistic basis of disease pathogenesis will depend on an increased basic understanding of these viruses and, in particular, their interactions with the host cell machinery. Identifying host proteins critical for the viral life cycle and/or pathogenesis represents a useful strategy to uncover new drug targets. This study reveals, for the first time, the extensive human protein interactome of arenavirus nucleoproteins and uncovers a potent antiviral host protein that is neutralized during Junín virus infection. In so doing, it shows further insight into the interplay between the virus and the host innate immune response and provides an important data set for the field.
Collapse
|
13
|
Abstract
Hemorrhagic fevers caused by viruses were identified in the late 1950s in South America. These viruses have existed in their hosts, the New World rodents, for millions of years. Their emergence as infectious agents in humans coincided with changes in the environment and farming practices that caused explosions in their host rodent populations. Zoonosis into humans likely occurs because the pathogenic New World arenaviruses use human transferrin receptor 1 to enter cells. The mortality rate after infection with these viruses is high, but the mechanism by which disease is induced is still not clear. Possibilities include direct effects of cellular infection or the induction of high levels of cytokines by infected sentinel cells of the immune system, leading to endothelia and thrombocyte dysfunction and neurological disease. Here we provide a review of the ecology and molecular and cellular biology of New World arenaviruses, as well as a discussion of the current animal models of infection. The development of animal models, coupled with an improved understanding of the infection pathway and host response, should lead to the discovery of new drugs for treating infections.
Collapse
Affiliation(s)
- Nicolás Sarute
- Department of Microbiology and Immunology, University of Illinois College of Medicine at Chicago, Chicago, Illinois 60612; ,
| | - Susan R Ross
- Department of Microbiology and Immunology, University of Illinois College of Medicine at Chicago, Chicago, Illinois 60612; ,
| |
Collapse
|
14
|
Ly H. Differential Immune Responses to New World and Old World Mammalian Arenaviruses. Int J Mol Sci 2017; 18:E1040. [PMID: 28498311 PMCID: PMC5454952 DOI: 10.3390/ijms18051040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/09/2017] [Accepted: 05/09/2017] [Indexed: 12/17/2022] Open
Abstract
Some New World (NW) and Old World (OW) mammalian arenaviruses are emerging, zoonotic viruses that can cause lethal hemorrhagic fever (HF) infections in humans. While these are closely related RNA viruses, the infected hosts appear to mount different types of immune responses against them. Lassa virus (LASV) infection, for example, results in suppressed immune function in progressive disease stage, whereas patients infected with Junín virus (JUNV) develop overt pro-inflammatory cytokine production. These viruses have also evolved different molecular strategies to evade host immune recognition and activation. This paper summarizes current progress in understanding the differential immune responses to pathogenic arenaviruses and how the information can be exploited toward the development of vaccines against them.
Collapse
Affiliation(s)
- Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, 1988 Fitch Ave., Ste 295, Saint Paul, MN 55108, USA.
| |
Collapse
|
15
|
Activation of the RLR/MAVS Signaling Pathway by the L Protein of Mopeia Virus. J Virol 2016; 90:10259-10270. [PMID: 27605671 DOI: 10.1128/jvi.01292-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/23/2016] [Indexed: 11/20/2022] Open
Abstract
The family Arenaviridae includes several important human pathogens that can cause severe hemorrhagic fever and greatly threaten public health. As a major component of the innate immune system, the RLR/MAVS signaling pathway is involved in recognizing viral components and initiating antiviral activity. It has been reported that arenavirus infection can suppress the innate immune response, and NP and Z proteins of pathogenic arenaviruses can disrupt RLR/MAVS signaling, thus inhibiting production of type I interferon (IFN-I). However, recent studies have shown elevated IFN-I levels in certain arenavirus-infected cells. The mechanism by which arenavirus infection induces IFN-I responses remains unclear. In this study, we determined that the L polymerase (Lp) of Mopeia virus (MOPV), an Old World (OW) arenavirus, can activate the RLR/MAVS pathway and thus induce the production of IFN-I. This activation is associated with the RNA-dependent RNA polymerase activity of Lp. This study provides a foundation for further studies of interactions between arenaviruses and the innate immune system and for the elucidation of arenavirus pathogenesis. IMPORTANCE Distinct innate immune responses are observed when hosts are infected with different arenaviruses. It has been widely accepted that NP and certain Z proteins of arenaviruses inhibit the RLR/MAVS signaling pathway. The viral components responsible for the activation of the RLR/MAVS signaling pathway remain to be determined. In the current study, we demonstrate for the first time that the Lp of MOPV, an OW arenavirus, can activate the RLR/MAVS signaling pathway and thus induce the production of IFN-I. Based on our results, we proposed that dynamic interactions exist among Lp-produced RNA, NP, and the RLR/MAVS signaling pathway, and the outcome of these interactions may determine the final IFN-I response pattern: elevated or reduced. Our study provides a possible explanation for how IFN-I can become activated during arenavirus infection and may help us gain insights into the interactions that form between different arenavirus components and the innate immune system.
