1
|
Egberink H, Hartmann K, Mueller R, Pennisi MG, Belák S, Tasker S, Möstl K, Addie DD, Boucraut-Baralon C, Frymus T, Hofmann-Lehmann R, Marsilio F, Thiry E, Truyen U, Hosie MJ. Feline Papillomatosis. Viruses 2025; 17:59. [PMID: 39861848 PMCID: PMC11768494 DOI: 10.3390/v17010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Different types of feline papillomaviruses (PVs) are associated with a variety of skin lesions and neoplasia, such as papillomas and cell carcinomas, but the virus can also be found in healthy skin. In this review, the European Advisory Board on Cat Diseases (ABCD), a scientifically independent board of veterinary experts on feline infectious diseases from 11 European Countries, discusses the current knowledge of feline PV infections. Cats most likely become infected through lesions or abrasions of the skin. Most PV infections remain asymptomatic. Besides cat-specific PVs, DNA sequences most closely related to human and bovine PVs have been detected in feline skin lesions. Diagnosis is supported by the histological detection of PV-induced cell changes and intralesional detection of viral antigen (immunostaining) or viral DNA (in situ hybridization). Immunostaining of p16CDKN2A protein (p16) can be performed as a proxy marker for PV-induced neoplasms. There is no specific treatment for PV-induced skin lesions. Spontaneous regression commonly occurs. In the case of invasive squamous cell carcinoma (ISCC), complete excision should be considered, if possible.
Collapse
Affiliation(s)
- Herman Egberink
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, 3584 CL Utrecht, The Netherlands
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.H.); (R.M.)
| | - Ralf Mueller
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany; (K.H.); (R.M.)
| | | | - Sándor Belák
- Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agri-Cultural Sciences (SLU), P.O. Box 7036, 750 07 Uppsala, Sweden;
| | - Séverine Tasker
- Bristol Veterinary School, University of Bristol, Bristol BS40 5DU, UK;
- Mars Veterinary Health, Solihull B90 4BN, UK
| | - Karin Möstl
- Retired from Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Diane D. Addie
- Independent Researcher, 64000 Pyrénées Aquitaine, France;
| | | | - Tadeusz Frymus
- Department of Small Animal Diseases with Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland;
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy;
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B-4000 Liège, Belgium;
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, 04103 Leipzig, Germany;
| | - Margaret J. Hosie
- MRC—University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK;
| |
Collapse
|
2
|
Munday JS, Knight CG. Papillomaviruses and Papillomaviral Disease in Dogs and Cats: A Comprehensive Review. Pathogens 2024; 13:1057. [PMID: 39770317 PMCID: PMC11728566 DOI: 10.3390/pathogens13121057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/14/2025] Open
Abstract
Papillomaviruses (PVs) frequently infect humans as well as non-human species. While most PV infections are asymptomatic, PVs can also cause hyperplastic papillomas (warts) as well as pre-neoplastic and neoplastic lesions. In this review, the life cycle of PVs is discussed, along with the mechanisms by which PVs cause hyperplastic and neoplastic diseases. The humoral and cell-mediated immune responses to PVs are reviewed, giving context to the later discussion on the use of vaccines to reduce canine and feline PV-associated disease. Both dogs and cats are infected by numerous different PV types classified into multiple different PV genera. The taxonomic classification of PVs is reviewed, along with the significance of this classification. The PV-associated diseases of dogs and cats are then described. These descriptions include the clinical presentation of the disease, the causative PV types, the histological features that allow diagnosis, and, where appropriate, possible treatment options. The review is comprehensive and contains the latest information about PVs and the diseases they cause in dogs and cats.
Collapse
Affiliation(s)
- John S. Munday
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand
| | - Cameron G. Knight
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T3R 1J3, Canada;
| |
Collapse
|
3
|
Awazu A, Takemoto D, Watanabe K, Sakamoto N. Possibilities of skin coat color-dependent risks and risk factors of squamous cell carcinoma and deafness of domestic cats inferred via RNA-seq data. Genes Cells 2023; 28:893-905. [PMID: 37864512 DOI: 10.1111/gtc.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
The transcriptome data of skin cells from domestic cats with brown, orange, and white coats were analyzed using a public database to investigate the possible relationship between coat color-related gene expression and squamous cell carcinoma risk, as well as the mechanism of deafness in white cats. We found that the ratio of the expression level of genes suppressing squamous cell carcinoma to that of genes promoting squamous cell carcinoma might be considerably lower than the theoretical estimation in skin cells with orange and white coats in white-spotted cat. We also found the possibility of the frequent production of KIT lacking the first exon (d1KIT) in skin cells with white coats, and d1KIT production exhibited a substantial negative correlation with the expression of SOX10, which is essential for melanocyte formation and adjustment of hearing function. Additionally, the production of d1KIT was expected to be due to the insulating activity of the feline endogenous retrovirus 1 (FERV1) LTR in the first intron of KIT by its CTCF binding sequence repeat. These results contribute to basic veterinary research to understand the relationship between cat skin coat and disease risk, as well as the underlying mechanism.
