1
|
Sleman S, Hao H, Najmuldeen H, Jalal P, Saeed N, Othman D, Qian Z. Human Cytomegalovirus UL24 and UL43 Cooperate to Modulate the Expression of Immunoregulatory UL16 Binding Protein 1. Viral Immunol 2022; 35:529-544. [PMID: 36179070 DOI: 10.1089/vim.2022.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human cytomegalovirus (HCMV) UL24 and UL43 are tegument proteins that have recently been shown to interact with each other in a yeast two-hybrid system. By their overexpression in MRC5 cells, we demonstrate that these viral proteins interact with several important host proteins, especially Dicer and trans-activation response RNA binding protein. As these hots proteins are involved in regulating the production of cellular micro-RNAs, the cytomegalovirus (CMV) proteins could interfere with their actions to favor viral replication directly or through an immune escape mechanism. Double knockout of UL24 and UL43 does not show a remarkable effect on CMV entry or replication, but it significantly downregulates the expression of CMV-encoded miR-UL59, which is thought to regulate the expression of a downstream target UL16 binding protein 1 (ULBP1). Interestingly, the double knockout increases the expression of the ULBP1 recognized by the NKG2D activating receptor of natural killer cells. This study investigates the potential role of several proteins encoded by HCMV in regulating the host cellular environment to favor escape from immunity, and it also provides some basis for the future development of RNA-targeted small molecules to control HCMV infection.
Collapse
Affiliation(s)
- Sirwan Sleman
- College of Veterinary Medicine, University of Sulaimani, Sulaymaniyah, Iraq.,Medical Laboratory Analysis, College of Health Science, Cihan University of Sulaimaniya, Sulaymaniyah, Iraq.,Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Hongyun Hao
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Hastyar Najmuldeen
- Medical Laboratory Analysis, College of Health Science, Cihan University of Sulaimaniya, Sulaymaniyah, Iraq.,Biology Department, College of Sciences, University of Sulaimani, Sulaymaniyah, Iraq
| | - Paywast Jalal
- Biology Department, College of Sciences, University of Sulaimani, Sulaymaniyah, Iraq
| | - Nahla Saeed
- College of Veterinary Medicine, University of Sulaimani, Sulaymaniyah, Iraq
| | - Dyary Othman
- College of Veterinary Medicine, University of Sulaimani, Sulaymaniyah, Iraq
| | - Zhikang Qian
- Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
HCMV miRNA Targets Reveal Important Cellular Pathways for Viral Replication, Latency, and Reactivation. Noncoding RNA 2018; 4:ncrna4040029. [PMID: 30360396 PMCID: PMC6315856 DOI: 10.3390/ncrna4040029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023] Open
Abstract
It is now well appreciated that microRNAs (miRNAs) play a critical role in the lifecycles of many herpes viruses. The human cytomegalovirus (HCMV) replication cycle varies significantly depending on the cell type infected, with lytic replication occurring in fully-differentiated cells such as fibroblasts, endothelial cells, or macrophages, and latent infection occurring in less-differentiated CD14+ monocytes and CD34+ hematopoietic progenitor cells where viral gene expression is severely diminished and progeny virus is not produced. Given their non-immunogenic nature and their capacity to target numerous cellular and viral transcripts, miRNAs represent a particularly advantageous means for HCMV to manipulate viral gene expression and cellular signaling pathways during lytic and latent infection. This review will focus on our current knowledge of HCMV miRNA viral and cellular targets, and discuss their importance in lytic and latent infection, highlight the challenges of studying HCMV miRNAs, and describe how viral miRNAs can help us to better understand the cellular processes involved in HCMV latency.
Collapse
|
3
|
Liang Q, Wang K, Wang B, Cai Q. HCMV-encoded miR-UL112-3p promotes glioblastoma progression via tumour suppressor candidate 3. Sci Rep 2017; 7:44705. [PMID: 28303930 PMCID: PMC5356197 DOI: 10.1038/srep44705] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/13/2017] [Indexed: 01/19/2023] Open
Abstract
Glioblastoma (GBM) is the most prevalent and lethal type of primary malignant brain tumour. Recent studies suggest that the discovery of human cytomegalovirus (HCMV)-encoded microRNAs (miRNAs) might play a role in the pathogenesis of diseases, including GBM. In this study, we aimed to analyse the expression and function of HCMV-encoded miRNAs in GBM. We found that miR-UL112-3p expression was significantly elevated in GBM, and its expression levels were highly associated with glioma size, differentiation, WHO stage and the overall and disease-free survival of patients. The overexpression of miR-UL112-3p in the GBM cells promoted cell proliferation, clone formation, migration and invasion. In contrast, the down-regulation of miR-UL112-3p exerted an inverse effects. Tumour suppressor candidate 3 (TUSC3), a potential target gene of miR-UL112-3p, was inversely correlated with miR-UL112-3p expression in GBM tissues and cell lines. Furthermore, we demonstrated that TUSC3 was directly regulated by miR-UL112-3p, and the ectopic expression of TUSC3 reversed the effects of miR-UL112-3p on GBM progression via the AKT signalling pathway. Taken together, these findings collectively demonstrate that miR-UL112-3p exerts its oncogene function by directly targeting TUSC3 in GBM, indicating a potential novel therapeutic target for GBM.
