1
|
Zhu J, Yu J, Qin H, Chen X, Wu C, Hong X, Zhang Y, Zhang Z. Exploring the key genomic variation in monkeypox virus during the 2022 outbreak. BMC Genom Data 2023; 24:67. [PMID: 37968621 PMCID: PMC10652487 DOI: 10.1186/s12863-023-01171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND In 2022, a global outbreak of monkeypox occurred with a significant shift in its epidemiological characteristics. The monkeypox virus (MPXV) belongs to the B.1 lineage, and its genomic variations that were linked to the outbreak were investigated in this study. Previous studies have suggested that viral genomic variation plays a crucial role in the pathogenicity and transmissibility of viruses. Therefore, understanding the genomic variation of MPXV is crucial for controlling future outbreaks. METHODS This study employed bioinformatics and phylogenetic approaches to evaluate the key genomic variation in the B.1 lineage of MPXV. A total of 979 MPXV strains were screened, and 212 representative strains were analyzed to identify specific substitutions in the viral genome. Reference sequences were constructed for each of the 10 lineages based on the most common nucleotide at each site. A total of 49 substitutions were identified, with 23 non-synonymous substitutions. Class I variants, which had significant effects on protein conformation likely to affect viral characteristics, were classified among the non-synonymous substitutions. RESULTS The phylogenetic analysis revealed 10 relatively monophyletic branches. The study identified 49 substitutions specific to the B.1 lineage, with 23 non-synonymous substitutions that were classified into Class I, II, and III variants. The Class I variants were likely responsible for the observed changes in the characteristics of circulating MPXV in 2022. These key mutations, particularly Class I variants, played a crucial role in the pathogenicity and transmissibility of MPXV. CONCLUSION This study provides an understanding of the genomic variation of MPXV in the B.1 lineage linked to the recent outbreak of monkeypox. The identification of key mutations, particularly Class I variants, sheds light on the molecular mechanisms underlying the observed changes in the characteristics of circulating MPXV. Further studies can focus on functional domains affected by these mutations, enabling the development of effective control strategies against future monkeypox outbreaks.
Collapse
Affiliation(s)
- Jie Zhu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China
| | - Jian Yu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China
| | - Hao Qin
- Department of Infectious Diseases, The Third People's Hospital of Hefei, Hefei, China
| | - Xinlei Chen
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China
| | - Chuanchang Wu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China
| | - Xiaodan Hong
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China
| | - Yafei Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China.
| |
Collapse
|
2
|
Abe H, Ushijima Y, Bikangui R, Ondo GN, Pemba CM, Zadeh VR, Mpingabo PI, Ueda H, Agnandji ST, Lell B, Yasuda J. Genetic Diversity of Hepatitis B and C Viruses Revealed by Continuous Surveillance from 2015 to 2021 in Gabon, Central Africa. Microorganisms 2023; 11:2046. [PMID: 37630606 PMCID: PMC10458803 DOI: 10.3390/microorganisms11082046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Viral hepatitis remains one of the largest public health concerns worldwide. Especially in Central Africa, information on hepatitis virus infections has been limited, although the prevalence in this region has been reported to be higher than the global average. To reveal the current status of hepatitis B and C virus (HBV and HCV) infections and the genetic diversity of the viruses, we conducted longitudinal surveillance in Gabon. We detected 22 HBV and 9 HCV infections in 2047 patients with febrile illness. Genetic analyses of HBV identified subgenotype A1 for the first time in Gabon and an insertion generating a frameshift to create an X-preC/C fusion protein. We also revealed that most of the detected HCVs belonged to the "Gabon-specific" HCV subtype 4e (HCV-4e), and the entire nucleotide sequence of the HCV-4e polyprotein was determined to establish the first reference sequence. The HCV-4e strains possessed resistance-associated substitutions similar to those of other HCV-4 strains, indicating that the use of direct-acting antiviral therapy may be complex. These results provide a better understanding of the current situation of hepatitis B and C virus infections in Central Africa and will help public health organizations develop effective countermeasures to eliminate chronic viral hepatitis in this region.
