1
|
Feijó RG, Viana JT, Maggioni R, Marins LF. Infectious myonecrosis virus (IMNV) induces upregulation of RNAi-related genes in white shrimp Penaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105296. [PMID: 39631635 DOI: 10.1016/j.dci.2024.105296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Infectious myonecrosis virus (IMNV) still causes significant economic and social losses in American and Asian shrimp farming. In this work, we investigated the transcription patterns of Sid-1, Dicer-2 and Argonaute-2 genes from the RNAi mechanism in Penaeus vannamei naturally infected with IMNV, and injected with inoculum containing 1.02 × 105, 1.02 × 104 or 1.02 × 103 IMNV copies‧μL-1. We observed that infection with increasing IMNV concentrations affected the transcription levels of these key genes. However, the viral load did not decrease during the experiment. We suggest that changes in Sid-1 mRNA expression could be used as marker of viral replication for evaluating sanitary status in P. vannamei farming.
Collapse
Affiliation(s)
- Rubens Galdino Feijó
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Rio Grande (FURG), Av. Itália, Km 8, CEP 96203-900, Rio Grande, RS, Brazil; Laboratório de Biotecnologia Aquícola, Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Av. Desembargador Armando de Souza Louzada, S/N, CEP 62580-000, Acaraú, CE, Brazil; Centro de Diagnóstico de Enfermidades de Organismos Aquáticos (Cedecam), Instituto de Ciências do Mar (Labomar), Universidade Federal do Ceará (UFC), Av. Abolição, 3207, Meireles, CEP 60165-081, Fortaleza, CE, Brazil
| | - Jhonatas Teixeira Viana
- Laboratório de Biotecnologia Aquícola, Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Av. Desembargador Armando de Souza Louzada, S/N, CEP 62580-000, Acaraú, CE, Brazil; Centro de Diagnóstico de Enfermidades de Organismos Aquáticos (Cedecam), Instituto de Ciências do Mar (Labomar), Universidade Federal do Ceará (UFC), Av. Abolição, 3207, Meireles, CEP 60165-081, Fortaleza, CE, Brazil.
| | - Rodrigo Maggioni
- Centro de Diagnóstico de Enfermidades de Organismos Aquáticos (Cedecam), Instituto de Ciências do Mar (Labomar), Universidade Federal do Ceará (UFC), Av. Abolição, 3207, Meireles, CEP 60165-081, Fortaleza, CE, Brazil
| | - Luis Fernando Marins
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Rio Grande (FURG), Av. Itália, Km 8, CEP 96203-900, Rio Grande, RS, Brazil
| |
Collapse
|
2
|
Wang L, Yu Z, Jiang M, Tian M, Zhou H, Zhao W, Andika IB, Shang Q, Sun L. An asymptomatic geminivirus activates autophagy and enhances plant defenses against diverse pathogens. STRESS BIOLOGY 2024; 4:42. [PMID: 39377848 PMCID: PMC11461731 DOI: 10.1007/s44154-024-00176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/15/2024] [Indexed: 10/09/2024]
Abstract
Plant viral diseases cause great losses in agricultural production. Virus cross-protection is a strategy in which a mild virus is employed to shield plants against subsequent infections by severe viral strains. However, this approach is restricted to protection against the same viruses. In this study, we observed that pre-inoculation with apple geminivirus (AGV) reduced the accumulation of secondarily infected heterologous viruses, such as cucumber mosaic virus, potato virus X, and tobacco mosaic virus in Nicotiana benthamiana, tomato, and pepper plants. Transcriptional expression analysis showed that autophagy-related genes were transcriptionally up-regulated upon AGV inoculation at an early stage of infection. Accordingly, autophagic activity was observed to be elevated following AGV infection. Interestingly, AGV accumulation was reduced in autophagy-deficient plants, suggesting that autophagy activation promotes AGV infection in the plant. Moreover, pre-inoculation with AGV provided cross-protection against infection with a phytopathogenic bacterium (Pseudomonas syringae) and fungus (Botrytis cinerea) in Nicotiana species. In summary, our study showed that AGV, an asymptomatic virus, could protect plants against severe viral, fungal, and bacterial diseases to some extent through the activation of autophagy pathways, highlighting its potential as a biocontrol agent for managing a wide range of plant crop diseases in the field.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Zijie Yu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Mengge Jiang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Mengyuan Tian
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Hongsheng Zhou
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Wanying Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiaoxia Shang
- College of Bioscience and Resource Environment, Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, 102206, China.
| | - Liying Sun
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
3
|
Wong B, Birtch R, Rezaei R, Jamieson T, Crupi MJF, Diallo JS, Ilkow CS. Optimal delivery of RNA interference by viral vectors for cancer therapy. Mol Ther 2023; 31:3127-3145. [PMID: 37735876 PMCID: PMC10638062 DOI: 10.1016/j.ymthe.2023.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
In recent years, there has been a surge in the innovative modification and application of the viral vector-based gene therapy field. Significant and consistent improvements in the engineering, delivery, and safety of viral vectors have set the stage for their application as RNA interference (RNAi) delivery tools. Viral vector-based delivery of RNAi has made remarkable breakthroughs in the treatment of several debilitating diseases and disorders (e.g., neurological diseases); however, their novelty has yet to be fully applied and utilized for the treatment of cancer. This review highlights the most promising and emerging viral vector delivery tools for RNAi therapeutics while discussing the variables limiting their success and suitability for cancer therapy. Specifically, we outline different integrating and non-integrating viral platforms used for gene delivery, currently employed RNAi targets for anti-cancer effect, and various strategies used to optimize the safety and efficacy of these RNAi therapeutics. Most importantly, we provide great insight into what challenges exist in their application as cancer therapeutics and how these challenges can be effectively navigated to advance the field.