Collapse
Affiliation(s)
- Qing Liang
- MOE&MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Kejia Wang
- Department of Special Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Bin Wang
- Department of Special Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Qiliang Cai
- MOE&MOH Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
The Expression of Human Cytomegalovirus MicroRNA MiR-UL148D during Latent Infection in Primary Myeloid Cells Inhibits Activin A-triggered Secretion of IL-6. Sci Rep 2016; 6:31205. [PMID: 27491954 PMCID: PMC4974560 DOI: 10.1038/srep31205] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/06/2016] [Indexed: 12/28/2022] Open
Abstract
The successful establishment and maintenance of human cytomegalovirus (HCMV) latency is dependent on the expression of a subset of viral genes. Whilst the exact spectrum and functions of these genes are far from clear, inroads have been made for protein-coding genes. In contrast, little is known about the expression of non-coding RNAs. Here we show that HCMV encoded miRNAs are expressed de novo during latent infection of primary myeloid cells. Furthermore, we demonstrate that miR-UL148D, one of the most highly expressed viral miRNAs during latent infection, directly targets the cellular receptor ACVR1B of the activin signalling axis. Consistent with this, we observed upregulation of ACVR1B expression during latent infection with a miR-UL148D deletion virus (ΔmiR-UL148D). Importantly, we observed that monocytes latently infected with ΔmiR-UL148D are more responsive to activin A stimulation, as demonstrated by their increased secretion of IL-6. Collectively, our data indicates miR-UL148D inhibits ACVR1B expression in latently infected cells to limit proinflammatory cytokine secretion, perhaps as an immune evasion strategy or to postpone cytokine-induced reactivation until conditions are more favourable. This is the first demonstration of an HCMV miRNA function during latency in primary myeloid cells, implicating that small RNA species may contribute significantly to latent infection.
Collapse
|
5
|
Bruno L, Cortese M, Monda G, Gentile M, Calò S, Schiavetti F, Zedda L, Cattaneo E, Piccioli D, Schaefer M, Notomista E, Maione D, Carfì A, Merola M, Uematsu Y. Human cytomegalovirus pUL10 interacts with leukocytes and impairs TCR-mediated T-cell activation. Immunol Cell Biol 2016; 94:849-860. [PMID: 27192938 DOI: 10.1038/icb.2016.49] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 01/27/2023]
Abstract
Human cytomegalovirus (HCMV) is known to exert suppressive effects on the host immune system through expression of various viral genes, thus directly and indirectly affecting antiviral immunity of the infected individuals. We report here that HCMV UL10 encodes a protein (pUL10) with immunosuppressive properties. UL10 has been classified as a member of the HCMV RL11 gene family. Although pUL10 is known to be dispensable for viral replication in cultured cells, its amino-acid sequence is well conserved among different HCMV isolates, suggesting that the protein has a crucial role in viral survival in the host environment. We show that pUL10 is cleaved from the cell surface of fibroblasts as well as epithelial cells and interacts with a cellular receptor ubiquitously expressed on the surface of human leukocytes, demonstrated by ex vivo cell-based assays and flow cytometric analyses on both lymphoid cell lines and primary blood cells. Furthermore, preincubation of peripheral blood mononuclear cells with purified pUL10 ectodomain results in significantly impaired proliferation and substantially reduced pro-inflammatory cytokine production, in particular in CD4+ T cells upon in vitro T-cell stimulation. The inhibitory effect of pUL10 is also observed on antigen receptor-mediated intracellular tyrosine phosphorylation in a T-cell line. Based on these observations, we suggest that pUL10 is a newly identified immunomodulatory protein encoded by HCMV. Further elucidation of interactions between pUL10 and the host immune system during HCMV may contribute to finding ways towards new therapies for HCMV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Eugenio Notomista
- Department of Biology, University of Naples 'Federico II', Naples, Italy
| | | | | | - Marcello Merola
- Research, GSK Vaccines, Siena, Italy.,Department of Biology, University of Naples 'Federico II', Naples, Italy
| | | |
Collapse
|
6
|
Koshizuka T, Tanaka K, Suzutani T. Degradation of host ubiquitin E3 ligase Itch by human cytomegalovirus UL42. J Gen Virol 2016; 97:196-208. [DOI: 10.1099/jgv.0.000336] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Tetsuo Koshizuka
- Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Keiichiro Tanaka
- Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Tatsuo Suzutani
- Department of Microbiology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| |
Collapse
|
7
|
Feldman ER, Tibbetts SA. Emerging Roles of Herpesvirus microRNAs During In Vivo Infection and Pathogenesis. CURRENT PATHOBIOLOGY REPORTS 2015; 3:209-217. [PMID: 26246961 PMCID: PMC4522463 DOI: 10.1007/s40139-015-0085-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herpesviridae constitutes a large family of double-stranded DNA viruses that are associated with a wide range of diseases, including herpetic lesions, birth defects, and cancer. Herpesviruses establish lifelong latent infections in part because they are exceptionally adept at modulating the virus/host interface. New insights into the numerous roles of microRNAs (miRNAs) in cell biology, along with the recent appreciation that nearly every host transcript is targeted by at least one miRNA, has fundamentally changed our conceptualization of the virus/host relationship. The identification of miRNAs expressed from nearly all human herpesvirus genomes has led to the speculation that these short non-coding transcripts play essential roles in herpesvirus biology. Because the activity of miRNAs depends upon the transcriptome of the cell in which they are expressed, in vivo systems will be essential for defining the true biological relevance of herpesvirus miRNAs. This review will specifically focus on experimental systems which have investigated the functional role of herpesvirus-encoded miRNAs in viral biology and pathogenesis in vivo.
