1
|
Pujol M, Alexiou KG, Fontaine AS, Mayor P, Miras M, Jahrmann T, Garcia-Mas J, Aranda MA. Mapping Cucumber Vein Yellowing Virus Resistance in Cucumber ( Cucumis sativus L.) by Using BSA-seq Analysis. FRONTIERS IN PLANT SCIENCE 2019; 10:1583. [PMID: 31850047 PMCID: PMC6901629 DOI: 10.3389/fpls.2019.01583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/12/2019] [Indexed: 05/14/2023]
Abstract
Cucumber vein yellowing virus (CVYV) causes severe yield losses in cucurbit crops across Mediterranean countries. The control of this virus is based on cultural practices to prevent the presence of its vector (Bemisia tabaci) and breeding for natural resistance, which requires the identification of the loci involved and the development of molecular markers for linkage analysis. In this work, we mapped a monogenic locus for resistance to CVYV in cucumber by using a Bulked Segregant Analysis (BSA) strategy coupled with whole-genome resequencing. We phenotyped 135 F3 families from a segregating population between a susceptible pickling cucumber and a resistant Long Dutch type cucumber for CVYV resistance. Phenotypic analysis determined the monogenic and incomplete dominance inheritance of the resistance. We named the locus CsCvy-1. For mapping this locus, 15 resistant and 15 susceptible homozygous F2 individuals were selected for whole genome resequencing. By using a customized bioinformatics pipeline, we identified a unique region in chromosome 5 associated to resistance to CVYV, explaining more than 80% of the variability. The resequencing data provided us with additional SNP markers to decrease the interval of CsCvy-1 to 625 kb, containing 24 annotated genes. Markers flanking CsCvy-1 in a 5.3 cM interval were developed for marker-assisted selection (MAS) in breeding programs and will be useful for the identification of the target gene in future studies.
Collapse
Affiliation(s)
- Marta Pujol
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Plant and Animal Genomics Program, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Genomics and Biotecnology Program, Barcelona, Spain
| | - Konstantinos G. Alexiou
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Plant and Animal Genomics Program, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Genomics and Biotecnology Program, Barcelona, Spain
| | | | - Patricia Mayor
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Departamento de Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - Manuel Miras
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Departamento de Biología del Estrés y Patología Vegetal, Murcia, Spain
| | - Torben Jahrmann
- Semillas Fitó S.A., Biotechnology Department, Barcelona, Spain
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Plant and Animal Genomics Program, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Genomics and Biotecnology Program, Barcelona, Spain
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Departamento de Biología del Estrés y Patología Vegetal, Murcia, Spain
- *Correspondence: Miguel A. Aranda,
| |
Collapse
|
2
|
Gilbertson RL, Batuman O, Webster CG, Adkins S. Role of the Insect SupervectorsBemisia tabaciandFrankliniella occidentalisin the Emergence and Global Spread of Plant Viruses. Annu Rev Virol 2015; 2:67-93. [DOI: 10.1146/annurev-virology-031413-085410] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Robert L. Gilbertson
- Department of Plant Pathology, University of California, Davis, California 95616; ,
| | - Ozgur Batuman
- Department of Plant Pathology, University of California, Davis, California 95616; ,
| | - Craig G. Webster
- US Horticultural Research Laboratory, Agricultural Research Service, US Department of Agriculture, Fort Pierce, Florida 34945; ,
| | - Scott Adkins
- US Horticultural Research Laboratory, Agricultural Research Service, US Department of Agriculture, Fort Pierce, Florida 34945; ,
| |
Collapse
|
3
|
Kassem MA, Juarez M, Gómez P, Mengual CM, Sempere RN, Plaza M, Elena SF, Moreno A, Fereres A, Aranda MA. Genetic diversity and potential vectors and reservoirs of Cucurbit aphid-borne yellows virus in southeastern Spain. PHYTOPATHOLOGY 2013; 103:1188-1197. [PMID: 23802870 DOI: 10.1094/phyto-11-12-0280-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The genetic variability of a Cucurbit aphid-borne yellows virus (CABYV) (genus Polerovirus, family Luteoviridae) population was evaluated by determining the nucleotide sequences of two genomic regions of CABYV isolates collected in open-field melon and squash crops during three consecutive years in Murcia (southeastern Spain). A phylogenetic analysis showed the existence of two major clades. The sequences did not cluster according to host, year, or locality of collection, and nucleotide similarities among isolates were 97 to 100 and 94 to 97% within and between clades, respectively. The ratio of nonsynonymous to synonymous nucleotide substitutions reflected that all open reading frames have been under purifying selection. Estimates of the population's genetic diversity were of the same magnitude as those previously reported for other plant virus populations sampled at larger spatial and temporal scales, suggesting either the presence of CABYV in the surveyed area long before it was first described, multiple introductions, or a particularly rapid diversification. We also determined the full-length sequences of three isolates, identifying the occurrence and location of recombination events along the CABYV genome. Furthermore, our field surveys indicated that Aphis gossypii was the major vector species of CABYV and the most abundant aphid species colonizing melon fields in the Murcia (Spain) region. Our surveys also suggested the importance of the weed species Ecballium elaterium as an alternative host and potential virus reservoir.