Collapse
Affiliation(s)
- Boaz Wong
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rayanna Birtch
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Reza Rezaei
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Taylor Jamieson
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu J F Crupi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Carolina S Ilkow
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
4
|
Coinfection and Interference Phenomena Are the Results of Multiple Thermodynamic Competitive Interactions. Microorganisms 2021; 9:microorganisms9102060. [PMID: 34683381 PMCID: PMC8538544 DOI: 10.3390/microorganisms9102060] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
Biological, physical and chemical interaction between one (or more) microorganisms and a host organism, causing host cell damage, represents an infection. Infection of a plant, animal or microorganism with a virus can prevent infection with another virus. This phenomenon is known as viral interference. Viral interference is shown to result from two types of interactions, one taking place at the cell surface and the other intracellularly. Various viruses use different receptors to enter the same host cell, but various strains of one virus use the same receptor. The rate of virus–receptor binding can vary between different viruses attacking the same host, allowing interference or coinfection. The outcome of the virus–virus–host competition is determined by the Gibbs energies of binding and growth of the competing viruses and host. The virus with a more negative Gibbs energy of binding to the host cell receptor will enter the host first, while the virus characterized by a more negative Gibbs energy of growth will overtake the host metabolic machine and dominate. Once in the host cell, the multiplication machinery is shared by the competing viruses. Their potential to utilize it depends on the Gibbs energy of growth. Thus, the virus with a more negative Gibbs energy of growth will dominate. Therefore, the outcome can be interference or coinfection, depending on both the attachment kinetics (susceptibility) and the intracellular multiplication machinery (permittivity). The ratios of the Gibbs energies of binding and growth of the competing viruses determine the outcome of the competition. Based on this, a predictive model of virus–virus competition is proposed.
Collapse
|
5
|
Fang Y, Choi JY, Park DH, Park MG, Kim JY, Wang M, Kim HJ, Kim WJ, Je YH. Suppression of Rice Stripe Virus Replication in Laodelphax striatellus Using Vector Insect-Derived Double-Stranded RNAs. THE PLANT PATHOLOGY JOURNAL 2020; 36:280-288. [PMID: 32547343 PMCID: PMC7272848 DOI: 10.5423/ppj.oa.03.2020.0052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 05/07/2023]
Abstract
RNA interference (RNAi) has attracted attention as a promising approach to control plant viruses in their insect vectors. In the present study, to suppress replication of the rice stripe virus (RSV) in its vector, Laodelphax striatellus, using RNAi, dsRNAs against L. striatellus genes that are strongly upregulated upon RSV infection were delivered through a rice leaf-mediated method. RNAi-based silencing of peroxiredoxin, cathepsin B, and cytochrome P450 resulted in significant down regulation of the NS3 gene of RSV, achieving a transcriptional reduction greater than 73.6% at a concentration of 100 ng/μl and, possibly compromising viral replication. L. striatellus genes might play crucial roles in the transmission of RSV; transcriptional silencing of these genes could suppress viral replication in L. striatellus. These results suggest effective RNAi-based approaches for controlling RSV and provide insight into RSV-L. striatellus interactions.
Collapse
Affiliation(s)
- Ying Fang
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Korea
| | - Jae Young Choi
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Korea
| | - Dong Hwan Park
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Korea
| | - Min Gu Park
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Korea
| | - Jun Young Kim
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Korea
| | - Minghui Wang
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Korea
| | - Hyun Ji Kim
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Korea
| | - Woo Jin Kim
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Korea
| | - Yeon Ho Je
- Department of Agricultural Biotechnology, College of Agriculture & Life Science, Seoul National University, Seoul 08826, Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Corresponding author. Phone) +82-2-880-4706, FAX) +82-2-873-2319, E-mail)
| |
Collapse
|
6
|
Slijepcevic P. Evolutionary epistemology: Reviewing and reviving with new data the research programme for distributed biological intelligence. Biosystems 2017; 163:23-35. [PMID: 29199093 DOI: 10.1016/j.biosystems.2017.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
Abstract
Numerous studies in microbiology, eukaryotic cell biology, plant biology, biomimetics, synthetic biology, and philosophy of science appear to support the principles of the epistemological theory inspired by evolution, also known as "Evolutionary Epistemology", or EE. However, that none of the studies acknowledged EE suggests that its principles have not been formulated with sufficient clarity and depth to resonate with the interests of the empirical research community. In this paper I review evidence in favor of EE, and also reformulate EE principles to better inform future research. The revamped programme may be tentatively called Research Programme for Distributed Biological Intelligence. Intelligence I define as the capacity of organisms to gain information about their environment, process that information internally, and translate it into phenotypic forms. This multistage progression may be expressed through the acronym IGPT (information-gain-process-translate). The key principles of the programme may be summarized as follows. (i) Intelligence, a universal biological phenomenon promoting individual fitness, is required for effective organism-environment interactions. Given that animals represent less than 0.01% of the planetary biomass, neural intelligence is not the evolutionary norm. (ii) The basic unit of intelligence is a single cell prokaryote. All other forms of intelligence are derived. (iii) Intelligence is hierarchical. It ranges from bacteria to the biosphere or Gaia. (iv) The concept of "information" acquires a new meaning because information processing is at the heart of biological intelligence. All biological systems, from bacteria to Gaia, are intelligent, open thermodynamic systems that exchange information, matter and energy with the environment. (v) The organism-environment interaction is cybernetic. As much as the organism changes due to the influence of the environment, the organism's responses to induced changes affect the environment and subsequent organism-environment interactions. Based on the above principles a new research agenda can be formulated to explore different forms of biological intelligence.
Collapse
Affiliation(s)
- Predrag Slijepcevic
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom.
| |
Collapse
|
7
|
A Glimpse of Nucleo-Cytoplasmic Large DNA Virus Biodiversity through the Eukaryotic Genomics Window. Viruses 2017; 9:v9010017. [PMID: 28117696 PMCID: PMC5294986 DOI: 10.3390/v9010017] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/16/2022] Open
Abstract
The nucleocytoplasmic large DNA viruses (NCLDV) are a group of extremely complex double-stranded DNA viruses, which are major parasites of a variety of eukaryotes. Recent studies showed that certain eukaryotes contain fragments of NCLDV DNA integrated in their genome, when surprisingly many of these organisms were not previously shown to be infected by NCLDVs. We performed an update survey of NCLDV genes hidden in eukaryotic sequences to measure the incidence of this phenomenon in common public sequence databases. A total of 66 eukaryotic genomic or transcriptomic datasets-many of which are from algae and aquatic protists-contained at least one of the five most consistently conserved NCLDV core genes. Phylogenetic study of the eukaryotic NCLDV-like sequences identified putative new members of already recognized viral families, as well as members of as yet unknown viral clades. Genomic evidence suggested that most of these sequences resulted from viral DNA integrations rather than contaminating viruses. Furthermore, the nature of the inserted viral genes helped predicting original functional capacities of the donor viruses. These insights confirm that genomic insertions of NCLDV DNA are common in eukaryotes and can be exploited to delineate the contours of NCLDV biodiversity.