Collapse
Affiliation(s)
- Emily R. Feldman
- Department of Molecular Genetics & Microbiology, College of Medicine, UF Health Cancer Center, University of Florida, 1200 Newell Dr., R2-291, Gainesville, FL 32610 USA
| | - Scott A. Tibbetts
- Department of Molecular Genetics & Microbiology, College of Medicine, UF Health Cancer Center, University of Florida, 1200 Newell Dr., R2-291, Gainesville, FL 32610 USA
| |
Collapse
|
8
|
Jiang S, Qi Y, He R, Huang Y, Liu Z, Ma Y, Guo X, Shao Y, Sun Z, Ruan Q. Human cytomegalovirus microRNA miR-US25-1-5p inhibits viral replication by targeting multiple cellular genes during infection. Gene 2015; 570:108-14. [PMID: 26055091 DOI: 10.1016/j.gene.2015.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 11/28/2022]
Abstract
MicroRNAs (miRNAs) play important roles in regulating various cellular processes in plants, animals, and viruses. This mechanism is also utilized by human cytomegalovirus (HCMV) in the process of infection and pathogenesis. The HCMV-encoded miRNA, hcmv-miR-US25-1-5p, was highly expressed during lytic and latent infections, and was found to inhibit viral replication. Identification of functional target genes of this microRNA is important in that it will enable a better understanding of the function of hcmv-miR-US25-1-5p during HCMV infection. In the present study, 35 putative cellular transcript targets of hcmv-miR-US25-1-5p were identified. Down-regulation of the targets YWHAE, UBB, NPM1, and HSP90AA1 by hcmv-miR-US25-1-5p was validated by luciferase reporter assay and Western blot analysis. In addition, we showed that hcmv-miR-US25-1-5p could inhibit viral replication by interacting with these targets, the existence of which may impact virus replication directly or indirectly.
Collapse
Affiliation(s)
- Shujuan Jiang
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China; Clinical Genetics, The Affiliated Shengjing Hospital, China Medical University, China
| | - Ying Qi
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Rong He
- Clinical Genetics, The Affiliated Shengjing Hospital, China Medical University, China.
| | - Yujing Huang
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Zhongyang Liu
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Yanping Ma
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Xin Guo
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Yaozhong Shao
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Zhengrong Sun
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Qiang Ruan
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China.
| |
Collapse
|
9
|
Increased Viral Dissemination in the Brain and Lethality in MCMV-Infected, Dicer-Deficient Neonates. Viruses 2015; 7:2308-20. [PMID: 25955106 PMCID: PMC4452907 DOI: 10.3390/v7052308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/23/2015] [Accepted: 04/30/2015] [Indexed: 12/15/2022] Open
Abstract
Among Herpesviruses, Human Cytomegalovirus (HCMV or HHV-5) represents a major threat during congenital or neonatal infections, which may lead to encephalitis with serious neurological consequences. However, as opposed to other less prevalent pathogens, the mechanisms and genetic susceptibility factors for CMV encephalitis are poorly understood. This lack of information considerably reduces the prognostic and/or therapeutic possibilities. To easily monitor the effects of genetic defects on brain dissemination following CMV infection we used a recently developed in vivo mouse model based on the neonatal inoculation of a MCMV genetically engineered to express Luciferase. Here, we further validate this protocol for live imaging, and demonstrate increased lethality associated with viral infection and encephalitis in mutant mice lacking Dicer activity. Our data indicate that miRNAs are important players in the control of MCMV pathogenesis and suggest that miRNA-based endothelial functions and integrity are crucial for CMV encephalitis.
Collapse
|
10
|
The porcine microRNA transcriptome response to transmissible gastroenteritis virus infection. PLoS One 2015; 10:e0120377. [PMID: 25781021 PMCID: PMC4363316 DOI: 10.1371/journal.pone.0120377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/20/2015] [Indexed: 11/26/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV; Coronaviridae family) causes huge economic losses to the swine industry. MicroRNAs (miRNAs) play a regulatory role in viral infection and may be involved in the mammalian immune response. Here, we report a comprehensive analysis of host miRNA expression in TGEV-infected swine testis (ST) cells. Deep sequencing generated 3,704,353 and 2,763,665 reads from uninfected ST cells and infected ST cells, respectively. The reads were aligned to known Sus scrofa pre-miRNAs in miRBase 19, identifying 284 annotated miRNAs. Certain miRNAs were differentially regulated during TGEV infection. 59 unique miRNAs displayed significant differentially expression between the normal and TGEV-infected ST cell samples: 15 miRNAs were significantly up-regulated and 44 were significantly down-regulated. Stem-loop RT-PCR was carried out to determine the expression levels of specific miRNAs in the two samples, and the results were consistent with those of sequencing. Gene ontology enrichment analysis of host target genes demonstrated that the differentially expressed miRNAs are involved in regulatory networks, including cellular process, metabolic process, immune system process. This is the first report of the identification of ST cell miRNAs and the comprehensive analysis of the miRNA regulatory mechanism during TGEV infection, which revealed the miRNA molecular regulatory mechanisms for the viral infection, expression of viral genes and the expression of immune-related genes. The results presented here will aid research on the prevention and treatment of viral diseases.