Collapse
|
16
|
The Lymphocytic Choriomeningitis Virus Matrix Protein PPXY Late Domain Drives the Production of Defective Interfering Particles. PLoS Pathog 2016; 12:e1005501. [PMID: 27010636 PMCID: PMC4806877 DOI: 10.1371/journal.ppat.1005501] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/19/2016] [Indexed: 12/19/2022] Open
Abstract
Arenaviruses cause severe diseases in humans but establish asymptomatic, lifelong infections in rodent reservoirs. Persistently-infected rodents harbor high levels of defective interfering (DI) particles, which are thought to be important for establishing persistence and mitigating virus-induced cytopathic effect. Little is known about what drives the production of DI particles. We show that neither the PPXY late domain encoded within the lymphocytic choriomeningitis virus (LCMV) matrix protein nor a functional endosomal sorting complex transport (ESCRT) pathway is absolutely required for the generation of standard infectious virus particles. In contrast, DI particle release critically requires the PPXY late domain and is ESCRT-dependent. Additionally, the terminal tyrosine in the PPXY motif is reversibly phosphorylated and our findings indicate that this posttranslational modification may regulate DI particle formation. Thus we have uncovered a new role for the PPXY late domain and a possible mechanism for its regulation. Arenaviruses cause severe and often fatal diseases in humans yet typically establish lifelong, asymptomatic infections in their rodent reservoirs. Several families of enveloped RNA viruses, including the arenaviruses, encode short amino acid motifs, called late domains, to hijack host proteins in the endosomal sorting complex required for transport (ESCRT) to drive the release of virus particles from the host cell’s outer membrane. Many late domain-containing viruses produce defective interfering (DI) particles in addition to standard, infectious virus. DI particles cannot self-replicate but interfere with the production of infectious virus and mitigate virus-induced cytopathic effect. Arenaviruses such as lymphocytic choriomeningitis virus (LCMV) generate high levels of DI particles, yet, the mechanism that drives their formation is not known. We show that LCMV’s only encoded late domain, PPXY, and a functional ESCRT pathway are critical for DI particle production, but in contrast, are not absolutely required for infectious virus production. We also demonstrate that the LCMV PPXY late domain is phosphorylated and that this modification may regulate DI particle production. In summary, we have discovered a new and unexpected role for a viral late domain in selectively driving the production of DI particles independently of standard infectious virus particles.
Collapse
|
17
|
Klaus JP, Botten J. Highly Sensitive Assay for Measurement of Arenavirus-cell Attachment. J Vis Exp 2016:e53682. [PMID: 26966937 DOI: 10.3791/53682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Arenaviruses are a family of enveloped RNA viruses that cause severe human disease. The first step in the arenavirus life cycle is attachment of viral particles to host cells. While virus-cell attachment can be measured through the use of virions labeled with biotin, radioactive isotopes, or fluorescent dyes, these approaches typically require high multiplicities of infection (MOI) to enable detection of bound virus. We describe a quantitative (q)RT-PCR-based assay that measures Junin virus strain Candid 1 attachment via quantitation of virion-packaged viral genomic RNA. This assay has several advantages including its extreme sensitivity and ability to measure attachment over a large dynamic range of MOIs without the need to purify or label input virus. Importantly, this approach can be easily tailored for use with other viruses through the use of virus-specific qRT-PCR reagents. Further, this assay can be modified to permit measurement of particle endocytosis and genome uncoating. In conclusion, we describe a simple, yet robust assay for highly sensitive measurement of arenavirus-cell attachment.
Collapse
Affiliation(s)
- Joseph P Klaus
- Department of Medicine, Division of Immunobiology, University of Vermont
| | - Jason Botten
- Department of Medicine, Division of Immunobiology, University of Vermont; Department of Microbiology & Molecular Genetics, University of Vermont;
| |
Collapse
|
18
|
Novel Arenavirus Entry Inhibitors Discovered by Using a Minigenome Rescue System for High-Throughput Drug Screening. J Virol 2015; 89:8428-43. [PMID: 26041296 DOI: 10.1128/jvi.00997-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/26/2015] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Certain members of the Arenaviridae family are category A agents capable of causing severe hemorrhagic fevers in humans. Specific antiviral treatments do not exist, and the only commonly used drug, ribavirin, has limited efficacy and can cause severe side effects. The discovery and development of new antivirals are inhibited by the biohazardous nature of the viruses, making them a relatively poorly understood group of human pathogens. We therefore adapted a reverse-genetics minigenome (MG) rescue system based on Junin virus, the causative agent of Argentine hemorrhagic fever, for high-throughput screening (HTS). The MG rescue system recapitulates all stages of the virus life cycle and enables screening of small-molecule libraries under biosafety containment level 2 (BSL2) conditions. The HTS resulted in the identification of four candidate compounds with potent activity against a broad panel of arenaviruses, three of which were completely novel. The target for all 4 compounds was the stage of viral entry, which positions the compounds as potentially important leads for future development. IMPORTANCE The arenavirus family includes several members that are highly pathogenic, causing acute viral hemorrhagic fevers with high mortality rates. No specific effective treatments exist, and although a vaccine is available for Junin virus, the causative agent of Argentine hemorrhagic fever, it is licensed for use only in areas where Argentine hemorrhagic fever is endemic. For these reasons, it is important to identify specific compounds that could be developed as antivirals against these deadly viruses.