Collapse
|
4
|
Sun BJ, Sun LY, Tugume AK, Adams MJ, Yang J, Xie LH, Chen JP. Selection pressure and founder effects constrain genetic variation in differentiated populations of soilborne bymovirus Wheat yellow mosaic virus (Potyviridae) in China. PHYTOPATHOLOGY 2013; 103:949-59. [PMID: 23550972 DOI: 10.1094/phyto-01-13-0013-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To study the population genetic structure and forces driving the evolution of Wheat yellow mosaic virus (WYMV), the nucleotide sequences encoding the coat protein (CP) (297 sequences) or the genome-linked virion protein (VPg) (87 sequences) were determined from wheat plants growing at 11 different locations distributed in five provinces in China. There were close phylogenetic relationships between all sequences but clustering on the phylogenetic trees was congruent with their provenance, suggesting an origin-dependent population genetic structure. There were low levels of genetic diversity, ranging from 0.00035 ± 0.00019 to 0.01536 ± 0.00043 (CP), and 0.00086 ± 0.00039 to 0.00573 ± 0.00111 (VPg), indicating genetic stability or recent emergence of WYMV in China. The results may suggest that founder effects play a role in shaping the genetic structure of WYMV. Between-population diversity was consistently higher than within-population diversity, suggesting limited gene flow between subpopulations (average FST 0.6241 for the CP and 0.7981 for the VPg). Consistent amino acid substitutions correlated with the provenance of the sequences were observed at nine positions in the CP (but none in the VPg), indicating an advanced stage in population structuring. Strong negative (purifying) selection was implicated on both the CP and VPg but positive selection on a few codons in the CP, indicating an ongoing molecular adaptation.
Collapse
Affiliation(s)
- B-J Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, MoA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Webster CG, Adkins S. Low genetic diversity of Squash vein yellowing virus in wild and cultivated cucurbits in the U.S. suggests a recent introduction. Virus Res 2012; 163:520-7. [DOI: 10.1016/j.virusres.2011.11.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 11/19/2011] [Accepted: 11/20/2011] [Indexed: 11/25/2022]
|
6
|
Abstract
Cucurbit crops may be affected by at least 28 different viruses in the Mediterranean basin. Some of these viruses are widely distributed and cause severe yield losses while others are restricted to limited areas or specific crops, and have only a negligible economic impact. A striking feature of cucurbit viruses in the Mediterranean basin is their always increasing diversity. Indeed, new viruses are regularly isolated and over the past 35 years one "new" cucurbit virus has been reported on average every 2 years. Among these "new" viruses some were already reported in other parts of the world, but others such as Zucchini yellow mosaic virus (ZYMV), one of the most severe cucurbit viruses and Cucurbit aphid-borne yellows virus (CABYV), one of the most prevalent cucurbit viruses, were first described in the Mediterranean area. Why this region may be a potential "hot-spot" for cucurbit virus diversity is not fully known. This could be related to the diversity of cropping practices, of cultivar types but also to the important commercial exchanges that always prevailed in this part of the world. This chapter describes the major cucurbit viruses occurring in the Mediterranean basin, discusses factors involved in their emergence and presents options for developing sustainable control strategies.