Collapse
|
11
|
Cytomegalovirus and glioblastoma; controversies and opportunities. J Neurooncol 2015; 123:465-71. [DOI: 10.1007/s11060-015-1734-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/01/2015] [Indexed: 10/24/2022]
|
12
|
Goldberger T, Mandelboim O. The use of microRNA by human viruses: lessons from NK cells and HCMV infection. Semin Immunopathol 2014; 36:659-74. [PMID: 25234555 DOI: 10.1007/s00281-014-0447-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/28/2014] [Indexed: 12/21/2022]
Abstract
Depending on ethnicity and on social conditions, between 40 and 90 % of the population is infected with human cytomegalovirus (HCMV). In immunocompetent patients, the virus may cause an acute disease and then revert to a state of latency, which enables its coexistence with the human host. However, in cases of immunosuppression or in neonatal infections, HCMV can cause serious long-lasting illnesses. HCMV has developed multiple mechanisms in order to escape its elimination by the immune system, specifically by two killer cell types of the adaptive and the innate immune systems; cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, respectively. Another fascinating aspect of HCMV is that like other highly developed herpesviruses, it expresses its own unique set of microRNAs. Here, we initially describe how the activity of NK cells is regulated under normal conditions and during infection. Then, we discuss what is currently known about HCMV microRNA-mediated interactions, with special emphasis on immune modulation and NK cell evasion. We further illustrate the significant modulation of cellular microRNAs during HCMV infection. Although, the full target spectrum of HCMV microRNAs is far from being completely elucidated, it can already be concluded that HCMV uses its "multitasking" microRNAs to globally affect its own life cycle, as well as important cellular and immune-related pathways.
Collapse
Affiliation(s)
- Tal Goldberger
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, IMRIC, Jerusalem, 91120, Israel
| | | |
Collapse
|
13
|
Wilflingseder J, Reindl-Schwaighofer R, Sunzenauer J, Kainz A, Heinzel A, Mayer B, Oberbauer R. MicroRNAs in kidney transplantation. Nephrol Dial Transplant 2014; 30:910-7. [PMID: 25170095 DOI: 10.1093/ndt/gfu280] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/27/2014] [Indexed: 12/13/2022] Open
Abstract
The discovery of novel classes of non-coding RNAs (ncRNAs) has revolutionized medicine. Long thought to be a mere cellular housekeeper, surprising functions have recently been uncovered. MicroRNAs (miRNAs), are a representative of the class of short ncRNAs, play a fundamental role in the control of DNA and protein biosynthesis and activity as well as pathology. Currently, miRNAs are being investigated as diagnostic and prognostic markers and potential therapeutic targets in kidney transplantation for such indolent processes as ischaemia-reperfusion injury, humoral rejection or viral infections. It is realistic to believe that monitoring of renal allograft recipients in the future will include genome-wide miRNA profiling of biological fluids. Based on these individual profiles, an informed decision on therapeutic consequences will be possible. A first success with a specific suppression of miRNAs by antisense oligonucleotides was achieved in experimental studies of reperfusion injury and humoral rejection. Proof of this concept in men comes from studies in such indolent viral infections as Ebola and hepatitis C, where anti-miR therapy led to sustained viral clearance. In this review, we summarize the basis of the recent ncRNA revolution and its implication for kidney transplantation.
Collapse
Affiliation(s)
- Julia Wilflingseder
- Department of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria Department of Nephrology, KH Elisabethinen, Linz, Austria
| | | | | | - Alexander Kainz
- Department of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria Department of Nephrology, KH Elisabethinen, Linz, Austria
| | | | - Bernd Mayer
- emergentec biodevelopment GmbH, Vienna, Austria
| | - Rainer Oberbauer
- Department of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria Department of Nephrology, KH Elisabethinen, Linz, Austria
| |
Collapse
|
14
|
Cox JE, Sullivan CS. Balance and Stealth: The Role of Noncoding RNAs in the Regulation of Virus Gene Expression. Annu Rev Virol 2014; 1:89-109. [PMID: 26958716 DOI: 10.1146/annurev-virology-031413-085439] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the past two decades, our knowledge of gene regulation has been greatly expanded by the discovery of microRNAs (miRNAs). miRNAs are small (19-24 nt) noncoding RNAs (ncRNAs) found in metazoans, plants, and some viruses. They have been shown to regulate many cellular processes, including differentiation, maintenance of homeostasis, apoptosis, and the immune response. At present, there are over 300 known viral miRNAs encoded by diverse virus families. One well-characterized function of some viral miRNAs is the regulation of viral transcripts. Host miRNAs can also regulate viral gene expression. We propose that viruses take advantage of both host and viral ncRNA regulation to balance replication and infectious state (for example, latent versus lytic infection). As miRNA regulation can be reversed upon certain cellular stresses, we hypothesize that ncRNAs can serve viruses as barometers for cellular stress.
