1
|
Jin M, Zhou Q, Fu L, Lin CT, Wu W. Microplastic contamination in sediments: Analytical techniques and case-based evaluations. Talanta 2025; 294:128267. [PMID: 40334511 DOI: 10.1016/j.talanta.2025.128267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025]
Abstract
Microplastics (MPs) pollution in sediments has gained critical attention due to its pervasive presence and potential ecological risks. This review synthesizes the latest advancements in analytical techniques, providing a comprehensive overview of separation and identification methods tailored to complex sedimentary matrices. Density-based approaches, such as ZnCl2 or NaI solutions, and enzymatic digestions are increasingly refined to isolate MPs of varying sizes, yet discrepancies in mesh sizes, reagent concentrations, and digestion protocols continue to complicate cross-study comparisons. Meanwhile, cutting-edge spectroscopic tools-μFTIR, Raman imaging, thermal analyses-have greatly enhanced polymer identification down to the tens-of-micrometers scale. Case studies spanning urban estuaries to remote deep-sea basins underscore the pervasive nature of MPs worldwide, with fibers and fragments frequently dominating sediment samples. Factors such as polymer density, hydrodynamics, and biofouling contribute to the diverse distribution patterns, revealing that even ostensibly pristine environments are not exempt from contamination. Although the precise ecological and toxicological consequences of long-term sediment-bound MPs remain partly unclear, growing evidence points to intricate interactions with co-occurring contaminants and potential trophic transfer. To address these knowledge gaps, this review emphasizes the urgent need for methodological standardization and collaborative initiatives, particularly for emerging challenges like nanoplastic detection. By integrating robust sampling approaches, advanced analytical tools, and interdisciplinary research, scientists and policymakers can more accurately map and mitigate the impacts of sediment-associated MPs on aquatic ecosystems.
Collapse
Affiliation(s)
- Meiqing Jin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China.
| |
Collapse
|
2
|
Sbarberi R, Magni S, Ponti B, Tediosi E, Neri MC, Binelli A. Multigenerational effects of virgin and sampled plastics on the benthic macroinvertebrate Chironomus riparius. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107205. [PMID: 39667267 DOI: 10.1016/j.aquatox.2024.107205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Although sediments are important reservoirs of plastics, most of the ecotoxicological studies on these contaminants are focused on the organisms living in the water column, while only a smaller number of evidence concerns the plastic impact on benthic species. Therefore, this study compared the multigenerational effects on the sediment-dwelling midge Chironomus riparius exposed to both virgin polystyrene microbeads (22,400-224,000 plastics/kg sediments dry weight), and plastic mixtures (40-420 plastics/kg dry weight) collected from four of the main tributaries of Po River (Ticino, Adda, Oglio and Mincio Rivers, Northern Italy) to evaluate the role played by other characteristics related to these physical contaminants in determining their toxicity as opposed to concentration alone. The modified Chironomid Life-Cycle Toxicity Test (OECD 233) was used to evaluate the multigenerational effects on the Emergence and Development Rates, Fecundity and Fertility. In addition, a biomarkers' suite of cellular stress, neurotoxicity, and energetic metabolism was applied in the 2nd generation (2nd/3rd instar of larvae) to investigate the potential mechanisms associated to the apical effects. Our results showed no significant (p > 0.05) multigenerational effect for any of the endpoints tested for the virgin plastics' exposures. Coherently, no significant effects on biomarkers were measured. Concerning the sampled plastics, the particles collected in Adda River instead induced a significant decrease (p < 0.05) of the Emergence Rate in the 2nd generation, suggesting that this parameter was the most susceptible among those measured. These results highlight that the different plethora of polymers, sizes and shapes of plastics sampled in natural ecosystems, compared to homogeneous characteristics of virgin polystyrene microbeads, appears to have considerable importance over concentration alone in determining the toxicity of these emerging contaminants.
Collapse
Affiliation(s)
- Riccardo Sbarberi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Benedetta Ponti
- LabAnalysis group, Via Saronnino 86/A, 21040 Origgio, Varese, Italy
| | - Erica Tediosi
- LabAnalysis group, Via Saronnino 86/A, 21040 Origgio, Varese, Italy
| | | | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
3
|
Wang Y, Xiao N, Zhao J, Su Y, Guo Z, Wang B, Luo Z, Jia H, Xing B. Combined contamination of tire and road wear microplastics with heavy metals in expressway tunnels: occurrence characteristics and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136278. [PMID: 39461292 DOI: 10.1016/j.jhazmat.2024.136278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Tire and road wear microplastics (TRWMPs), as an important type of microplastics, have attracted increasing attention. However, current studies on their contamination within expressway tunnels remain limited. Therefore, we investigated the occurrence characteristics of TRWMPs in dusts from various tunnels, and combined contamination with heavy metals (HMs). The results showed that the abundance of TRWMPs in expressway tunnel dust (53,778 n/kg) was much higher than that sampled from other land use types (1360-4960 n/kg) in the same region. A large amount of polyamide was released into the environment along with wear particles from the vehicles. Also, the abundance of TRWMPs inside tunnels was greater than outside, and the proportion of large-size TRWMPs was higher inside tunnels. TRWMPs was symmetrically distributed with respect to the center of expressway tunnel. The pollution load index (PLI) and ecological risk index (H) indicated that study area was heavily contaminated with TRWMPs. There was a significant positive correlation between the abundance of TRWMPs and concentration of Cr (p < 0.01) in dust, and their risk assessment and health risk fluctuations were almost identical. Thus, the study is of great significance for elucidating the synergistic contamination and potential risk of TRWMPs and HMs in expressway tunnels.