Collapse
|
8
|
Ingle H, Kumar S, Raut AA, Mishra A, Kulkarni DD, Kameyama T, Takaoka A, Akira S, Kumar H. The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication. Sci Signal 2015; 8:ra126. [PMID: 26645583 DOI: 10.1126/scisignal.aab3183] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that are responsible for dynamic changes in gene expression, and some regulate innate antiviral responses. Retinoic acid-inducible gene I (RIG-I) is a cytosolic sensor of viral RNA; RIG-I activation induces an antiviral immune response. We found that miR-485 of the host was produced in response to viral infection and targeted RIG-I mRNA for degradation, which led to suppression of the antiviral response and enhanced viral replication. Thus, inhibition of the expression of mir-485 markedly reduced the replication of Newcastle disease virus (NDV) and the H5N1 strain of influenza virus in mammalian cells. Unexpectedly, miR-485 also bound to the H5N1 gene PB1 (which encodes an RNA polymerase required for viral replication) in a sequence-specific manner, thereby inhibiting replication of the H5N1 virus. Furthermore, miR-485 exhibited bispecificity, targeting RIG-I in cells with a low abundance of H5N1 virus and targeting PB1 in cells with increased amounts of the H5N1 virus. These findings highlight the dual role of miR-485 in preventing spurious activation of antiviral signaling and restricting influenza virus infection.
Collapse
Affiliation(s)
- Harshad Ingle
- Laboratory of Immunology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Sushil Kumar
- Laboratory of Immunology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Ashwin Ashok Raut
- Pathogenomics Lab, OIE Reference Lab for Avian Influenza, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Anamika Mishra
- Pathogenomics Lab, OIE Reference Lab for Avian Influenza, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Diwakar Dattatraya Kulkarni
- Pathogenomics Lab, OIE Reference Lab for Avian Influenza, ICAR-National Institute of High Security Animal Diseases, Bhopal 462022, India
| | - Takeshi Kameyama
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
| | - Himanshu Kumar
- Laboratory of Immunology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India. Laboratory of Host Defense, WPI Immunology Frontier Research Centre, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
9
|
Sierant M, Yang X, Nawrot B. Sirna Analogs Containing Phosphorodithioate Substitutions. PHOSPHORUS SULFUR 2013. [DOI: 10.1080/10426507.2012.745079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Malgorzata Sierant
- a Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Lodz , Poland
| | | | - Barbara Nawrot
- a Centre of Molecular and Macromolecular Studies , Polish Academy of Sciences , Lodz , Poland
| |
Collapse
|
10
|
Posiri P, Ongvarrasopone C, Panyim S. A simple one-step method for producing dsRNA from E. coli to inhibit shrimp virus replication. J Virol Methods 2013; 188:64-9. [DOI: 10.1016/j.jviromet.2012.11.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 11/17/2012] [Accepted: 11/21/2012] [Indexed: 12/28/2022]
|
11
|
Lima PC, Harris JO, Cook M. Exploring RNAi as a therapeutic strategy for controlling disease in aquaculture. FISH & SHELLFISH IMMUNOLOGY 2013; 34:729-743. [PMID: 23276883 DOI: 10.1016/j.fsi.2012.11.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/21/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
Aquatic animal diseases are one of the most significant constraints to the development and management of aquaculture worldwide. As a result, measures to combat diseases of fish and shellfish have assumed a high priority in many aquaculture-producing countries. RNA interference (RNAi), a natural mechanism for post-transcriptional silencing of homologous genes by double-stranded RNA (dsRNA), has emerged as a powerful tool not only to investigate the function of specific genes, but also to suppress infection or replication of many pathogens that cause severe economic losses in aquaculture. However, despite the enormous potential as a novel therapeutical approach, many obstacles must still be overcome before RNAi therapy finds practical application in aquaculture, largely due to the potential for off-target effects and the difficulties in providing safe and effective delivery of RNAi molecules in vivo. In the present review, we discuss the current knowledge of RNAi as an experimental tool, as well as the concerns and challenges ahead for the application of such technology to combat infectious disease of farmed aquatic animals.
Collapse
Affiliation(s)
- Paula C Lima
- CSIRO Marine and Atmospheric Research, C/-CSIRO Livestock Industries, QBP, 306 Carmody Rd, St Lucia, QLD 4067, Australia
| | | | | |
Collapse
|
12
|
Insight into alternative approaches for control of avian influenza in poultry, with emphasis on highly pathogenic H5N1. Viruses 2012. [PMID: 23202521 PMCID: PMC3509689 DOI: 10.3390/v4113179] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 causes a devastating disease in poultry but when it accidentally infects humans it can cause death. Therefore, decrease the incidence of H5N1 in humans needs to focus on prevention and control of poultry infections. Conventional control strategies in poultry based on surveillance, stamping out, movement restriction and enforcement of biosecurity measures did not prevent the virus spreading, particularly in developing countries. Several challenges limit efficiency of the vaccines to prevent outbreaks of HPAIV H5N1 in endemic countries. Alternative and complementary approaches to reduce the current burden of H5N1 epidemics in poultry should be encouraged. The use of antiviral chemotherapy and natural compounds, avian-cytokines, RNA interference, genetic breeding and/or development of transgenic poultry warrant further evaluation as integrated intervention strategies for control of HPAIV H5N1 in poultry.