Collapse
|
19
|
Findlay JS, Ulaeto D, D'Elia RV. Cytokines and viral hemorrhagic fever: potential for therapeutic intervention. Future Virol 2015. [DOI: 10.2217/fvl.15.5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT The recent Ebola outbreak in West Africa highlights the need to improve our understanding of why viral hemorrhagic fevers (VHFs) are so devastating. There is a requirement to generate effective prophylactics, such as vaccines, and therapies, especially those that are effective postsymptomatically. For a range of pathogens, it appears that overstimulation of pro-inflammatory cytokines, the ‘cytokine storm’, causes serious immunopathology in patients. In this review, we will focus on the cytokine response following infection by representatives of the viruses which can cause VHF: Ebola virus and Marburg virus, Crimean–Congo hemorrhagic fever virus, Dengue virus, Junin and Lassa virus. Specifically, the role of the cytokine storm in causing VHF and the use of therapeutic immunomodulatory compounds to help treat these fatal and debilitating diseases will be explored.
Collapse
Affiliation(s)
- James S Findlay
- Biomedical Sciences, Defence Science & Technology Laboratory (Dstl) Porton Down, Salisbury, SP4 0JQ, UK
| | - David Ulaeto
- Biomedical Sciences, Defence Science & Technology Laboratory (Dstl) Porton Down, Salisbury, SP4 0JQ, UK
| | - Riccardo V D'Elia
- Biomedical Sciences, Defence Science & Technology Laboratory (Dstl) Porton Down, Salisbury, SP4 0JQ, UK
| |
Collapse
|
20
|
Kolokoltsova OA, Grant AM, Huang C, Smith JK, Poussard AL, Tian B, Brasier AR, Peters CJ, Tseng CTK, de la Torre JC, Paessler S. RIG-I enhanced interferon independent apoptosis upon Junin virus infection. PLoS One 2014; 9:e99610. [PMID: 24918927 PMCID: PMC4053358 DOI: 10.1371/journal.pone.0099610] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/15/2014] [Indexed: 12/30/2022] Open
Abstract
Junin virus (JUNV) is the etiological agent of Argentine hemorrhagic fever (AHF), a human disease with a high case-fatality rate. It is widely accepted that arenaviral infections, including JUNV infections, are generally non-cytopathic. In contrast, here we demonstrated apoptosis induction in human lung epithelial carcinoma (A549), human hepatocarcinoma and Vero cells upon infection with the attenuated Candid#1 strain of, JUNV as determined by phosphatidylserine (PS) translocation, Caspase 3 (CASP3) activation, Poly (ADP-ribose) polymerase (PARP) cleavage and/or chromosomal DNA fragmentation. Moreover, as determined by DNA fragmentation, we found that the pathogenic Romero strain of JUNV was less cytopathic than Candid#1 in human hepatocarcinoma and Vero, but more apoptotic in A549 and Vero E6 cells. Additionally, we found that JUNV-induced apoptosis was enhanced by RIG-I signaling. Consistent with the previously reported role of RIG-I like helicase (RLH) signaling in initiating programmed cell death, we showed that cell death or DNA fragmentation of Candid#1-infected A549 cells was decreased upon siRNA or shRNA silencing of components of RIG-I pathway in spite of increased virus production. Similarly, we observed decreased DNA fragmentation in JUNV-infected human hepatocarcinoma cells deficient for RIG-I when compared with that of RIG-I-competent cells. In addition, DNA fragmentation detected upon Candid#1 infection of type I interferon (IFN)-deficient Vero cells suggested a type I IFN-independent mechanism of apoptosis induction in response to JUNV. Our work demonstrated for the first time apoptosis induction in various cells of mammalian origin in response to JUNV infection and partial mechanism of this cell death.
Collapse
Affiliation(s)
- Olga A. Kolokoltsova
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Ashley M. Grant
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Cheng Huang
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Jennifer K. Smith
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Allison L. Poussard
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| | - Bing Tian
- Internal Med-Endocrinology, UTMB, Galveston, Texas, United States of America
| | - Allan R. Brasier
- Internal Med-Endocrinology, UTMB, Galveston, Texas, United States of America
| | - Clarence J. Peters
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
- Department of Microbiology and Immunology, UTMB, Galveston, Texas, United States of America
| | - Chien-Te Kent Tseng
- Department of Microbiology and Immunology, UTMB, Galveston, Texas, United States of America
| | - Juan C. de la Torre
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch (UTMB), Galveston, Texas, United States of America
| |
Collapse
|
21
|
Toll-like receptor 2-mediated innate immune responses against Junín virus in mice lead to antiviral adaptive immune responses during systemic infection and do not affect viral replication in the brain. J Virol 2014; 88:7703-14. [PMID: 24760892 DOI: 10.1128/jvi.00050-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Successful adaptive immunity to virus infection often depends on the initial innate response. Previously, we demonstrated that Junín virus, the etiological agent responsible for Argentine hemorrhagic fever (AHF), activates an early innate immune response via an interaction between the viral glycoprotein and Toll-like receptor 2 (TLR2). Here we show that TLR2/6 but not TLR1/2 heterodimers sense Junín virus glycoprotein and induce a cytokine response, which in turn upregulates the expression of the RNA helicases RIG-I and MDA5. NF-κB and Erk1/2 were important in the cytokine response, since both proteins were phosphorylated as a result of the interaction of virus with TLR2, and treatment with an Erk1/2-specific inhibitor blocked cytokine production. We show that the Junín virus glycoprotein activates cytokine production in a human macrophage cell line as well. Moreover, we show that TLR2-mediated immune response plays a role in viral clearance because wild-type mice cleared Candid 1 (JUNV C1), the vaccine strain of Junín virus, more rapidly than did TLR2 knockout mice. This clearance correlated with the generation of Junín virus-specific CD8(+) T cells. However, infected wild-type and TLR2 knockout mice developed TLR2-independent blocking antibody responses with similar kinetics. We also show that microglia and astrocytes but not neurons are susceptible to infection with JUNV C1. Although JUNV C1 infection of the brain also triggered a TLR2-dependent cytokine response, virus levels were equivalent in wild-type and TLR2 knockout mice. Importance: Junín virus is transmitted by rodents native to Argentina and is associated with both systemic disease and, in some patients, neurological symptoms. Humans become infected when they inhale aerosolized Junín virus. AHF has a 15 to 30% mortality rate, and patients who clear the infection develop a strong antibody response to Junín virus. Here we investigated what factors determine the immune response to Junín virus. We show that a strong initial innate immune response to JUNV C1 determines how quickly mice can clear systemic infection and that this depended on the cellular immune response. In contrast, induction of an innate immune response in the brain had no effect on virus infection levels. These findings may explain how the initial immune response to Junín virus infection could determine different outcomes in humans.