Collapse
Affiliation(s)
- Akinori Awazu
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Hiroshima, Japan
| | - Daigo Takemoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Kaichi Watanabe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Naoaki Sakamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
CHAMBERS JK, ITO S, UCHIDA K. Feline papillomavirus-associated Merkel cell carcinoma: a comparative review with human Merkel cell carcinoma. J Vet Med Sci 2023; 85:1195-1209. [PMID: 37743525 PMCID: PMC10686778 DOI: 10.1292/jvms.23-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare skin tumor that shares a similar immunophenotype with Merkel cells, although its origin is debatable. More than 80% of human MCC cases are associated with Merkel cell polyomavirus infections and viral gene integration. Recent studies have shown that the clinical and pathological characteristics of feline MCC are comparable to those of human MCC, including its occurrence in aged individuals, aggressive behavior, histopathological findings, and the expression of Merkel cell markers. More than 90% of feline MCC are positive for the Felis catus papillomavirus type 2 (FcaPV2) gene. Molecular changes involved in papillomavirus-associated tumorigenesis, such as increased p16 and decreased retinoblastoma (Rb) and p53 protein levels, were observed in FcaPV2-positive MCC, but not in FcaPV2-negative MCC cases. These features were also confirmed in FcaPV2-positive and -negative MCC cell lines. The expression of papillomavirus E6 and E7 genes, responsible for p53 degradation and Rb inhibition, respectively, was detected in tumor cells by in situ hybridization. Whole genome sequencing revealed the integration of FcaPV2 DNA into the host feline genome. MCC cases often develop concurrent skin lesions, such as viral plaque and squamous cell carcinoma, which are also associated with papillomavirus infection. These findings suggest that FcaPV2 infection and integration of viral genes are involved in the development of MCC in cats. This review provides an overview of the comparative pathology of feline and human MCC caused by different viruses and discusses their cell of origin.
Collapse
Affiliation(s)
- James K CHAMBERS
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Soma ITO
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki UCHIDA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Munday JS, Knight CG, Luff JA. Papillomaviral skin diseases of humans, dogs, cats and horses: A comparative review. Part 2: Pre-neoplastic and neoplastic diseases. Vet J 2022; 288:105898. [PMID: 36152994 PMCID: PMC11459685 DOI: 10.1016/j.tvjl.2022.105898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022]
Abstract
Papillomaviruses (PVs) are well recognized to cause pre-neoplastic and neoplastic diseases in humans. Similarly, there is increasing evidence that PVs play a significant role in the development of pre-neoplastic and neoplastic diseases of the haired skin of dogs and cats, and the mucosa of horses. As the mechanisms by which PVs cause neoplasia are well studied in humans, it is valuable to compare the PV-induced neoplasms of humans with similar PV-associated neoplasms in the companion animal species. In the second part of this comparative review, the pre-neoplastic and neoplastic diseases thought to be caused by PVs in humans, dogs, cats, and horses are described. This includes PV-induced cutaneous plaques, cutaneous squamous cell carcinomas (SCCs) and mucosal SCCs within the four species. The review concludes with a discussion about the potential use of vaccines to prevent PV-induced diseases of dogs, cats, and horses.
Collapse
Affiliation(s)
- John S Munday
- Pathobiology, School of Veterinary Science, Massey University, Palmerston North, New Zealand.
| | - Cameron G Knight
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer A Luff
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
6
|
Papillomaviruses in Domestic Cats. Viruses 2021; 13:v13081664. [PMID: 34452528 PMCID: PMC8402708 DOI: 10.3390/v13081664] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022] Open
Abstract
Papillomaviruses (PVs) are well established to cause hyperplastic papillomas (warts) in humans and animals. In addition, due to their ability to alter cell regulation, PVs are also recognized to cause approximately 5% of human cancers and these viruses have been associated with neoplasia in a number of animal species. In contrast to other domestic species, cats have traditionally been thought to less frequently develop disease due to PV infection. However, in the last 15 years, the number of viruses and the different lesions associated with PVs in cats have greatly expanded. In this review, the PV life cycle and the subsequent immune response is briefly discussed along with methods used to investigate a PV etiology of a lesion. The seven PV types that are currently known to infect cats are reviewed. The lesions that have been associated with PV infections in cats are then discussed and the review finishes with a brief discussion on the use of vaccines to prevent PV-induced disease in domestic cats.
Collapse
|