Collapse
Affiliation(s)
- Haruka Abe
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan; (H.A.); (C.M.P.); (V.R.Z.); (P.I.M.); (H.U.)
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan;
- Vietnam Research Station, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Yuri Ushijima
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan;
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Rodrigue Bikangui
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné BP. 242, Gabon; (R.B.); (G.N.O.); (S.T.A.); (B.L.)
| | - Georgelin Nguema Ondo
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné BP. 242, Gabon; (R.B.); (G.N.O.); (S.T.A.); (B.L.)
| | - Christelle M. Pemba
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan; (H.A.); (C.M.P.); (V.R.Z.); (P.I.M.); (H.U.)
| | - Vahid R. Zadeh
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan; (H.A.); (C.M.P.); (V.R.Z.); (P.I.M.); (H.U.)
| | - Patrick I. Mpingabo
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan; (H.A.); (C.M.P.); (V.R.Z.); (P.I.M.); (H.U.)
| | - Hayato Ueda
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan; (H.A.); (C.M.P.); (V.R.Z.); (P.I.M.); (H.U.)
| | - Selidji T. Agnandji
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné BP. 242, Gabon; (R.B.); (G.N.O.); (S.T.A.); (B.L.)
- Institute for Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany
| | - Bertrand Lell
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné BP. 242, Gabon; (R.B.); (G.N.O.); (S.T.A.); (B.L.)
- Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki 852-8523, Japan; (H.A.); (C.M.P.); (V.R.Z.); (P.I.M.); (H.U.)
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan;
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
3
|
Yu J, Sun S, Tang Q, Wang C, Yu L, Ren L, Li J, Zhang Z. Establishing reference sequences for each clade of SARS-CoV-2 to provide a basis for virus variation and function research. J Med Virol 2022; 94:1494-1501. [PMID: 34821382 PMCID: PMC9015442 DOI: 10.1002/jmv.27476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/10/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a severe respiratory disease caused by the highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As the COVID-19 pandemic continues, mutations of SARS-CoV-2 accumulate. These mutations may not only make the virus spread faster, but also render current vaccines less effective. In this study, we established a reference sequence for each clade defined using the GISAID typing method. Homology analysis of each reference sequence confirmed a low mutation rate for SARS-CoV-2, with the latest clade GRY having the lowest homology with other clades (99.89%-99.93%), and the homology between other clade being greater than or equal to 99.95%. Variation analyses showed that the earliest genotypes S, V, and G had 2, 3, and 3 characterizing mutations in the genome respectively. The G-derived clades GR, GH, and GV had 5, 6, and 13 characterizing mutations in the genome respectively. A total of 28 characterizing mutations existed in the genome of the latest clades GRY. In addition, we found differences in the geographic distribution of different clades. G, GH, and GR are popular in the USA, while GV and GRY are common in the UK. Our work may facilitate the custom design of antiviral strategies depending on the molecular characteristics of SARS-CoV-2.