Collapse
|
22
|
Stephan BI, Lozano ME, Goñi SE. Watching every step of the way: junín virus attenuation markers in the vaccine lineage. Curr Genomics 2014; 14:415-24. [PMID: 24396274 PMCID: PMC3867718 DOI: 10.2174/138920291407131220153526] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/26/2013] [Accepted: 08/26/2013] [Indexed: 01/19/2023] Open
Abstract
The Arenaviridae family includes several hemorrhagic fever viruses which are important emerging pathogens. Junín virus, a member of this family, is the etiological agent of Argentine Hemorrhagic Fever (AHF). A collaboration between the Governments of Argentina and the USA rendered the attenuated Junín virus vaccine strain Candid#1. Arenaviruses are enveloped viruses with genomes consisting of two single-stranded RNA species (L and S), each carrying two coding regions separated by a stably structured, non-coding intergenic region. Molecular characterization of the vaccine strain and of its more virulent ancestors, XJ13 (prototype) and XJ#44, allows a systematic approach for the discovery of key elements in virulence attenuation. We show comparisons of sequence information for the S RNA of the strains XJ13, XJ#44 and Candid#1 of Junín virus, along with other strains from the vaccine lineage and a set of Junín virus field strains collected at the AHF endemic area. Comparisons of nucleotide and amino acid sequences revealed different point mutations which might be linked to the attenuated phenotype. The majority of changes are consistent with a progressive attenuation of virulence between XJ13, XJ#44 and Candid#1. We propose that changes found in genomic regions with low natural variation frequencies are more likely to be associated with the virulence attenuation process. We partially sequenced field strains to analyze the genomic variability naturally occurring for Junín virus. This information, together with the sequence analysis of strains with intermediate virulence, will serve as a starting point to study the molecular bases for viral attenuation.
Collapse
Affiliation(s)
- Betina Inés Stephan
- Área de Virosis Emergentes y Zoonóticas, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Quilmes, Argentina
| | - Mario Enrique Lozano
- Área de Virosis Emergentes y Zoonóticas, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Quilmes, Argentina
| | - Sandra Elizabeth Goñi
- Área de Virosis Emergentes y Zoonóticas, Laboratorio de Biología Celular y Molecular, Universidad Nacional de Quilmes, Argentina
| |
Collapse
|
23
|
McLay L, Liang Y, Ly H. Comparative analysis of disease pathogenesis and molecular mechanisms of New World and Old World arenavirus infections. J Gen Virol 2014; 95:1-15. [PMID: 24068704 PMCID: PMC4093776 DOI: 10.1099/vir.0.057000-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/19/2013] [Indexed: 12/24/2022] Open
Abstract
Arenaviruses can cause fatal human haemorrhagic fever (HF) diseases for which vaccines and therapies are extremely limited. Both the New World (NW) and Old World (OW) groups of arenaviruses contain HF-causing pathogens. Although these two groups share many similarities, important differences with regard to pathogenicity and molecular mechanisms of virus infection exist. These closely related pathogens share many characteristics, including genome structure, viral assembly, natural host selection and the ability to interfere with innate immune signalling. However, members of the NW and OW viruses appear to use different receptors for cellular entry, as well as different mechanisms of virus internalization. General differences in disease signs and symptoms and pathological lesions in patients infected with either NW or OW arenaviruses are also noted and discussed herein. Whilst both the OW Lassa virus (LASV) and the NW Junin virus (JUNV) can cause disruption of the vascular endothelium, which is an important pathological feature of HF, the immune responses to these related pathogens seem to be quite distinct. Whereas LASV infection results in an overall generalized immune suppression, patients infected with JUNV seem to develop a cytokine storm. Additionally, the type of immune response required for recovery and clearance of the virus is different between NW and OW infections. These differences may be important to allow the viruses to evade host immune detection. Understanding these differences will aid the development of new vaccines and treatment strategies against deadly HF viral infections.