Collapse
Affiliation(s)
- Jennifer E Cox
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712;
| | - Christopher S Sullivan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712;
| |
Collapse
|
15
|
Human metapneumovirus infection induces significant changes in small noncoding RNA expression in airway epithelial cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e163. [PMID: 24845106 PMCID: PMC4040629 DOI: 10.1038/mtna.2014.18] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/12/2014] [Indexed: 12/14/2022]
Abstract
Small noncoding RNAs (sncRNAs), such as microRNAs (miRNA), virus-derived sncRNAs, and more recently identified tRNA-derived RNA fragments, are critical to posttranscriptional control of genes. Upon viral infection, host cells alter their sncRNA expression as a defense mechanism, while viruses can circumvent host defenses and promote their own propagation by affecting host cellular sncRNA expression or by expressing viral sncRNAs. Therefore, characterizing sncRNA profiles in response to viral infection is an important tool for understanding host–virus interaction, and for antiviral strategy development. Human metapneumovirus (hMPV), a recently identified pathogen, is a major cause of lower respiratory tract infections in infants and children. To investigate whether sncRNAs play a role in hMPV infection, we analyzed the changes in sncRNA profiles of airway epithelial cells in response to hMPV infection using ultrahigh-throughput sequencing. Of the cloned sncRNAs, miRNA was dominant in A549 cells, with the percentage of miRNA increasing in a time-dependent manner after the infection. In addition, several hMPV-derived sncRNAs and corresponding ribonucleases for their biogenesis were identified. hMPV M2-2 protein was revealed to be a key viral protein regulating miRNA expression. In summary, this study revealed several novel aspects of hMPV-mediated sncRNA expression, providing a new perspective on hMPV–host interactions.
Collapse
|
16
|
Narayanan A, Iordanskiy S, Das R, Van Duyne R, Santos S, Jaworski E, Guendel I, Sampey G, Dalby E, Iglesias-Ussel M, Popratiloff A, Hakami R, Kehn-Hall K, Young M, Subra C, Gilbert C, Bailey C, Romerio F, Kashanchi F. Exosomes derived from HIV-1-infected cells contain trans-activation response element RNA. J Biol Chem 2013; 288:20014-33. [PMID: 23661700 PMCID: PMC3707700 DOI: 10.1074/jbc.m112.438895] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 05/03/2013] [Indexed: 12/20/2022] Open
Abstract
Exosomes are nano-sized vesicles produced by healthy and virus-infected cells. Exosomes derived from infected cells have been shown to contain viral microRNAs (miRNAs). HIV-1 encodes its own miRNAs that regulate viral and host gene expression. The most abundant HIV-1-derived miRNA, first reported by us and later by others using deep sequencing, is the trans-activation response element (TAR) miRNA. In this study, we demonstrate the presence of TAR RNA in exosomes from cell culture supernatants of HIV-1-infected cells and patient sera. TAR miRNA was not in Ago2 complexes outside the exosomes but enclosed within the exosomes. We detected the host miRNA machinery proteins Dicer and Drosha in exosomes from infected cells. We report that transport of TAR RNA from the nucleus into exosomes is a CRM1 (chromosome region maintenance 1)-dependent active process. Prior exposure of naive cells to exosomes from infected cells increased susceptibility of the recipient cells to HIV-1 infection. Exosomal TAR RNA down-regulated apoptosis by lowering Bim and Cdk9 proteins in recipient cells. We found 10(4)-10(6) copies/ml TAR RNA in exosomes derived from infected culture supernatants and 10(3) copies/ml TAR RNA in the serum exosomes of highly active antiretroviral therapy-treated patients or long term nonprogressors. Taken together, our experiments demonstrated that HIV-1-infected cells produced exosomes that are uniquely characterized by their proteomic and RNA profiles that may contribute to disease pathology in AIDS.
Collapse
Affiliation(s)
- Aarthi Narayanan
- From the National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Sergey Iordanskiy
- From the National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
- the Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington D. C. 20037
| | - Ravi Das
- From the National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Rachel Van Duyne
- From the National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
- the Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington D. C. 20037
| | - Steven Santos
- the Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington D. C. 20037
| | - Elizabeth Jaworski
- From the National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Irene Guendel
- From the National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Gavin Sampey
- From the National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Elizabeth Dalby
- From the National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Maria Iglesias-Ussel
- the Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Anastas Popratiloff
- the Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington D. C. 20037
| | - Ramin Hakami
- From the National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Kylene Kehn-Hall
- From the National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Mary Young
- the Washington Metropolitan Women's Interagency HIV Study, Division of Infectious Diseases, Georgetown University Medical Center, Washington, D. C. 20007, and
| | - Caroline Subra
- the Department of Microbiology, Infectiology, and Immunology, Medicine Faculty, Laval University Center Hospitalier Universitaire de Quebec Research Center, City of Quebec, Quebec G1R2J6, Canada
| | - Caroline Gilbert
- the Department of Microbiology, Infectiology, and Immunology, Medicine Faculty, Laval University Center Hospitalier Universitaire de Quebec Research Center, City of Quebec, Quebec G1R2J6, Canada
| | - Charles Bailey
- From the National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| | - Fabio Romerio
- the Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Fatah Kashanchi
- From the National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia 20110
| |
Collapse
|
17
|
Qi M, Qi Y, Ma Y, He R, Ji Y, Sun Z, Ruan Q. Over-expression of human cytomegalovirus miR-US25-2-3p downregulates eIF4A1 and inhibits HCMV replication. FEBS Lett 2013; 587:2266-71. [PMID: 23747307 DOI: 10.1016/j.febslet.2013.05.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/23/2013] [Accepted: 05/26/2013] [Indexed: 12/25/2022]
Abstract
It has been reported that human cytomegalovirus (HCMV) miR-US25-2 reduces DNA viral replication including HCMV. However, the mechanism remains unknown. In our study, eukaryotic translation initiation factor 4A1 (eIF4A1) was identified to be a direct target of miR-US25-2-3p. Small interfering RNA (siRNA) and miR-US25-2-3p mediated eIF4A1 knockdown experiments revealed that high level of miR-US25-2-3p in MRC-5 cells decreased HCMV and host genomic DNA synthesis, and inhibited cap-dependent translation and host cell proliferation. However, eIF4A1 up-regulation induced by miR-US25-2-3p inhibitor increased HCMV copy number. Therefore, the over-expression of miR-US25-2-3p and consequent lower expression of eIF4A1 may contribute to the inhibition of HCMV replication.