Collapse
Affiliation(s)
- Jian Yu
- Department of Infectious DiseasesThe Second Hospital of Anhui Medical UniversityHefeiChina
- Institute of Clinical VirologyThe Second Hospital of Anhui Medical UniversityHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, The School of PharmacyAnhui Medical UniversityHefeiChina
| | - Shanshan Sun
- Department of Infectious DiseasesThe Second Hospital of Anhui Medical UniversityHefeiChina
- Institute of Clinical VirologyThe Second Hospital of Anhui Medical UniversityHefeiChina
| | - Qianqian Tang
- Department of Infectious DiseasesThe Second Hospital of Anhui Medical UniversityHefeiChina
- Institute of Clinical VirologyThe Second Hospital of Anhui Medical UniversityHefeiChina
| | - Chengzhuo Wang
- Department of Infectious DiseasesThe Second Hospital of Anhui Medical UniversityHefeiChina
- Institute of Clinical VirologyThe Second Hospital of Anhui Medical UniversityHefeiChina
| | - Liangchen Yu
- The Second Clinical Medical SchoolAnhui Medical UniversityHefeiChina
| | - Lulu Ren
- The Second Clinical Medical SchoolAnhui Medical UniversityHefeiChina
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, The School of PharmacyAnhui Medical UniversityHefeiChina
| | - Zhenhua Zhang
- Department of Infectious DiseasesThe Second Hospital of Anhui Medical UniversityHefeiChina
- Institute of Clinical VirologyThe Second Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
4
|
McNaughton AL, Revill PA, Littlejohn M, Matthews PC, Ansari MA. Analysis of genomic-length HBV sequences to determine genotype and subgenotype reference sequences. J Gen Virol 2020; 101:271-283. [PMID: 32134374 PMCID: PMC7416611 DOI: 10.1099/jgv.0.001387] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) is a diverse, partially double-stranded DNA virus, with 9 genotypes (A-I), and a putative 10th genotype (J), characterized thus far. Given the broadening interest in HBV sequencing, there is an increasing requirement for a consistent, unified approach to HBV genotype and subgenotype classification. We set out to generate an updated resource of reference sequences using the diversity of all genomic-length HBV sequences available in public databases. We collated and aligned genomic-length HBV sequences from public databases and used maximum-likelihood phylogenetic analysis to identify genotype clusters. Within each genotype, we examined the phylogenetic support for currently defined subgenotypes, as well as identifying well-supported clades and deriving reference sequences for them. Based on the phylogenies generated, we present a comprehensive set of HBV reference sequences at the genotype and subgenotype level. All of the generated data, including the alignments, phylogenies and chosen reference sequences, are available online (https://doi.org/10.6084/m9.figshare.8851946) as a simple open-access resource.
Collapse
Affiliation(s)
- Anna L. McNaughton
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK
| | - Peter A. Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Philippa C. Matthews
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
- Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - M. Azim Ansari
- Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
5
|
Usman Z, Mijočević H, Karimzadeh H, Däumer M, Al-Mathab M, Bazinet M, Frishman D, Vaillant A, Roggendorf M. Kinetics of hepatitis B surface antigen quasispecies during REP 2139-Ca therapy in HBeAg-positive chronic HBV infection. J Viral Hepat 2019; 26:1454-1464. [PMID: 31323705 DOI: 10.1111/jvh.13180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/22/2019] [Indexed: 12/18/2022]
Abstract
Chronic HBV infection results in various clinical manifestations due to different levels of immune response. In recent years, hepatitis B treatment has improved by long-term administration of nucleos(t)ide analogues (NUCs) and peg-interferon. Nucleic acid polymers (NAPs; REP 2139-Ca and REP 2139-Mg) are new antiviral drugs that block the assembly of subviral particles, thus preventing the release of HBsAg and allowing its clearance and restoration of functional control of infection when combined with various immunotherapies. In the REP 102 study (NCT02646189), 9 of 12 patients showed substantial reduction of HBsAg and seroconversion to anti-HBs in response to REP 2139-Ca, whereas 3 of 12 patients did not show responses (>1 log reduction of HBsAg and HBV DNA from baseline). We characterized the dynamic changes of HBV quasispecies (QS) within the major hydrophilic region (MHR) of the 'pre-S/S' open reading frame including the 'a' determinant in responders and nonresponders of the REP 102 study and four untreated matched controls. HBV QS complexity at baseline varied slightly between responders and nonresponders (P = .28). However, these responders showed significant decline in viral complexity (P = .001) as REP 2139-Ca therapy progressed but no significant change in complexity was observed among the nonresponders (P = .99). The MHR mutations were more frequently observed in responders than in nonresponders and matched controls. No mutations were observed in 'a' determinant of major QS population which may interfere with the detection of HBsAg by diagnostic assays. No specific mutations were found within the MHR which could explain patients' poor HBsAg response during REP 2139-Ca therapy.