Collapse
MESH Headings
- Animals
- Arenaviridae Infections/immunology
- Arenaviridae Infections/pathology
- Arenaviridae Infections/virology
- Arenaviruses, New World/classification
- Arenaviruses, New World/genetics
- Arenaviruses, New World/immunology
- Arenaviruses, New World/pathogenicity
- Arenaviruses, Old World/classification
- Arenaviruses, Old World/genetics
- Arenaviruses, Old World/immunology
- Arenaviruses, Old World/pathogenicity
- Hemorrhagic Fevers, Viral/immunology
- Hemorrhagic Fevers, Viral/pathology
- Hemorrhagic Fevers, Viral/virology
- Humans
Collapse
Affiliation(s)
- Lisa McLay
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, MN 55108, USA
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, MN 55108, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, MN 55108, USA
| |
Collapse
|
24
|
Radoshitzky SR, Kuhn JH, de Kok-Mercado F, Jahrling PB, Bavari S. Drug discovery technologies and strategies for Machupo virus and other New World arenaviruses. Expert Opin Drug Discov 2012; 7:613-32. [PMID: 22607481 PMCID: PMC3426302 DOI: 10.1517/17460441.2012.687719] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Seven arenaviruses cause viral hemorrhagic fever in humans: the Old World arenaviruses Lassa and Lujo, and the New World Clade B arenaviruses Machupo (MACV), Junín (JUNV), Guanarito (GTOV), Sabiá (SABV), and Chapare (CHPV). All of these viruses are Risk Group 4 biosafety pathogens. MACV causes human disease outbreak with high case-fatality rates. To date, at least 1,200 cases with ≈200 fatalities have been recorded. AREAS COVERED This review summarizes available systems and technologies for the identification of antivirals against MACV. Furthermore, the article summarizes animal models that have been used for the in vivo evaluation of novel inhibitors. The article highlights present treatments for arenaviral diseases and provides an overview of efficacious small molecules and other therapeutics reported to date. Finally, the article summarizes strategies to identify novel inhibitors for anti-arenaviral therapy. EXPERT OPINION New high-throughput approaches to quantitate infection rates of arenaviruses, as well as viruses modified to carry reporter genes, will accelerate compound screens and drug discovery efforts. RNAi, gene expression profiling and proteomics studies will identify host targets for therapeutic intervention. New discoveries in the cell entry mechanism of MACV and other arenaviruses as well as extensive structural studies of arenaviral L and NP could facilitate the rational design of antivirals effective against all pathogenic New World arenaviruses.
Collapse
Affiliation(s)
- Sheli R. Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Fabian de Kok-Mercado
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Peter B. Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
25
|
Attenuation of Chikungunya virus vaccine strain 181/clone 25 is determined by two amino acid substitutions in the E2 envelope glycoprotein. J Virol 2012; 86:6084-96. [PMID: 22457519 DOI: 10.1128/jvi.06449-11] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chikungunya virus (CHIKV) is the mosquito-borne alphavirus that is the etiologic agent of massive outbreaks of arthralgic febrile illness that recently affected millions of people in Africa and Asia. The only CHIKV vaccine that has been tested in humans, strain 181/clone 25, is a live-attenuated derivative of Southeast Asian human isolate strain AF15561. The vaccine was immunogenic in phase I and II clinical trials; however, it induced transient arthralgia in 8% of the vaccinees. There are five amino acid differences between the vaccine and its parent, as well as five synonymous mutations, none of which involves cis-acting genome regions known to be responsible for replication or packaging. To identify the determinants of attenuation, we therefore tested the five nonsynonymous mutations by cloning them individually or in different combinations into infectious clones derived from two wild-type (WT) CHIKV strains, La Reunion and AF15561. Levels of virulence were compared with those of the WT strains and the vaccine strain in two different murine models: infant CD1 and adult A129 mice. An attenuated phenotype indistinguishable from that of the 181/clone 25 vaccine strain was obtained by the simultaneous expression of two E2 glycoprotein substitutions, with intermediate levels of attenuation obtained with the single E2 mutations. The other three amino acid mutations, in nsP1, 6K, and E1, did not have a detectable effect on CHIKV virulence. These results indicate that the attenuation of strain 181/clone 25 is mediated by two point mutations, explaining the phenotypic instability observed in human vaccinees and also in our studies.
Collapse
|
26
|
Abstract
Junín virus is the causative agent for Argentine hemorrhagic fever, and its natural host is the New World rodent Calomys musculinus. The virus is transmitted to humans by aerosolization, and it is believed that many of the clinical symptoms are caused by cytokines produced by sentinel cells of the immune system. Here we used the Junín virus vaccine strain Candid 1 to determine whether mouse cells could be used to study virus entry and antiviral innate immune responses. We show that Candid 1 can infect and propagate in different mouse-derived cell lines through a low-pH-dependent, transferrin receptor 1-independent mechanism, suggesting that there is a second entry receptor. In addition, Candid 1 induced expression of the antiviral cytokines tumor necrosis factor alpha and beta interferon in macrophages, and this induction was independent of viral replication. Using Candid 1, as well as virus-like particles bearing the viral glycoprotein, to infect different primary cells and established macrophage cell lines with deletions in the Toll-like receptor (TLR) pathway, we show that TLR2 is a cellular sensor of both the Parodi and Candid 1 viral glycoproteins. Because Junín virus is highly lethal in humans, the use of an experimentally tractable model system, such as the mouse, could provide a better understanding of the antiviral innate cellular responses to Junín virus and the role of these responses in pathogenesis.