Collapse
|
13
|
Physiopathology of idiopathic nephrotic syndrome: lessons from glucocorticoids and epigenetic perspectives. Pediatr Nephrol 2012; 27:1249-56. [PMID: 21710250 DOI: 10.1007/s00467-011-1947-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 01/21/2023]
Abstract
Idiopathic nephrotic syndrome (INS) has been studied for decades in attempt to understand the physiopathological mechanisms explaining the disease. It is recognized as a multifactorial disease, with immunological components targeting kidney functions. Many hypotheses have been discussed or tested, including the role of a circulating factor, polymorphisms of genes implicated in lymphocyte maturation and differentiation, and DNA epigenetic modifications. In the present review, the data supporting these different (and probably combinatorial) hypotheses have been reviewed in order to identify and discuss the possible pathways implicated in the physiopathology of INS.
Collapse
|
14
|
Tan GS, Chiu CH, Garchow BG, Metzler D, Diamond SL, Kiriakidou M. Small molecule inhibition of RISC loading. ACS Chem Biol 2012; 7:403-10. [PMID: 22026461 PMCID: PMC3282558 DOI: 10.1021/cb200253h] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Argonaute proteins are the core components of the microRNP/RISC.
The biogenesis and function of microRNAs and endo- and exo- siRNAs
are regulated by Ago2, an Argonaute protein with RNA binding and nuclease
activities. Currently, there are no in vitro assays
suitable for large-scale screening of microRNP/RISC loading modulators.
We describe a novel in vitro assay that is based
on fluorescence polarization of TAMRA-labeled RNAs loaded to human
Ago2. Using this assay, we identified potent small-molecule inhibitors
of RISC loading, including aurintricarboxylic acid (IC50 = 0.47 μM), suramin (IC50 = 0.69 μM), and
oxidopamine HCL (IC50 = 1.61 μM). Small molecules
identified by this biochemical screening assay also inhibited siRNA
loading to endogenous Ago2 in cultured cells.
Collapse
Affiliation(s)
- Grace S. Tan
- Department
of Medicine and ‡Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
19104, United States
| | - Chun-Hao Chiu
- Department
of Medicine and ‡Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
19104, United States
| | - Barry G. Garchow
- Department
of Medicine and ‡Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
19104, United States
| | - David Metzler
- Department
of Medicine and ‡Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
19104, United States
| | - Scott L. Diamond
- Department
of Medicine and ‡Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
19104, United States
| | - Marianthi Kiriakidou
- Department
of Medicine and ‡Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
19104, United States
| |
Collapse
|
15
|
Dzianott A, Sztuba-Solińska J, Bujarski JJ. Mutations in the antiviral RNAi defense pathway modify Brome mosaic virus RNA recombinant profiles. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:97-106. [PMID: 21936664 DOI: 10.1094/mpmi-05-11-0137] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
RNA interference (RNAi) mechanism targets viral RNA for degradation. To test whether RNAi gene products contributed to viral RNA recombination, a series of Arabidopsis thaliana RNAi-defective mutants were infected with Brome mosaic virus (BMV) RNAs that have been engineered to support crossovers within the RNA3 segment. Single-cross RNA3-RNA1, RNA3-RNA2, and RNA3-RNA3 recombinants accumulated in both the wild-type (wt) and all knock-out lines at comparable frequencies. However, a reduced accumulation of novel 3' mosaic RNA3 recombinants was observed in ago1, dcl2, dcl4, and rdr6 lines but not in wt Col-0 or the dcl3 line. A BMV replicase mutant accumulated a low level of RNA3-RNA1 single-cross recombinants in Col-0 plants while, in a dcl2 dcl4 double mutant, the formation of both RNA3-RNA1 and mosaic recombinants was at a low level. A control infection in the cpr5-2 mutant, a more susceptible BMV Arabidopsis host, generated similar-to-Col-0 profiles of both single-cross and mosaic recombinants, indicating that recombinant profiles were, to some extent, independent of a viral replication rate. Also, the relative growth experiments revealed similar selection pressure for recombinants among the host lines. Thus, the altered recombinant RNA profiles have originated at the level of recombinant formation rather than because of altered selection. In conclusion, the viral replicase and the host RNAi gene products contribute in distinct ways to BMV RNA recombination. Our studies reveal that the antiviral RNAi mechanisms are utilized by plant RNA viruses to increase their variability, reminiscent of phenomena previously demonstrated in fungi.
Collapse
Affiliation(s)
- Aleksandra Dzianott
- Department of Biological sciences, Northern Illinois University, DeKalb, IL, USA
| | | | | |
Collapse
|
16
|
Duan F, Ni S, Nie Y, Huang Q, Wu K. Small interfering RNA targeting for infected-cell polypeptide 4 inhibits herpes simplex virus type 1 replication in retinal pigment epithelial cells. Clin Exp Ophthalmol 2011; 40:195-204. [PMID: 21883773 PMCID: PMC7162062 DOI: 10.1111/j.1442-9071.2011.02668.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background: This study sought to inhibit herpes simplex virus type 1 replication using small interfering RNA which targeting infected‐cell polypeptide 4 genes to mediate transcription of early and late viral genes in herpes simplex virus type 1 lytic (productive) infection in retina epithelial cells. Methods: After pre‐ or post‐infecting with herpes simplex virus type 1, small interfering RNAs were transfected into retina epithelial cells. The antiviral effects of small interfering RNA were evaluated by Western blot, plaque assays, indirect immunofluorescence and reverse transcription polymerase chain reaction. The viral titre was detected by the 50% tissue culture infective dose method. Results: Small interfering RNA decreased infected‐cell polypeptide 4 expression in retina epithelial cells that were infected with herpes simplex virus type 1 before or after small interfering RNA transfection. Compared with herpes simplex virus type 1 infection alone or transfection with negative control small interfering RNA, the viral titre and the retina epithelial cell cytopathic effect were significantly decreased in retina epithelial cells transfected with infected‐cell polypeptide 4‐targeting small interfering RNA (50 and 100 nM) (P < 0.05). The small interfering RNA effectively silenced herpes simplex virus type 1 infected‐cell polypeptide 4 expression on both mRNA and the protein levels (P < 0.05). The inhibition of infected‐cell polypeptide 4‐targeting small interfering RNA on infected‐cell polypeptide 4 protein expression was also verified by Western blot in herpes simplex virus type 1 infected human cornea epithelial cell, human trabecular meshwork cells and Vero cells. Conclusions: Infected‐cell polypeptide 4‐targeting small interfering RNA can inhibit herpes simplex virus type 1 replication in retina epithelial cells, providing a foundation for development of RNA interference as an antiviral therapy.