Collapse
Affiliation(s)
- Manlong Qi
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Wang Q, Lee I, Ren J, Ajay SS, Lee YS, Bao X. Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Mol Ther 2012. [PMID: 23183536 DOI: 10.1038/mt.2012.237] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The discovery of small noncoding RNAs (sncRNAs) with regulatory functions is a recent breakthrough in biology. Among sncRNAs, microRNA (miRNA), derived from host or virus, has emerged as elements with high importance in control of viral replication and host responses. However, the expression pattern and functional aspects of other types of sncRNAs, following viral infection, are unexplored. In order to define expression patterns of sncRNAs, as well as to discover novel regulatory sncRNAs in response to viral infection, we applied deep sequencing to cells infected with human respiratory syncytial virus (RSV), the most common cause of bronchiolitis and pneumonia in babies. RSV infection leads to abundant production of transfer RNA (tRNA)-derived RNA Fragments (tRFs) that are ~30 nucleotides (nts) long and correspond to the 5'-half of mature tRNAs. At least one tRF, which is derived from tRNA-Glu-CTC, represses target mRNA in the cytoplasm and promotes RSV replication. This demonstrates that this tRF is not a random by-product of tRNA degradation but a functional molecule. The biogenesis of this tRF is also specific, as it is mediated by the endonuclease angiogenin (ANG), not by other nucleases. In summary, our study presents novel information on the induction of a functional tRF by viral infection.
Collapse
Affiliation(s)
- Qingrong Wang
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | |
Collapse
|
19
|
Tuddenham L, Pfeffer S. Roles and regulation of microRNAs in cytomegalovirus infection. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:613-22. [DOI: 10.1016/j.bbagrm.2011.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 12/21/2022]
|
20
|
High-resolution profiling and analysis of viral and host small RNAs during human cytomegalovirus infection. J Virol 2011; 86:226-35. [PMID: 22013051 DOI: 10.1128/jvi.05903-11] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human cytomegalovirus (HCMV) contributes its own set of microRNAs (miRNAs) during lytic infection of cells, likely fine-tuning conditions important for viral replication. To enhance our understanding of this component of the HCMV-host transcriptome, we have conducted deep-sequencing analysis of small RNAs (smRNA-seq) from infected human fibroblast cells. We found that HCMV-encoded miRNAs accumulate to ∼20% of the total smRNA population at late stages of infection, and our analysis led to improvements in viral miRNA annotations and identification of two novel HCMV miRNAs, miR-US22 and miR-US33as. Both of these miRNAs were capable of functionally repressing synthetic targets in transient transfection experiments. Additionally, through cross-linking and immunoprecipitation (CLIP) of Argonaute (Ago)-bound RNAs from infected cells, followed by high-throughput sequencing, we have obtained direct evidence for incorporation of all HCMV miRNAs into the endogenous host silencing machinery. Surprisingly, three HCMV miRNA precursors exhibited differential incorporation of their mature miRNA arms between Ago2 and Ago1 complexes. Host miRNA abundances were also affected by HCMV infection, with significant upregulation observed for an miRNA cluster containing miR-96, miR-182, and miR-183. In addition to miRNAs, we also identified novel forms of virus-derived smRNAs, revealing greater complexity within the smRNA population during HCMV infection.
Collapse
|
21
|
Jurak I, Griffiths A, Coen DM. Mammalian alphaherpesvirus miRNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:641-53. [PMID: 21736960 DOI: 10.1016/j.bbagrm.2011.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/17/2011] [Accepted: 06/18/2011] [Indexed: 12/26/2022]
Abstract
Mammalian alphaherpesviruses are major causes of human and veterinary disease. During productive infection, these viruses exhibit complex and robust patterns of gene expression. These viruses also form latent infections in neurons of sensory ganglia in which productive cycle gene expression is highly repressed. Both modes of infection provide advantageous opportunities for regulation by microRNAs. Thus far, published data regarding microRNAs are available for six mammalian alphaherpesviruses. No microRNAs have yet been detected from varicella zoster virus. The five other viruses-herpes simplex viruses-1 and -2, herpes B virus, bovine herpesvirus-1, and pseudorabies virus-representing both genera of mammalian alphaherpesviruses have been shown to express microRNAs. In this article, we discuss these microRNAs in terms of where they are encoded in the viral genome relative to other viral transcripts; whether they are expressed during productive or latent infection; their potential targets; what little is known about their actual targets and functions during viral infection; and what little is known about the interactions of these viruses with the host microRNA machinery. This article is part of a Special Issue entitled: "MicroRNAs in viral gene regulation".