Collapse
Affiliation(s)
- Zainab Usman
- Department of Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Hrvoje Mijočević
- Institute of Virology, Technische Universität München, Munich, Germany
| | - Hadi Karimzadeh
- Institute of Virology, Technische Universität München, Munich, Germany.,Department of Medicine II, University Hospital Munich-Grosshadern, Munich, Germany
| | - Martin Däumer
- Institute of Immunology and Genetics, Kaiserslautern, Germany
| | - Mamun Al-Mathab
- Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | | | - Dmitrij Frishman
- Department of Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, Freising, Germany.,Laboratory of Bioinformatics, RASA research center, St Petersburg State Polytechnical University, Saint Petersburg, Russia
| | | | | |
Collapse
|
6
|
Abe H, Ushijima Y, Bikangui R, Loembe MM, Agnandji ST, de Vries SG, Grobusch MP, Lell B, Yasuda J. Ongoing evolution of hepatitis B virus during viremia in patients with febrile in Central Africa. J Med Virol 2019; 92:251-256. [PMID: 31538666 DOI: 10.1002/jmv.25598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/16/2019] [Indexed: 11/08/2022]
Abstract
Hepatitis B virus (HBV) infection remains to be a major public health issue worldwide, although there is currently a safe vaccine and effective antiviral treatments. In surveillance of infectious diseases in Gabon, HBV viremia was detected in patients with febrile. Whole-genome sequencing was conducted to characterize the HBV strains currently circulating in Gabon and to investigate HBV genome diversity during viremia. Phylogenetic analysis revealed the existence of former subgenotype A5, which exhibits a particular pattern of distribution from several West and Central African countries to Haiti. Furthermore, sequencing analysis identified two similar HBV strains mixed in one sample, and a very rare 1-base pair insertion in the viral precore region. This insertion caused a frameshift mutation, indicating the production of an aberrant fusion protein of the HBV x and e antigens. Our data showed that the detected HBV strain was possibly in an "evolving" state during viremia, a phase of active replication.
Collapse
Affiliation(s)
- Haruka Abe
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Yuri Ushijima
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Rodrigue Bikangui
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Marguerite M Loembe
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany.,Université des Sciences de la Santé de Libreville, Libreville, Gabon
| | - Selidji T Agnandji
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Sophia G de Vries
- Division of Internal Medicine, Department of Infectious Diseases, Center of Tropical Medicine and Travel Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Martin P Grobusch
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany.,Division of Internal Medicine, Department of Infectious Diseases, Center of Tropical Medicine and Travel Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Bertrand Lell
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany.,Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan.,Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
7
|
McNaughton AL, D'Arienzo V, Ansari MA, Lumley SF, Littlejohn M, Revill P, McKeating JA, Matthews PC. Insights From Deep Sequencing of the HBV Genome-Unique, Tiny, and Misunderstood. Gastroenterology 2019; 156:384-399. [PMID: 30268787 PMCID: PMC6347571 DOI: 10.1053/j.gastro.2018.07.058] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/27/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) is a unique, tiny, partially double-stranded, reverse-transcribing DNA virus with proteins encoded by multiple overlapping reading frames. The substitution rate is surprisingly high for a DNA virus, but lower than that of other reverse transcribing organisms. More than 260 million people worldwide have chronic HBV infection, which causes 0.8 million deaths a year. Because of the high burden of disease, international health agencies have set the goal of eliminating HBV infection by 2030. Nonetheless, the intriguing HBV genome has not been well characterized. We summarize data on the HBV genome structure and replication cycle, explain and quantify diversity within and among infected individuals, and discuss advances that can be offered by application of next-generation sequencing technology. In-depth HBV genome analyses could increase our understanding of disease pathogenesis and allow us to better predict patient outcomes, optimize treatment, and develop new therapeutics.