Collapse
Affiliation(s)
- Fang Duan
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | | | | | | |
Collapse
|
17
|
Green WJF, James PA, Ratan HL. Potential use of RNA interference as therapeutic strategy in urologic cancer. Urology 2011; 78:500-4. [PMID: 21741681 DOI: 10.1016/j.urology.2011.04.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 03/20/2011] [Accepted: 04/16/2011] [Indexed: 11/28/2022]
|
18
|
Stewart CR, Karpala AJ, Lowther S, Lowenthal JW, Bean AG. Immunostimulatory motifs enhance antiviral siRNAs targeting highly pathogenic avian influenza H5N1. PLoS One 2011; 6:e21552. [PMID: 21747939 PMCID: PMC3128588 DOI: 10.1371/journal.pone.0021552] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/01/2011] [Indexed: 01/01/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 virus is endemic in many regions around the world and remains a significant pandemic threat. To date H5N1 has claimed almost 300 human lives worldwide, with a mortality rate of 60% and has caused the death or culling of hundreds of millions of poultry since its initial outbreak in 1997. We have designed multi-functional RNA interference (RNAi)-based therapeutics targeting H5N1 that degrade viral mRNA via the RNAi pathway while at the same time augmenting the host antiviral response by inducing host type I interferon (IFN) production. Moreover, we have identified two factors critical for maximising the immunostimulatory properties of short interfering (si)RNAs in chicken cells (i) mode of synthesis and (ii) nucleoside sequence to augment the response to virus. The 5-bp nucleoside sequence 5′-UGUGU-3′ is a key determinant in inducing high levels of expression of IFN -α, -β, -λ and interleukin 1- β in chicken cells. Positioning of this 5′-UGUGU-3′ motif at the 5′- end of the sense strand of siRNAs, but not the 3′- end, resulted in a rapid and enhanced induction of type I IFN. An anti-H5N1 avian influenza siRNA directed against the PB1 gene (PB1-2257) tagged with 5′-UGUGU-3′ induced type I IFN earlier and to a greater extent compared to a non-tagged PB1-2257. Tested against H5N1 in vitro, the tagged PB1-2257 was more effective than non-tagged PB1-2257. These data demonstrate the ability of an immunostimulatory motif to improve the performance of an RNAi-based antiviral, a finding that may influence the design of future RNAi-based anti-influenza therapeutics.
Collapse
Affiliation(s)
- Cameron R Stewart
- Infection and Immunity, The Commonwealth Scientific and Industrial Research Organisation Australian Animal Health Laboratory, Geelong, Victoria, Australia.
| | | | | | | | | |
Collapse
|
19
|
Kim MS, Kim KH. Inhibition of viral hemorrhagic septicemia virus replication using a short hairpin RNA targeting the G gene. Arch Virol 2010; 156:457-64. [PMID: 21184243 DOI: 10.1007/s00705-010-0882-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 12/02/2010] [Indexed: 11/30/2022]
Abstract
RNA interference (RNAi), a mechanism for post-transcriptional silencing of homologous genes by double-stranded RNA (dsRNA), has emerged as an antiviral strategy in animals. In this study, the epithelioma papulosum cyprini (EPC) cell line, in combination with a fugu-U6-promoter-driven shRNA construct designed against G gene, was used to investigate whether short hairpin RNA (shRNA) could inhibit viral hemorrhagic septicemia virus (VHSV) proliferation by sequence-specific RNAi. The results showed that transfection with a shRNA-producing construct (shRNA-VG594) resulted in a sequence-specific knockdown of G gene mRNA in EPC cells. There were no significant differences in IFN-induced Mx1 gene expression among cells transfected with each shRNA vector including shRNA-VG594, -VG594sc (two nucleotides mismatch) and -EGFP (non-specific control), suggesting that knockdown of G gene expression was not due to an IFN response but instead by sequence-specific RNAi. Transfection of EPC cells with shRNA-VG594 conferred resistance to VHSV, and this anti-VHSV effect was not observed when using a two-nucleotide-mismatched shRNA-VG594sc or a shRNA targeting EGFP. Furthermore, shRNA-VG594 expressed in EPC cells did not confer protection against infectious hematopoietic necrosis virus (IHNV), suggesting sequence-specific RNAi-dependent suppression of viral replication.
Collapse
Affiliation(s)
- Min Sun Kim
- Department of Aquatic Life Medicine, Pukyong National University, Nam-gu 599-1, Busan 608-737, South Korea
| | | |
Collapse
|
20
|
Inhibition of Hepatitis E virus replication using short hairpin RNA (shRNA). Antiviral Res 2010; 85:541-50. [PMID: 20105445 DOI: 10.1016/j.antiviral.2010.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 01/04/2010] [Accepted: 01/20/2010] [Indexed: 02/07/2023]
Abstract
Hepatitis E virus (HEV) is a non-enveloped, single-stranded, positive sense RNA virus, which is a major cause of water-borne hepatitis. RNA interference (RNAi) is a sequence-specific cellular antiviral defence mechanism, induced by double-stranded RNA, which we used to investigate knockdown of several genes and the 3' cis-acting element (CAE) of HEV. In the present report, shRNAs were developed against the putative helicase and replicase domains and the 3'CAE region of HEV. Production of siRNA was confirmed by northern hybridization. The possible innate response induction due to shRNA expressions was verified by transcript analysis for interferon-beta and 2',5'-oligoadenylate synthetase genes and was found to be absent. Initially, the selected shRNAs were tested for their efficiency against the respective genes/3'CAE using inhibition of fused viral subgenomic target domain-renilla luciferase reporter constructs. The effective shRNAs were studied for their inhibitory effects on HEV replication in HepG2 cells using HEV replicon and reporter replicon. RNAi mediated silencing was demonstrated by reduction of luciferase activity in subgenomic target-reporter constructs and reporter replicon. The real time PCR was used to demonstrate inhibition of native replicon replication in transfected cells. Designed shRNAs were found to be effective in inhibiting virus replication to a variable extent (45-93%).