Collapse
Affiliation(s)
- Igor Jurak
- Department of Biological Chemistry, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
22
|
Engel P, Pérez-Carmona N, Albà MM, Robertson K, Ghazal P, Angulo A. Human cytomegalovirus UL7, a homologue of the SLAM-family receptor CD229, impairs cytokine production. Immunol Cell Biol 2011; 89:753-66. [PMID: 21670740 DOI: 10.1038/icb.2011.55] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human cytomegalovirus (HCMV), the β-herpesvirus prototype, has evolved a wide spectrum of mechanisms to counteract host immunity. Among them, HCMV uses cellular captured genes encoding molecules capable of interfering with the original host function or of fulfilling new immunomodulatory tasks. Here, we report on UL7, a novel HCMV heavily glycosylated transmembrane protein, containing an Ig-like domain that exhibits remarkable amino acid similarity to CD229, a cell-surface molecule of the signalling lymphocyte-activation molecule (SLAM) family involved in leukocyte activation. The UL7 Ig-like domain, which is well-preserved in all HCMV strains, structurally resembles the SLAM-family N-terminal Ig-variable domain responsible for the homophilic and heterophilic interactions that trigger signalling. UL7 is transcribed with early-late kinetics during the lytic infectious cycle. Using a mAb generated against the viral protein, we show that it is constitutively shed, through its mucine-like stalk, from the cell-surface. Production of soluble UL7 is enhanced by PMA and reduced by a broad-spectrum metalloproteinase inhibitor. Although UL7 does not hold the ability to interact with CD229 or other SLAM-family members, it shares with them the capacity to mediate adhesion to leukocytes, specifically to monocyte-derived DCs. Furthermore, we demonstrate that UL7 expression attenuates the production of proinflammatory cytokines TNF, IL-8 and IL-6 in DCs and myeloid cell lines. Thus, the ability of UL7 to interfere with cellular proinflammatory responses may contribute to viral persistence. These results enhance our understanding of those HCMV-encoded molecules involved in sustaining the balance between HCMV and the host immune system.
Collapse
Affiliation(s)
- Pablo Engel
- Department of Cell Biology, Immunology, and Neurosciences, Medical School, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Narayanan A, Kehn-Hall K, Bailey C, Kashanchi F. Analysis of the roles of HIV-derived microRNAs. Expert Opin Biol Ther 2011; 11:17-29. [PMID: 21133815 DOI: 10.1517/14712598.2011.540564] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE OF THE FIELD HIV-1 is a retrovirus that has infected millions in recent decades. The level of life cycle complexity and host control exerted by this small virus with only nine proteins is astonishing. An interesting direction that has emerged in recent years is the role of small non-coding RNAs in viral gene expression. AREAS COVERED IN THIS REVIEW We focus on HIV-1 produced microRNAs (miRNAs), namely, TAR, Nef and miR-H1, and their roles in HIV-1 biogenesis. The article provides insights into TAR miRNA-mediated downregulation of viral and host gene expression by recruitment of chromatin remodeling components (HDAC1). WHAT THE READER WILL GAIN We address the influence of TAR miRNA on host cell cycle progression and apoptosis, and the role of Nef miRNA in the regulation of viral and host gene expression. The review also highlights an intriguing connection between miR-H1 and HIV-1-associated neurological pathogenesis, and the influence of the miRNA machinery in the establishment of latency. In the Expert Opinion section, we analyze the issue of host-based therapeutics against HIV-1 and how transcription inhibitors are influenced by viral miRNA production. TAKE HOME MESSAGE HIV-derived miRNAs are of significance not only to understand host-virus interactions, but also for the design of effective therapeutics.
Collapse
Affiliation(s)
- Aarthi Narayanan
- George Mason University, National Center for Biodefense and Infectious Diseases, Manassas, VA 20110, USA
| | | | | | | |
Collapse
|
24
|
Poole E, McGregor Dallas SR, Colston J, Joseph RSV, Sinclair J. Virally induced changes in cellular microRNAs maintain latency of human cytomegalovirus in CD34⁺ progenitors. J Gen Virol 2011; 92:1539-1549. [PMID: 21471310 DOI: 10.1099/vir.0.031377-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
One site of latency of human cytomegalovirus (HCMV; human herpesvirus 5) is known to be CD34(+) haematopoietic progenitor cells, and it is likely that carriage of latent virus has profound effects on cellular gene expression in order to optimize latency and reactivation. As microRNAs (miRNAs) play important roles in regulating stem-cell gene expression, this study asked whether latent carriage of HCMV led to changes in cellular miRNA expression. A comprehensive miRNA screen showed the differential regulation of a number of cellular miRNAs during HCMV latency in CD34(+) progenitor cells. One of these, hsa-miR-92a, was robustly decreased in three independent miRNA screens. Latency-induced change in hsa-miR-92a results in an increase in expression of GATA-2 and subsequent increased expression of cellular IL-10, which aids the maintenance of latent viral genomes in CD34(+) cells, probably resulting from their increased survival.