Collapse
Affiliation(s)
- Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Na Xiao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, PR China.
| | - Yu Su
- School of Energy and Environment, Southeast University, Nanjing 210023, China
| | - Ziyi Guo
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Bo Wang
- Shaanxi Geomatics Center, Ministry of Natural Resources, Xi'an, Shaanxi 710054, China
| | - Zhuanxi Luo
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
4
|
Khedre AM, Ramadan SA, Ashry A, Alaraby M. Abundance and risk assessment of microplastics in water, sediment, and aquatic insects of the Nile River. CHEMOSPHERE 2024; 353:141557. [PMID: 38417495 DOI: 10.1016/j.chemosphere.2024.141557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/01/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Microplastics (MPs) are a serious threat in freshwater environments. The ecological risk and abundance level of MPs in abiotic and biotic compartments of the Nile River haven't been systematically reported. Thus, these issues were highlighted in the present study during different seasons of the sampling year. The results showed that MP concentrations in the river ranged from 2.24 ± 0.6 to 3.76 ± 1.1 particles/L, 298 ± 63 to 520 ± 80 particles/kg dry weight, and 0.081 ± 0.051 to 4.95 ± 2.6 particles/individual in surface water, sediment, and different species of aquatic insects, respectively. All the extracted MPs are colored blue, red, and black. Fiber-shaped polyesters (<500-1500 μm) were the most common MPs in all the river compartments. MPs' dominance was observed during the summer in comparison with that in the other seasons. Environmental risk indicators indicate the high ecological risk of MPs, which are widely distributed in the Nile River. In conclusion, MP consumption by aquatic insects may not only be related to levels of environmental contamination, since other variables, such as taxon size, weight, and particular feeding behavior, may also be significant. Additionally, the presence of MPs in insects (at lower trophic levels) creates the potential for predation-based inter-trophic level transmission. Thus, higher trophic-level investigations of various feeding groups should be carried out to identify any possible harm that MPs cause to various aquatic organisms.
Collapse
Affiliation(s)
- Azza M Khedre
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Somaia A Ramadan
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Ali Ashry
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt.
| | - Mohamed Alaraby
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| |
Collapse
|
5
|
Khedre AM, Ramadan SA, Ashry A, Alaraby M. Seasonal variations of microplastic in sediment, Chironomus sp. larvae, and chironomid tubes in two wastewater sites in Sohag Governorate, Egypt. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125846-125865. [PMID: 38008829 PMCID: PMC10754750 DOI: 10.1007/s11356-023-30855-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
Microplastic (MP) contamination is an acknowledged global problem that poses a severe risk to aquatic ecosystem biota. Nevertheless, little is known about their prevalence in animal construction. The main objective of our study was to reduce the gap information of seasonal abundance, distribution, composition, and risk assessment of MP contamination. The concentrations of MPs in sediment, Chironomus sp. larvae, and their tubes were found to be higher in site 2 (S2) than in site 1 (S1) during the four seasons of the year. However, MP concentrations ranged from 312 ± 64.7 to 470 ± 70 items/kg dry weight, 0.79 ± 0.16 to 1.1 ± 0.3 particles/individual, and 0.5 ± 0.04 to 0.9 ± 0.04 particles/tube in sediment, Chironomus, and chironomid tubes, respectively. Blue and red polyester fibers are the most dominant MPs which are distributed in sediment, Chironomus, and chironomid tubes. The length of the dominant fiber accumulates in Chironomus, and their tubes are highly varied compared to that of the substrate. Additionally, we found that the mean number of MPs/individual larvae in the fourth instar was significantly higher than that in the second instar. Risk indicators for the environment, polymer risk assessment, and pollution load were estimated, where they were higher in S2 than in S1 correlated to MPs abundance and polymer type. The seasonal fluctuation in MP concentration, characterization, and risk in the two sites could depend on the amount of sewage effluent discharged into the wastewater treatment plants (WWTPs), which was reflected by Chironomus sp. larvae. Therefore, further research should be done to adopt the applicability of Chironomus as MP bioindicators in various freshwater environments throughout the world.
Collapse
Affiliation(s)
- Azza M Khedre
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Somaia A Ramadan
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Ali Ashry
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Mohamed Alaraby
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
6
|
An Q, Zhou T, Wen C, Yan C. The effects of microplastics on heavy metals bioavailability in soils: a meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132369. [PMID: 37634382 DOI: 10.1016/j.jhazmat.2023.132369] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
The combined pollution of heavy metals and microplastics is common in natural soil environments. Here, we collected 790 data sets from 39 studies to investigate the effects of microplastics on heavy metal bioavailability. The results showed that microplastics could increase the bioavailability of Cu, Pb, Cd, Fe, and Mn. The heavy metal bioavailability was positively correlated with microplastic size, soil sand concentration, and exposure time, but negatively correlated with soil pH and organic matter. The bioavailability of heavy metals can be promoted by microplastics of all shapes. Hydrolysable microplastics, which contain N, might have less influence. Furthermore, the size of microplastics and soil organic matter were positively correlated with the acid-soluble and reducible fractions of heavy metals, while the microplastic concentration, soil pH, and exposure time were positively correlated with the oxidizable fractions of heavy metals. The interaction detector results indicated that there was an interaction between microplastic characteristics, especially polymer types, and soil physicochemical indexes on the bioavailability of heavy metals. These findings suggested that long-term combined pollution of microplastics and heavy metals might increase heavy metal bioavailability in soils, thereby extending their migratory and hazardous range and bringing further risks to the environment and public health safety.
Collapse
Affiliation(s)
- Qiuying An
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Zhou
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Wen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|