Collapse
|
21
|
Citovsky V, Zaltsman A, Kozlovsky SV, Gafni Y, Krichevsky A. Proteasomal degradation in plant-pathogen interactions. Semin Cell Dev Biol 2009; 20:1048-54. [PMID: 19505586 DOI: 10.1016/j.semcdb.2009.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 05/29/2009] [Indexed: 11/30/2022]
Abstract
The ubiquitin/26S proteasome pathway is a basic biological mechanism involved in the regulation of a multitude of cellular processes. Increasing evidence indicates that plants utilize the ubiquitin/26S proteasome pathway in their immune response to pathogen invasion, emphasizing the role of this pathway during plant-pathogen interactions. The specific functions of proteasomal degradation in plant-pathogen interactions are diverse, and do not always benefit the host plant. Although in some cases, proteasomal degradation serves as an effective barrier to help plants ward off pathogens, in others, it is used by the pathogen to enhance the infection process. This review discusses the different roles of the ubiquitin/26S proteasome pathway during interactions of plants with pathogenic viruses, bacteria, and fungi.
Collapse
Affiliation(s)
- Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | | | | | | | |
Collapse
|
22
|
de Miranda JR, Cordoni G, Budge G. The Acute bee paralysis virus-Kashmir bee virus-Israeli acute paralysis virus complex. J Invertebr Pathol 2009; 103 Suppl 1:S30-47. [PMID: 19909972 DOI: 10.1016/j.jip.2009.06.014] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022]
Abstract
Acute bee paralysis virus (ABPV), Kashmir bee virus (KBV) and Israeli acute paralysis virus (IAPV) are part of a complex of closely related viruses from the Family Dicistroviridae. These viruses have a widespread prevalence in honey bee (Apis mellifera) colonies and a predominantly sub-clinical etiology that contrasts sharply with the extremely virulent pathology encountered at elevated titres, either artificially induced or encountered naturally. These viruses are frequently implicated in honey bee colony losses, especially when the colonies are infested with the parasitic mite Varroa destructor. Here we review the historical and recent literature of this virus complex, covering history and origins; the geographic, host and tissue distribution; pathology and transmission; genetics and variation; diagnostics, and discuss these within the context of the molecular and biological similarities and differences between the viruses. We also briefly discuss three recent developments relating specifically to IAPV, concerning its association with Colony Collapse Disorder, treatment of IAPV infection with siRNA and possible honey bee resistance to IAPV.
Collapse
Affiliation(s)
- Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden.
| | | | | |
Collapse
|
23
|
Abstract
Basic research in the field of molecular biology led to the discovery of the mechanism of RNA interference (RNAi) in Caenorhabditis elegans in 1998. RNAi is now widely appreciated as an important gene control mechanism in mammals, and several RNAi-based gene-silencing applications have already been used in clinical trials. In this review I will discuss RNAi approaches to inhibit the pathogenic human immunodeficiency virus type 1 (HIV-1), which establishes a chronic infection that would most likely require a durable gene therapy approach. Viruses, such as HIV-1, are particularly difficult targets for RNAi attack because they mutate frequently, which allows viral escape by mutation of the RNAi target sequence. Combinatorial RNAi strategies are required to prevent viral escape.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Academic Medical Center, University of Amsterdam, the Netherlands.
| |
Collapse
|
24
|
Lobo FP, Mota BEF, Pena SDJ, Azevedo V, Macedo AM, Tauch A, Machado CR, Franco GR. Virus-host coevolution: common patterns of nucleotide motif usage in Flaviviridae and their hosts. PLoS One 2009; 4:e6282. [PMID: 19617912 PMCID: PMC2707012 DOI: 10.1371/journal.pone.0006282] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 06/17/2009] [Indexed: 12/18/2022] Open
Abstract
Virus-host biological interaction is a continuous coevolutionary process involving both host immune system and viral escape mechanisms. Flaviviridae family is composed of fast evolving RNA viruses that infects vertebrate (mammals and birds) and/or invertebrate (ticks and mosquitoes) organisms. These host groups are very distinct life forms separated by a long evolutionary time, so lineage-specific anti-viral mechanisms are likely to have evolved. Flaviviridae viruses which infect a single host lineage would be subjected to specific host-induced pressures and, therefore, selected by them. In this work we compare the genomic evolutionary patterns of Flaviviridae viruses and their hosts in an attempt to uncover coevolutionary processes inducing common features in such disparate groups. Especially, we have analyzed dinucleotide and codon usage patterns in the coding regions of vertebrate and invertebrate organisms as well as in Flaviviridae viruses which specifically infect one or both host types. The two host groups posses very distinctive dinucleotide and codon usage patterns. A pronounced CpG under-representation was found in the vertebrate group, possibly induced by the methylation-deamination process, as well as a prominent TpA decrease. The invertebrate group displayed only a TpA frequency reduction bias. Flaviviridae viruses mimicked host nucleotide motif usage in a host-specific manner. Vertebrate-infecting viruses possessed under-representation of CpG and TpA, and insect-only viruses displayed only a TpA under-representation bias. Single-host Flaviviridae members which persistently infect mammals or insect hosts (Hepacivirus and insect-only Flavivirus, respectively) were found to posses a codon usage profile more similar to that of their hosts than to related Flaviviridae. We demonstrated that vertebrates and mosquitoes genomes are under very distinct lineage-specific constraints, and Flaviviridae viruses which specifically infect these lineages appear to be subject to the same evolutionary pressures that shaped their host coding regions, evidencing the lineage-specific coevolutionary processes between the viral and host groups.