Collapse
|
27
|
The major determinant of attenuation in mice of the Candid1 vaccine for Argentine hemorrhagic fever is located in the G2 glycoprotein transmembrane domain. J Virol 2011; 85:10404-8. [PMID: 21795336 DOI: 10.1128/jvi.00856-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candid1, a live-attenuated Junin virus vaccine strain, was developed during the early 1980s to control Argentine hemorrhagic fever, a severe and frequently fatal human disease. Six amino acid substitutions were found to be unique to this vaccine strain, and their role in virulence attenuation in mice was analyzed using a series of recombinant viruses. Our results indicate that Candid1 is attenuated in mice through a single amino acid substitution in the transmembrane domain of the G2 glycoprotein. This work provides insight into the molecular mechanisms of attenuation of the only arenavirus vaccine currently available.
Collapse
|
28
|
Rescue from cloned cDNAs and in vivo characterization of recombinant pathogenic Romero and live-attenuated Candid #1 strains of Junin virus, the causative agent of Argentine hemorrhagic fever disease. J Virol 2010; 85:1473-83. [PMID: 21123388 DOI: 10.1128/jvi.02102-10] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The New World arenavirus Junin virus (JUNV) is the causative agent of Argentine hemorrhagic fever (AHF), which is associated with high morbidity and significant mortality. Several pathogenic strains of JUNV have been documented, and a highly attenuated vaccine strain (Candid #1) was generated and used to vaccinate the human population at risk. The identification and functional characterization of viral genetic determinants associated with AHF and Candid #1 attenuation would contribute to the elucidation of the mechanisms contributing to AHF and the development of better vaccines and therapeutics. To this end, we used reverse genetics to rescue the pathogenic Romero and the attenuated Candid #1 strains of JUNV from cloned cDNAs. Both recombinant Candid #1 (rCandid #1) and Romero (rRomero) had the same growth properties and phenotypic features in cultured cells and in vivo as their corresponding parental viruses. Infection with rRomero caused 100% lethality in guinea pigs, whereas rCandid #1 infection was asymptomatic and provided protection against a lethal challenge with Romero. Notably, Romero and Candid #1 trans-acting proteins, L and NP, required for virus RNA replication and gene expression were exchangeable in a minigenome rescue assay. These findings support the feasibility of studies aimed at determining the contribution of each viral gene to JUNV pathogenesis and attenuation. In addition, we rescued Candid #1 viruses with three segments that efficiently expressed foreign genes introduced into their genomes. This finding opens the way for the development of a safe multivalent arenavirus vaccine.
Collapse
|
29
|
A multivalent vaccination strategy for the prevention of Old World arenavirus infection in humans. J Virol 2010; 84:9947-56. [PMID: 20668086 DOI: 10.1128/jvi.00672-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Arenaviruses cause severe human disease ranging from aseptic meningitis following lymphocytic choriomeningitis virus (LCMV) infection to hemorrhagic fever syndromes following infection with Guanarito virus (GTOV), Junin virus (JUNV), Lassa virus (LASV), Machupo virus (MACV), Sabia virus (SABV), or Whitewater Arroyo virus (WWAV). Cellular immunity, chiefly the CD8(+) T-cell response, plays a critical role in providing protective immunity following infection with the Old World arenaviruses LASV and LCMV. In the current study, we evaluated whether HLA class I-restricted epitopes that are cross-reactive among pathogenic arenaviruses could be identified for the purpose of developing an epitope-based vaccination approach that would cross-protect against multiple arenaviruses. We were able to identify a panel of HLA-A*0201-restricted peptides derived from the same region of the glycoprotein precursor (GPC) of LASV (GPC spanning residues 441 to 449 [GPC(441-449)]), LCMV (GPC(447-455)), JUNV (GPC(429-437)), MACV (GPC(444-452)), GTOV (GPC(427-435)), and WWAV (GPC(428-436)) that displayed high-affinity binding to HLA-A*0201 and were recognized by CD8(+) T cells in a cross-reactive manner following LCMV infection or peptide immunization of HLA-A*0201 transgenic mice. Immunization of HLA-A*0201 mice with the Old World peptide LASV GPC(441-449) or LCMV GPC(447-455) induced high-avidity CD8(+) T-cell responses that were able to kill syngeneic target cells pulsed with either LASV GPC(441-449) or LCMV GPC(447-455) in vivo and provided significant protection against viral challenge with LCMV. Through this study, we have demonstrated that HLA class I-restricted, cross-reactive epitopes exist among diverse arenaviruses and that individual epitopes can be utilized as effective vaccine determinants for multiple pathogenic arenaviruses.