Collapse
Affiliation(s)
- Emma Poole
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Stuart R McGregor Dallas
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Julia Colston
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Robert Samuel V Joseph
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - John Sinclair
- University of Cambridge, Department of Medicine, Box 157, Level 5 Laboratories Block, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
25
|
Steitz J, Borah S, Cazalla D, Fok V, Lytle R, Mitton-Fry R, Riley K, Samji T. Noncoding RNPs of viral origin. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005165. [PMID: 20719877 DOI: 10.1101/cshperspect.a005165] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Like their host cells, many viruses produce noncoding (nc)RNAs. These show diversity with respect to time of expression during viral infection, length and structure, protein-binding partners and relative abundance compared with their host-cell counterparts. Viruses, with their limited genomic capacity, presumably evolve or acquire ncRNAs only if they selectively enhance the viral life cycle or assist the virus in combating the host's response to infection. Despite much effort, identifying the functions of viral ncRNAs has been extremely challenging. Recent technical advances and enhanced understanding of host-cell ncRNAs promise accelerated insights into the RNA warfare mounted by this fascinating class of RNPs.
Collapse
Affiliation(s)
- Joan Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536-0812, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jung GS, Kim YY, Kim JI, Ji GY, Jeon JS, Yoon HW, Lee GC, Ahn JH, Lee KM, Lee CH. Full genome sequencing and analysis of human cytomegalovirus strain JHC isolated from a Korean patient. Virus Res 2011; 156:113-20. [PMID: 21255625 DOI: 10.1016/j.virusres.2011.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 12/15/2022]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen and contains double stranded DNA genome with approximately 230 kbp. Because of its huge size, comparative genomic studies of HCMV genome have been limited. In this study it was attempted to obtain and analyze the full genome sequence from clinical isolate from Korea. The strain JHC was isolated from Korean patient undergoing bone marrow transplantation who exhibited resistance to ganciclovir treatment (Lee et al., 2005). The virus was plaque-purified, and the full genome sequence was determined by pyrosequencing technique. The JHC genome was found to contain 235,476 bp and 165 open reading frames (ORFs). Comparison with the full genome nucleotide sequences of 11 other HCMV strains suggest that JHC is not closely related with any other strains at genome level. As expected, JHC lacked IRL sequences found in lab-adapted AD169-varUK strain and this region was replaced by ORFs UL133-UL150 as in other clinical isolates. Two ORFs (UL1 and UL119) of the strain JHC were found to be truncated due to early stop codons, and RL6 contains an unusual start codon TTG. The strain JHC contains all the genetic information for micro RNAs known to be present in HCMV.
Collapse
Affiliation(s)
- Gyoo Seung Jung
- Department of Microbiology, College of Natural Sciences, Chungbuk National University, 410 Seongbong-Ro, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dhuruvasan K, Sivasubramanian G, Pellett PE. Roles of host and viral microRNAs in human cytomegalovirus biology. Virus Res 2010; 157:180-92. [PMID: 20969901 DOI: 10.1016/j.virusres.2010.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 02/02/2023]
Abstract
Human cytomegalovirus (HCMV) has a relatively large and complex genome, a protracted lytic replication cycle, and employs a strategy of replicational latency as part of its lifelong persistence in the infected host. An important form of gene regulation in plants and animals revolves around a type of small RNA known as microRNA (miRNA). miRNAs can serve as major regulators of key developmental pathways, as well as provide subtle forms of regulatory control. The human genome encodes over 900 miRNAs, and miRNAs are also encoded by some viruses, including HCMV, which encodes at least 14 miRNAs. Some of the HCMV miRNAs are known to target both viral and cellular genes, including important immunomodulators. In addition to expressing their own miRNAs, infections with some viruses, including HCMV, can result in changes in the expression of cellular miRNAs that benefit virus replication. In this review, we summarize the connections between miRNAs and HCMV biology. We describe the nature of miRNA genes, miRNA biogenesis and modes of action, methods for studying miRNAs, HCMV-encoded miRNAs, effects of HCMV infection on cellular miRNA expression, roles of miRNAs in HCMV biology, and possible HCMV-related diagnostic and therapeutic applications of miRNAs.
Collapse
Affiliation(s)
- Kavitha Dhuruvasan
- Department of Immunology and Microbiology, Wayne State University School of Medicine, 540 East Canfield Avenue, 6225 Scott Hall, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
28
|
Abstract
Viruses are associated with 15-20% of human cancers worldwide. In the last century, many studies were directed towards elucidating the molecular mechanisms and genetic alterations by which viruses cause cancer. The importance of epigenetics in the regulation of gene expression has prompted the investigation of virus and host interactions not only at the genetic level but also at the epigenetic level. In this study, we summarize the published epigenetic information relating to the genomes of viruses directly or indirectly associated with the establishment of tumorigenic processes. We also review aspects such as viral replication and latency associated with epigenetic changes and summarize what is known about epigenetic alterations in host genomes and the implications of these for the tumoral process. The advances made in characterizing epigenetic features in cancer-causing viruses have improved our understanding of their functional mechanisms. Knowledge of the epigenetic changes that occur in the genome of these viruses should provide us with markers for following cancer progression, as well as new tools for cancer therapy.
Collapse
Affiliation(s)
- A F Fernandez
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08907 Barcelona, Catalonia, Spain
| | | |
Collapse
|