Collapse
Affiliation(s)
- Anna L McNaughton
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - Valentina D'Arienzo
- Nuffield Department of Medicine, NDM Research Building, Oxford, United Kingdom
| | - M Azim Ansari
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - Sheila F Lumley
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom; Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute of Infection and Immunity, Melbourne, Australia; Department of Microbiology and Immunology, University of Melbourne. Melbourne, Australia
| | - Peter Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute of Infection and Immunity, Melbourne, Australia; Department of Microbiology and Immunology, University of Melbourne. Melbourne, Australia
| | - Jane A McKeating
- Nuffield Department of Medicine, NDM Research Building, Oxford, United Kingdom
| | - Philippa C Matthews
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom; Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom.
| |
Collapse
|
8
|
Chen L, Shi Y, Yang W, Zhang Y, Xie Q, Li Y, Li X, Li J, Zhang Z. Differences in Cpg Island Distribution Between Subgenotypes of the Hepatitis B Virus Genotype. Med Sci Monit 2018; 24:6781-6794. [PMID: 30253420 PMCID: PMC6180904 DOI: 10.12659/msm.910049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/01/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) genotypes show genomic variations, resulting in different CpG islands in each HBV genotypes or subgenotype. This study aimed to establish reference sequences for each HBV subgenotype of A-H genotypes and to analyze the characteristics of the CpG islands. MATERIAL AND METHODS There were 3,037 retrieved whole-genome sequences of HBV genotypes A-H from GenBank, 28 subgenotype reference sequences were established for these genotypes. CpG islands of the subgenotype reference sequences were analyzed, and 939 strains were selected from the 3,037 genomic sequences. Differences in CpG islands between subgenotypes were compared using the chi-squared and non-parametric tests. RESULTS Of the 28 subgenotype reference sequences established, 11 subgenotype reference sequences lacked CpG island I, and only F4 contained a new CpG island. Of all selected strains, 48.35% (454/939) contained three traditional CpG islands I, II, and III (no new islands); 45.05% (423/939) lacked CpG island I; 38.98% (366/939) contained only CpG islands II and III; and 12.46% (117/939) contained new islands (genotypes A1, D7) (genotype G had no new islands). Strains with or without CpG island I, or new islands between subgenotypes of each HBV genotype were significantly different (P<0.05). Strains containing CpG islands I, II, and III and new islands among different subtypes in HBV genotypes A, C, and F were significantly different (P<0.05). CONCLUSIONS Different HBV genotypes and subgenotypes had characteristic CpG island patterns. Strains with or without CpG island I, or new islands among subgenotypes of each HBV genotype, were significantly different.
Collapse
Affiliation(s)
- Lin Chen
- Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yi Shi
- Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Wanrong Yang
- Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yafei Zhang
- Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Qinxiu Xie
- Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yunsong Li
- Department of General Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Xu Li
- Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Zhenhua Zhang
- Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, P.R. China
| |
Collapse
|
9
|
Wang T, Dai Y, Zhang M, Cui D, Xu X, Sun C, Cheng J. Sequence analysis of the Pre-S gene in chronic asymptomatic HBV carriers with low-level HBsAg. Int J Mol Med 2018; 42:2689-2699. [PMID: 30132518 PMCID: PMC6192773 DOI: 10.3892/ijmm.2018.3831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022] Open
Abstract
In a hepatitis B virus (HBV)-infected population, persistently low expression levels of serum HBV serum antigen (HBsAg) are present, particularly in chronic asymptomatic HBV carriers (ASCs). The present study sequenced the HBV Pre-S gene, and aimed to elucidate its features in ASCs with low HBsAg expression compared with in the established HBV Pre-S reference gene sequences from ASCs with high HBsAg expression. A total of 1,308 ASCs were grouped according to HBsAg serum levels (cut-off value, 10 IU/ml), and clinical characteristics were analyzed in detail. The HBV Pre-S gene was sequenced in 276 ASCs with low-level HBsAg; in addition, 100 of the remaining 1,032 ASCs with high-level HBsAg were randomly selected for HBV Pre-S gene sequencing on the basis of age matching with the low-level HBsAg group. Comparative analysis of the gene sequences from these groups was subsequently conducted. The major clinical features of the population with low-level HBsAg were as follows: Most were ASCs with chronic HBV infection; 97.1% were HBsAg/anti-HBe/anti-HBc-positive; 82.54% carried the B genotype; and 84.13% displayed the adw serotype. The results indicated that there were novel and meaningful mutations, including co-mutations, at numerous loci and sites in the Pre-S gene, as well as deletion mutations in the Pre-S2 gene. These mutations in the Pre-S1 and Pre-S2 gene frag ments accounted for 65.38% (68/104) of the 104 B genotype cases in the low-level HBsAg group and 90.91% (20/22) of the 22 C genotype cases in the low-level HBsAg group, respectively. In conclusion, Pre-S gene mutations may be associated with HBV replication defects, which may be the cause of the observed low expression levels of HBsAg.