Collapse
Affiliation(s)
- Hervé Lecoq
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, Montfavet, France
| | | |
Collapse
|
7
|
Acosta-Leal R, Duffy S, Xiong Z, Hammond RW, Elena SF. Advances in plant virus evolution: translating evolutionary insights into better disease management. PHYTOPATHOLOGY 2011; 101:1136-48. [PMID: 21554186 DOI: 10.1094/phyto-01-11-0017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recent studies in plant virus evolution are revealing that genetic structure and behavior of virus and viroid populations can explain important pathogenic properties of these agents, such as host resistance breakdown, disease severity, and host shifting, among others. Genetic variation is essential for the survival of organisms. The exploration of how these subcellular parasites generate and maintain a certain frequency of mutations at the intra- and inter-host levels is revealing novel molecular virus-plant interactions. They emphasize the role of host environment in the dynamic genetic composition of virus populations. Functional genomics has identified host factors that are transcriptionally altered after virus infections. The analyses of these data by means of systems biology approaches are uncovering critical plant genes specifically targeted by viruses during host adaptation. Also, a next-generation resequencing approach of a whole virus genome is opening new avenues to study virus recombination and the relationships between intra-host virus composition and pathogenesis. Altogether, the analyzed data indicate that systematic disruption of some specific parameters of evolving virus populations could lead to more efficient ways of disease prevention, eradication, or tolerable virus-plant coexistence.
Collapse
|
8
|
Mbanzibwa DR, Tian YP, Tugume AK, Patil BL, Yadav JS, Bagewadi B, Abarshi MM, Alicai T, Changadeya W, Mkumbira J, Muli MB, Mukasa SB, Tairo F, Baguma Y, Kyamanywa S, Kullaya A, Maruthi MN, Fauquet CM, Valkonen JPT. Evolution of cassava brown streak disease-associated viruses. J Gen Virol 2010; 92:974-87. [PMID: 21169213 DOI: 10.1099/vir.0.026922-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cassava brown streak disease (CBSD) has occurred in the Indian Ocean coastal lowlands and some areas of Malawi in East Africa for decades, and makes the storage roots of cassava unsuitable for consumption. CBSD is associated with Cassava brown streak virus (CBSV) and the recently described Ugandan cassava brown streak virus (UCBSV) [picorna-like (+)ssRNA viruses; genus Ipomovirus; family Potyviridae]. This study reports the first comprehensive analysis on how evolution is shaping the populations of CBSV and UCBSV. The complete genomes of CBSV and UCBSV (four and eight isolates, respectively) were 69.0-70.3 and 73.6-74.4% identical at the nucleotide and polyprotein amino acid sequence levels, respectively. They contained predictable sites of homologous recombination, mostly in the 3'-proximal part (NIb-HAM1h-CP-3'-UTR) of the genome, but no evidence of recombination between the two viruses was found. The CP-encoding sequences of 22 and 45 isolates of CBSV and UCBSV analysed, respectively, were mainly under purifying selection; however, several sites in the central part of CBSV CP were subjected to positive selection. HAM1h (putative nucleoside triphosphate pyrophosphatase) was the least similar protein between CBSV and UCBSV (aa identity approx. 55%). Both termini of HAM1h contained sites under positive selection in UCBSV. The data imply an on-going but somewhat different evolution of CBSV and UCBSV, which is congruent with the recent widespread outbreak of UCBSV in cassava crops in the highland areas (>1000 m above sea level) of East Africa where CBSD has not caused significant problems in the past.
Collapse
Affiliation(s)
- D R Mbanzibwa
- Mikocheni Agricultural Research Institute, PO Box 6226, Dar es Salaam, Tanzania
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kubo KS, Stuart RM, Freitas-Astúa J, Antonioli-Luizon R, Locali-Fabris EC, Coletta-Filho HD, Machado MA, Kitajima EW. Evaluation of the genetic variability of orchid fleck virus by single-strand conformational polymorphism analysis and nucleotide sequencing of a fragment from the nucleocapsid gene. Arch Virol 2009; 154:1009-14. [DOI: 10.1007/s00705-009-0395-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 04/28/2009] [Indexed: 12/01/2022]
|