Collapse
Affiliation(s)
- Francisco P Lobo
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Nguyen DN, Kim P, Martínez-Sobrido L, Beitzel B, García-Sastre A, Langer R, Anderson DG. A novel high-throughput cell-based method for integrated quantification of type I interferons and in vitro screening of immunostimulatory RNA drug delivery. Biotechnol Bioeng 2009; 103:664-75. [PMID: 19338049 PMCID: PMC2771114 DOI: 10.1002/bit.22312] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A hallmark of immune activation by certain RNA sequences is the generation of interferon responses. However, the study of immunostimulatory RNA (isRNA) has been hindered by costly and slow methods, particularly in vitro. We have developed a cell-based assay to detect human type I interferon (IFN) that reliably senses both IFN-alpha and IFN-beta simultaneously. The human 293T cell line was stably transfected with a fusion gene of monomeric red fluorescent protein (mRFP) under the transcriptional control of an interferon-stimulated response element (ISRE). High levels of mRFP are expressed following activation of the type I IFN receptor (IFNAR). Using this method, detection limits for IFN similar to that of ELISA can be achieved but with a greater dynamic range and in a high-throughput manner. As a proof of concept, we utilized this method to screen a library of cationic lipid-like materials that form nanoparticle complexes with RNA for induction of innate immune responses in vitro. We expect the screening and detection methods described herein may provide a useful tool in elucidating mechanisms that govern the delivery of RNA molecules to effector cells and receptors of the innate immune system. We apply this tool to investigate isRNA drug delivery, but it may also find use in other applications for which high-throughput detection of type 1 IFN is desired.
Collapse
Affiliation(s)
- David N Nguyen
- Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
RNA interference inhibits respiratory syncytial virus replication and disease pathogenesis without inhibiting priming of the memory immune response. J Virol 2008; 82:12221-31. [PMID: 18818323 DOI: 10.1128/jvi.01557-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of morbidity in infants, young children, and the elderly worldwide. Currently, there is no effective vaccine, and antiviral drugs to control infection are limited. RNA interference is a powerful tool amenable to development of antiviral drugs. Using small interfering RNA (siRNA) targeting the RSV P gene (siRNA-P), RSV replication can be silenced both in vitro and in a BALB/c model of RSV infection. In this study, we examine the effect of siRNA prophylaxis on the primary and memory immune response to RSV infection in mice. We show that mice prophylactically treated with siRNA-P to decrease but not eliminate RSV replication exhibit reduced pulmonary inflammation and lung pathogenesis and produce a robust anti-RSV memory response when subsequently challenged with RSV. The pulmonary T-cell memory response was characterized by high numbers of CD44(hi) CD62L(lo) CD4(+) and CD8(+) T cells, M2 peptide tetramer(+) CD8(+) T cells expressing gamma interferon, and an RSV-specific antibody response. The results support the hypothesis that siRNAs can be developed as effective antiviral drugs that can be used to reduce the viral load and parameters of pathogenesis without limiting the induction of the memory immune response.
Collapse
|
27
|
Dang LT, Kondo H, Aoki T, Hirono I. Engineered virus-encoded pre-microRNA (pre-miRNA) induces sequence-specific antiviral response in addition to nonspecific immunity in a fish cell line: convergence of RNAi-related pathways and IFN-related pathways in antiviral response. Antiviral Res 2008; 80:316-23. [PMID: 18687362 DOI: 10.1016/j.antiviral.2008.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 05/28/2008] [Accepted: 07/09/2008] [Indexed: 11/30/2022]
Abstract
Transfection with synthesized virus-specific small interfering RNAs (siRNAs) efficiently inhibits viral replication in viral-infected fish cell lines, implying the involvement of RNA interference (RNAi)-related pathways in the antiviral response of fish cells. Here, we demonstrate that plasmid expressing virus-encoded pre-microRNAs (pre-miRNAs) can also inhibit viral replication through these pathways. By incorporating sequences encoding miRNAs specific to major capsid protein (MCP) gene of red sea bream iridovirus (RSIV) and a miRNA specific to hirame rhabdovirus (HIRRV) genome into a murine miR-155 pre-miRNA backbone, we were able to intracellularly express viral pre-miRNAs (miR-MCPs and miR-HIRRV) in a fish cell line. The miR-MCPs and miR-HIRRV, delivered as pre-miRNA precursors in transfected cells, inhibited viral replication when these cells were infected with the target virus. Although this may suggest sequence-specific interference, inhibitory effect on viral replication was also observed in cells transfected with a plasmid expressing pre-miRNA targeting beta-galactosidase gene (miR-LacZ) that served as a specificity control. Expression of pre-miRNAs was found to activate interferon (IFN)-related pathways, correlating with upregulation of the antiviral IFN-induced Mx protein. The antiviral effects of viral-miRNAs observed here were partly the result of the antiviral miRNA-related pathways and partly the result of the antiviral IFN-related pathways. We propose that engineered virus-encoded pre-miRNA can engage not only RNAi-related pathways but also IFN-related pathways to induce potent antiviral responses in fish cells.
Collapse
Affiliation(s)
- Lua T Dang
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo 108-8477, Japan
| | | | | | | |
Collapse
|
28
|
Song J, Giang A, Lu Y, Pang S, Chiu R. Multiple shRNA expressing vector enhances efficiency of gene silencing. BMB Rep 2008; 41:358-62. [DOI: 10.5483/bmbrep.2008.41.5.358] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
Chapter 5. In vivo analysis of the decay of transcripts generated by cytoplasmic RNA viruses. Methods Enzymol 2008; 449:97-123. [PMID: 19215755 DOI: 10.1016/s0076-6879(08)02405-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The field of RNA decay has grown extensively over the last few years and numerous decay pathways have been identified and characterized. This is a truly powerful machinery for both regulation and quality control of gene expression. It is very likely that the transcripts of RNA viruses must successfully confront this arsenal of enzymes and RNA binding factors in order to establish a productive infection. This interface is an understudied branch of virology that needs to be explored if we are to fully comprehend the molecular biology of virus-cell interactions. Research in this area has the potential to increase our understanding of the fundamentals of both mRNA stability and viral biology, perhaps leading to novel antiviral approaches. This chapter discusses methods for examining the half-lives of viral RNAs during natural infection, including purification of the viral transcripts and subsequent analysis of both deadenylation and decay. Additionally, a hybrid selection protocol for identifying viral-specific small RNAs that are generated during infection by the RNAi branch of the cellular RNA decay machinery is described.