Collapse
Affiliation(s)
- Tong Wang
- Faculty of Graduate Studies, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China
| | - Yuzhu Dai
- Department of Clinical Laboratory, The 117th Hospital of PLA, Hangzhou, Zhejiang 310013, P.R. China
| | - Meng Zhang
- Department of Clinical Laboratory, The 117th Hospital of PLA, Hangzhou, Zhejiang 310013, P.R. China
| | - Dawei Cui
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xujian Xu
- Department of Biotechnology, The University of Tokyo, Tokyo 1138656, Japan
| | - Changgui Sun
- Department of Clinical Laboratory, The 117th Hospital of PLA, Hangzhou, Zhejiang 310013, P.R. China
| | - Jun Cheng
- Department of Clinical Laboratory, The 117th Hospital of PLA, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
10
|
Eschlimann M, Malvé B, Velay A, Fenaux H, Berger S, Frippiat JP, Zoulim F, Bensenane M, Bronowicki JP, Goehringer F, May T, Jeulin H, Schvoerer E. The variability of hepatitis B envelope is associated with HBs antigen persistence in either chronic or acute HBV genotype A infection. J Clin Virol 2017; 94:115-122. [PMID: 28822954 DOI: 10.1016/j.jcv.2017.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND More than 240 million people are chronically infected by hepatitis B virus (HBV) worldwide. Envelope proteins play a crucial role in viral cellular entry and immune recognition. The loss of HBs antigen (HBsAg) correlated with a good clinical prognosis is rarely achieved with or without treatment (3-16%). OBJECTIVES HBV envelope variability was investigated according to HBsAg persistence. STUDY DESIGN The cohort consisted of 15 HBV genotype A-infected patients divided into "resolvers", with HBsAg clearance, and "non-resolvers", with HBsAg persistence and in subgroups: acute (n=5, AHBV) or chronic infection (n=4, CHBV) and HBV/HIV coinfection (n=6, CHBV/HIV). HBV S and preS sequences were studied by direct and ultra-deep sequencing. Amino acid sequences were analyzed with bioinformatics for predicted antigenicity. RESULTS In S gene, the complexity was lower in AHBV than in chronic-infected patients (p=0.046). Major mutations, detected using direct sequencing, were more frequent in AHBV developing chronicity (p=0.01) than in AHBV resolvers. In the Major Hydrophilic Region, more frequent mutations were observed in non-resolvers versus resolvers (p=0.047) and non-resolvers tended to have more haplotypes with a reduced predicted antigenicity (p=0.07). Most of the mutations in preS/S region were found rather in epitopic than in non-epitopic areas (p=0.025). Interestingly, the mutation sY161F found in 3/8 non-resolvers was associated with a decrease in predicted antigenicity (28%; AnTheProt). CONCLUSIONS HBsAg persistence was correlated with mutations and deletions in areas playing a key role in immune recognition. These data suggest that variability in HBV envelope could favor immune escape in various clinical settings of HBV genotype A-infected patients.