Collapse
|
30
|
Expression and purification of Z protein from Junín virus. J Biomed Biotechnol 2010; 2010:970491. [PMID: 20652066 PMCID: PMC2896916 DOI: 10.1155/2010/970491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/14/2010] [Accepted: 04/21/2010] [Indexed: 11/18/2022] Open
Abstract
Arenaviridae comprises 23 recognized virus species with a bipartite ssRNA genome and an ambisense coding strategy. The virions are enveloped and include nonequimolar amounts of each genomic RNA species, designated L and S, coding for four ORFs (N, GPC, L, and Z). The arenavirus Junín (JUNV) is the etiological agent of Argentine Hemorrhagic Fever, an acute disease with high mortality rate. It has been proposed that Z is the functional counterpart of the matrix proteins found in other negative-stranded enveloped RNA viruses. Here we report the optimized expression of a synthetic gene of Z protein, using three expression systems (two bacterial and a baculoviral one). One of these recombinant proteins was used to generate antibodies. A bioinformatic analysis was made where Z was subdivided into three domains. The data presented contributes methodologies for Z recombinant production and provides the basis for the development of new experiments to test its function.
Collapse
|
31
|
Pozner RG, Ure AE, Jaquenod de Giusti C, D'Atri LP, Italiano JE, Torres O, Romanowski V, Schattner M, Gómez RM. Junín virus infection of human hematopoietic progenitors impairs in vitro proplatelet formation and platelet release via a bystander effect involving type I IFN signaling. PLoS Pathog 2010; 6:e1000847. [PMID: 20419155 PMCID: PMC2855331 DOI: 10.1371/journal.ppat.1000847] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 03/05/2010] [Indexed: 12/19/2022] Open
Abstract
Argentine hemorrhagic fever (AHF) is an endemo-epidemic disease caused by Junín virus (JUNV), a member of the arenaviridae family. Although a recently introduced live attenuated vaccine has proven to be effective, AHF remains a potentially lethal infection. Like in other viral hemorrhagic fevers (VHF), AHF patients present with fever and hemorrhagic complications. Although the causes of the bleeding are poorly understood, impaired hemostasis, endothelial cell dysfunction and low platelet counts have been described. Thrombocytopenia is a common feature in VHF syndromes, and it is a major sign for its diagnosis. However, the underlying pathogenic mechanism has not yet been elucidated. We hypothesized that thrombocytopenia results from a viral-triggered alteration of the megakaryo/thrombopoiesis process. Therefore, we evaluated the impact of JUNV on megakaryopoiesis using an in vitro model of human CD34+ cells stimulated with thrombopoietin. Our results showed that CD34+ cells are infected with JUNV in a restricted fashion. Infection was transferrin receptor 1 (TfR1)-dependent and the surface expression of TfR1 was higher in infected cultures, suggesting a novel arenaviral dissemination strategy in hematopoietic progenitor cells. Although proliferation, survival, and commitment in JUNV-infected cultures were normal, viral infection impaired thrombopoiesis by decreasing in vitro proplatelet formation, platelet release, and P-selectin externalization via a bystander effect. The decrease in platelet release was also TfR1-dependent, mimicked by poly(I:C), and type I interferon (IFN α/β) was implicated as a key paracrine mediator. Among the relevant molecules studied, only the transcription factor NF-E2 showed a moderate decrease in expression in megakaryocytes from either infected cultures or after type I IFN treatment. Moreover, type I IFN-treated megakaryocytes presented ultrastructural abnormalities resembling the reported thrombocytopenic NF-E2−/− mouse phenotype. Our study introduces a potential mechanism for thrombocytopenia in VHF and other diseases associated with increased bone marrow type I IFN levels. Argentine hemorrhagic fever (AHF) is an endemo-epidemic disease caused by Junín virus (JUNV). Although a recently introduced live attenuated vaccine has proven to be effective, AHF remains a potentially lethal infection and JUNV is considered to be a potential biological weapon. Like other viral hemorrhagic fevers (VHF), AHF patients present fever with a combination of neurological and bleeding complications. Although the causes of the bleeding are poorly understood, impaired hemostasis and endothelial cell function as well as low platelet counts have been described. In this study, we have examined the impact of JUNV on an in vitro model of platelet production. We found that neither infection of hematopoietic progenitors with JUNV nor poly(I:C) (a double-stranded RNA that mimics viral infection) affected cell survival or megakaryocyte generation. However, these treatments triggered the main anti-viral cytokines produced by host type I IFN (IFN α/β), which acted in a paracrine fashion and led to abnormal platelet formation. Thus, this study identifies type I IFN as a new regulator that selectively affects the last steps of megakaryocyte lifespan, and it suggests a potential mechanism for thrombocytopenia in AHF and other diseases associated with increased bone marrow type I IFN levels.