Collapse
|
30
|
Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proc Natl Acad Sci U S A 2007; 105:157-61. [PMID: 18165314 DOI: 10.1073/pnas.0709036105] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The V2 protein of tomato yellow leaf curl geminivirus (TYLCV) functions as an RNA-silencing suppressor that counteracts the innate immune response of the host plant. The host-cell target of V2, however, remains unknown. Here we show that V2 interacts directly with SlSGS3, the tomato homolog of the Arabidopsis SGS3 protein (AtSGS3), which is known to be involved in the RNA-silencing pathway. SlSGS3 genetically complemented an AtSGS3 mutation and restored RNA silencing, indicating that SlSGS3 is indeed a functional homolog of AtSGS3. A point mutant of V2 that is unable to bind SlSGS3 also lost its ability to suppress RNA silencing, suggesting a correlation between the V2-SlSGS3 interaction in planta and the suppressor activity of V2.
Collapse
|
31
|
Clark PR, Pober JS, Kluger MS. Knockdown of TNFR1 by the sense strand of an ICAM-1 siRNA: dissection of an off-target effect. Nucleic Acids Res 2007; 36:1081-97. [PMID: 18096615 PMCID: PMC2275081 DOI: 10.1093/nar/gkm630] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Tumor necrosis factor (TNF) initiates local inflammation by triggering endothelial cells (EC) to express adhesion molecules for leukocytes such as intercellular adhesion molecule-1 (ICAM-1 or CD54). A prior study identified siRNA molecules that reduce ICAM-1 expression in cultured human umbilical vein EC (HUVEC). One of these, ISIS 121736, unexpectedly inhibits TNF-mediated up-regulation of additional molecules on EC, including E-selectin (CD62E), VCAM-1 (CD106) and HLA-A,B,C. 736 siRNA transfection was not toxic for EC nor was there any evidence of an interferon response. 736 Transfection of EC blocked multiple early TNF-related signaling events, including activation of NF-kappaB. IL-1 activation of these same pathways was not inhibited. A unifying explanation is that 736 siRNA specifically reduced expression of mRNA encoding tumor necrosis factor receptor 1 (TNFR1) as well as TNFR1 surface expression. A sequence with high identity to the 736 antisense strand (17 of 19 bases) is present within the 3'UTR of human TNFR1 mRNA. An EGFP construct incorporating the 3'UTR of TNFR1 was silenced by 736 siRNA and this effect was lost by mutagenesis of this complementary sequence. Chemical modification and mismatches within the sense strand of 736 also inhibited silencing activity. In summary, an siRNA molecule selected to target ICAM-1 through its antisense strand exhibited broad anti-TNF activities. We show that this off-target effect is mediated by siRNA knockdown of TNFR1 via its sense strand. This may be the first example in which the off-target effect of an siRNA is actually responsible for the anticipated effect by acting to reduce expression of a protein (TNFR1) that normally regulates expression of the intended target (ICAM-1).
Collapse
Affiliation(s)
- Paul R Clark
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | |
Collapse
|
32
|
Worobey M, Bjork A, Wertheim JO. Point, Counterpoint: The Evolution of Pathogenic Viruses and their Human Hosts. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2007. [DOI: 10.1146/annurev.ecolsys.38.091206.095722] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral pathogens play a prominent role in human health owing to their ability to rapidly evolve creative new ways to exploit their hosts. As elegant and deceptive as many viral adaptations are, humans and their ancestors have repeatedly answered their call with equally impressive adaptations. Here we argue that the coevolutionary arms race between humans and their viral pathogens is one of the most important forces in human molecular evolution, past and present. With a focus on HIV-1 and other RNA viruses, we highlight recent developments in our understanding of the human innate and adaptive immune systems and how the selective pressures exerted by viruses have shaped the human genome. We also discuss how the antiviral function of cellular machinery like RNAi and APOBEC3G blur the lines between innate and adaptive immunity. The remarkable power of natural selection is revealed in each host-pathogen arms race examined.
Collapse
Affiliation(s)
- Michael Worobey
- Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721;, ,
| | - Adam Bjork
- Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721;, ,
| | - Joel O. Wertheim
- Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721;, ,
| |
Collapse
|
33
|
Stassen L, Huismans H, Theron J. Silencing of African horse sickness virus VP7 protein expression in cultured cells by RNA interference. Virus Genes 2007; 35:777-83. [PMID: 17851744 DOI: 10.1007/s11262-007-0162-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 08/24/2007] [Indexed: 12/31/2022]
Abstract
RNA interference (RNAi) is the process by which double-stranded RNA directs sequence-specific degradation of homologous mRNA. Short interfering RNAs (siRNAs) are the mediators of RNAi and represent powerful tools to silence gene expression in mammalian cells including genes of viral origin. In this study, we applied siRNAs targeting the VP7 gene of African horse sickness virus (AHSV) that encodes a structural protein required for stable capsid assembly. Using a VP7 expression reporter plasmid and an in vitro model of infection, we show that synthetic siRNA molecules corresponding to the AHSV VP7 gene silenced effectively VP7 protein and mRNA expression, and decreased production of infectious virus particles as evidenced by a reduction in the progeny virion titres when compared to control cells. This work establishes RNAi as a genetic tool for the study of AHSV and offers new possibilities for the analysis of viral genes important for AHSV physiology.
Collapse
Affiliation(s)
- Liesel Stassen
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria 0002, South Africa.
| | | | | |
Collapse
|
34
|
Iorns E, Lord CJ, Turner N, Ashworth A. Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov 2007; 6:556-68. [PMID: 17599085 DOI: 10.1038/nrd2355] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With the development of RNA interference (RNAi) libraries, systematic and cost-effective genome-wide loss-of-function screens can now be carried out with the aim of assessing the role of specific genes in neoplastic phenotypes, and the rapid identification of novel drug targets. Here, we discuss the existing applications of RNAi in cancer drug discovery and highlight areas in this process that may benefit from this technology in the future.
Collapse
Affiliation(s)
- Elizabeth Iorns
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | | | | | | |
Collapse
|
35
|
Chan E, Yousaf M. Surface-Chemistry Control To Silence Gene Expression inDrosophila Schneider 2 Cells through RNA Interference. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Chan EWL, Yousaf MN. Surface-Chemistry Control To Silence Gene Expression inDrosophila Schneider 2 Cells through RNA Interference. Angew Chem Int Ed Engl 2007; 46:3881-4. [PMID: 17415732 DOI: 10.1002/anie.200604079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eugene W L Chan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | | |
Collapse
|