Collapse
Affiliation(s)
- Marine Eschlimann
- Université de Lorraine, EA 7300 Stress, Immunité, Pathogènes, Vandoeuvre-les-Nancy, F-54505, France.
| | - Brice Malvé
- Centre Hospitalier Universitaire de Nancy, Laboratoire de Virologie, Vandoeuvre-les-Nancy, F-54511, France.
| | - Aurélie Velay
- Université de Lorraine, EA 7300 Stress, Immunité, Pathogènes, Vandoeuvre-les-Nancy, F-54505, France; Centre Hospitalier Universitaire de Nancy, Laboratoire de Virologie, Vandoeuvre-les-Nancy, F-54511, France.
| | - Honorine Fenaux
- Centre Hospitalier Universitaire de Nancy, Laboratoire de Virologie, Vandoeuvre-les-Nancy, F-54511, France.
| | - Sibel Berger
- Centre Hospitalier Universitaire de Nancy, Laboratoire de Virologie, Vandoeuvre-les-Nancy, F-54511, France.
| | - Jean-Pol Frippiat
- Université de Lorraine, EA 7300 Stress, Immunité, Pathogènes, Vandoeuvre-les-Nancy, F-54505, France.
| | - Fabien Zoulim
- Université de Lyon, Unité Inserm UI1052, Lyon, F-69424, France.
| | - Mouni Bensenane
- Centre Hospitalier Universitaire de Nancy, Service d'Hépato-gastroentérologie, Vandoeuvre-les-Nancy, F-54511, France.
| | - Jean-Pierre Bronowicki
- Centre Hospitalier Universitaire de Nancy, Service d'Hépato-gastroentérologie, Vandoeuvre-les-Nancy, F-54511, France.
| | - François Goehringer
- Centre Hospitalier Universitaire de Nancy, Service des Maladies Infectieuses et Tropicales, Vandoeuvre-les-Nancy, F-54511, France.
| | - Thierry May
- Centre Hospitalier Universitaire de Nancy, Service des Maladies Infectieuses et Tropicales, Vandoeuvre-les-Nancy, F-54511, France.
| | - Hélène Jeulin
- Université de Lorraine, EA 7300 Stress, Immunité, Pathogènes, Vandoeuvre-les-Nancy, F-54505, France; Centre Hospitalier Universitaire de Nancy, Laboratoire de Virologie, Vandoeuvre-les-Nancy, F-54511, France.
| | - Evelyne Schvoerer
- Université de Lorraine, EA 7300 Stress, Immunité, Pathogènes, Vandoeuvre-les-Nancy, F-54505, France; Centre Hospitalier Universitaire de Nancy, Laboratoire de Virologie, Vandoeuvre-les-Nancy, F-54511, France.
| |
Collapse
|
11
|
Bell TG, Yousif M, Kramvis A. Bioinformatic curation and alignment of genotyped hepatitis B virus (HBV) sequence data from the GenBank public database. SPRINGERPLUS 2016; 5:1896. [PMID: 27843753 PMCID: PMC5084120 DOI: 10.1186/s40064-016-3312-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/13/2016] [Indexed: 12/18/2022]
Abstract
Background Hepatitis B virus (HBV) DNA sequence data from thousands of samples are present in the public sequence databases. No publicly available, up-to-date, multiple sequence alignments, containing full-length and subgenomic fragments per genotype, are available. Such alignments are useful in many analysis applications, including data-mining and phylogenetic analyses. Results By issuing a query, all HBV sequence data from the GenBank public database was downloaded (67,893 sequences). Full-length and subgenomic sequences, which were genotyped by the submitters (30,852 sequences), were placed into a multiple sequence alignment, for each genotype (genotype A: 5868 sequences, B: 4630, C: 7820, D: 8300, E: 2043, F: 985, G: 189, H: 108, I: 23), according to the results of offline BLAST searches against a custom reference library of full-length sequences. Further curation was performed to improve the alignment. Conclusions The algorithm described in this paper generates, for each of the nine HBV genotypes, multiple sequence alignments, which contain full-length and subgenomic fragments. The alignments can be updated as new sequences become available in the online public sequence databases. The alignments are available at http://hvdr.bioinf.wits.ac.za/alignments.
Collapse
Affiliation(s)
- Trevor G Bell
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, University of the Witwatersrand, 7 York Road, Parktown, South Africa
| | - Mukhlid Yousif
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, University of the Witwatersrand, 7 York Road, Parktown, South Africa
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, University of the Witwatersrand, 7 York Road, Parktown, South Africa
| |
Collapse
|