Collapse
Affiliation(s)
- Roberto G. Pozner
- Department of Thrombosis and Hemostasis, Hematological Research Institute “Mariano R Castex”, National Academy of Medicine, CONICET, Buenos Aires, Argentina
| | - Agustín E. Ure
- Biotechnology and Molecular Biology Institute, CONICET-UNLP, La Plata, Argentina
| | | | - Lina P. D'Atri
- Department of Thrombosis and Hemostasis, Hematological Research Institute “Mariano R Castex”, National Academy of Medicine, CONICET, Buenos Aires, Argentina
| | - Joseph E. Italiano
- Division of Translational Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Department of Vascular Biology, Children's Hospital Boston, Boston, Massachusetts, United States of America
| | - Oscar Torres
- Department of Thrombosis and Hemostasis, Hematological Research Institute “Mariano R Castex”, National Academy of Medicine, CONICET, Buenos Aires, Argentina
| | - Victor Romanowski
- Biotechnology and Molecular Biology Institute, CONICET-UNLP, La Plata, Argentina
| | - Mirta Schattner
- Department of Thrombosis and Hemostasis, Hematological Research Institute “Mariano R Castex”, National Academy of Medicine, CONICET, Buenos Aires, Argentina
- * E-mail: (MS); (RMG)
| | - Ricardo M. Gómez
- Biotechnology and Molecular Biology Institute, CONICET-UNLP, La Plata, Argentina
- * E-mail: (MS); (RMG)
| |
Collapse
|
32
|
Molecular analysis of the virulence attenuation process in Junín virus vaccine genealogy. Virus Genes 2010; 40:320-8. [PMID: 20148301 DOI: 10.1007/s11262-010-0450-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/18/2010] [Indexed: 01/01/2023]
Abstract
The Junín virus strain Candid#1 was developed as a live attenuated vaccine for Argentine hemorrhagic fever. In this article, we report sequence information of the L and S RNAs of Junín virus Candid#1 and XJ#44 strains, and show the comparisons with the XJ13 wild-type strain and with other Junín virus strains, like Romero, IV4454 and MC2 strains, and other closely and distantly related arenaviruses. Comparisons of the nucleotide and amino acid sequences of all genes of three strains from the same vaccine genealogy, revealed different point mutations that could be associated with the attenuated phenotype. A 91% of the mutations found are consistent with a hypothesis of progressive attenuation of virulence from XJ13 to XJ#44 and to Candid#1; 39% of mutations were observed in XJ#44 and conserved in Candid#1, while another 52% of the mutations appeared only in Candid#1 strain. The remaining 9% corresponded to reverse mutations in the L gene. In summary, the present work shows a set of mutations that could be related to the virulence attenuation phenomenon. This information will serve as a starting point to study this biological phenomenon, provided that a reverse genetics system for Junín virus is developed to allow the generation of infectious virions with specific mutations.
Collapse
|
33
|
Assembly of arenavirus envelope glycoprotein GPC in detergent-soluble membrane microdomains. J Virol 2009; 83:9890-900. [PMID: 19625404 DOI: 10.1128/jvi.00837-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The family Arenaviridae includes a number of highly pathogenic viruses that are responsible for acute hemorrhagic fevers in humans. Genetic diversity among arenavirus species in their respective rodent hosts supports the continued emergence of new pathogens. In the absence of available vaccines or therapeutic agents, the hemorrhagic fever arenaviruses remain a serious public health and biodefense concern. Arenaviruses are enveloped virions that assemble and bud from the plasma membrane. In this study, we have characterized the microdomain organization of the virus envelope glycoprotein (GPC) on the cell surface by using immunogold electron microscopy. We find that Junín virus (JUNV) GPC clusters into discrete microdomains of 120 to 160 nm in diameter and that this property of GPC is independent of its myristoylation and of coexpression with the virus matrix protein Z. In cells infected with the Candid#1 strain of JUNV, and in purified Candid#1 virions, these GPC microdomains are soluble in cold Triton X-100 detergent and are thus distinct from conventional lipid rafts, which are utilized by numerous other viruses for assembly. Virion morphogenesis ultimately requires colocalization of viral components, yet our dual-label immunogold staining studies failed to reveal a spatial association of Z with GPC microdomains. This observation may reflect either rapid Z-dependent budding of virus-like particles upon coassociation or a requirement for additional viral components in the assembly process. Together, these results provide new insight into the molecular basis for arenavirus morphogenesis.
Collapse
|
34
|
Albariño CG, Bergeron E, Erickson BR, Khristova ML, Rollin PE, Nichol ST. Efficient reverse genetics generation of infectious junin viruses differing in glycoprotein processing. J Virol 2009; 83:5606-14. [PMID: 19321606 PMCID: PMC2681955 DOI: 10.1128/jvi.00276-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Accepted: 03/11/2009] [Indexed: 12/31/2022] Open
Abstract
The New World arenaviruses, Junin, Machupo, Guanarito, Sabia, and Chapare, are associated with rapidly progressing severe hemorrhagic fever with a high rate of case fatality in various regions of South America. The threat of natural or deliberate outbreaks associated with these viruses makes the development of preventive or therapeutic measures important. Here we describe a Junin virus functional minigenome system and a reverse genetics system for production of infectious Junin virus. This robust, highly efficient system involves transfection of cells with only two plasmids which transcribe the virus S and L antigenomic RNAs. The utility of the system is demonstrated by generating Junin viruses which encode a glycoprotein precursor (GPC) containing the following: (i) the wild-type (SKI-1/S1P peptidase) cleavage site, (ii) no cleavage site, or (iii) a cleavage site where the SKI-1/S1P motif (RSLK) is replaced by a furin cleavage site (RRKR). In contrast to the wild-type virus, Junin virus lacking a GPC cleavage site replicated within successfully transfected cells but failed to yield infectious virus particles. This confirms observations with other arenaviruses suggesting that GPC cleavage is essential for arenavirus infectivity. In contrast, infectious Junin virus which encoded GPC cleaved by furin-like proteases was easily generated. The two-plasmid, high efficiency aspects of this Junin virus reverse genetics system show great promise for addressing important questions regarding arenavirus hemorrhagic fever disease and for development of precisely attenuated live arenavirus vaccines.
Collapse
Affiliation(s)
- César G Albariño
- Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | | | | | | | |
Collapse
|