1
|
Iqbal N, Brien C, Jewell N, Berger B, Zhou Y, Denison RF, Denton MD. Chickpea displays a temporal growth response to Mesorhizobium strains under well-watered and drought conditions. PHYSIOLOGIA PLANTARUM 2025; 177:e70041. [PMID: 39807089 PMCID: PMC11730068 DOI: 10.1111/ppl.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 01/16/2025]
Abstract
The relative performance of rhizobial strains could depend on their resource allocation, environmental conditions, and host genotype. Here, we used a high-throughput shoot phenotyping to investigate the effects of Mesorhizobium strain on the growth dynamics, nodulation and bacteroid traits with four chickpea (Cicer arietinum) varieties grown under different water regimes in an experiment including four nitrogen sources (two Mesorhizobium strains, and two uninoculated controls: nitrogen fertilised and unfertilised) under well-watered and drought conditions. We asked three questions. Does the impact of rhizobial strains on chickpea growth change with well-watered versus drought conditions? Do Mesorhizobium strains differ in their ability to influence biomass and nodule traits of chickpea varieties under well-watered and drought conditions? Are bacteroid size and amount of polyhydroxybutyrate modified by Mesorhizobium strain, chickpea variety, water availability and their interactions? Under well-watered conditions, chickpea inoculated with CC1192 showed higher shoot growth rates than M075 and accumulated high plant biomass at harvest. Under drought conditions, however, the shoot growth rate was comparable between CC1192 and M075, with no significant difference in plant biomass and symbiotic effectiveness at harvest. Across sources of variation, plant biomass varied 3.0-fold, nodules per plant 3.9-fold, nodule dry weight 3.0-fold, symbiotic effectiveness 1.5-fold, bacteroid size 1.4-fold and bacteroid polyhydroxybutyrate 1.4-fold. Plant biomass was negatively correlated with both bacteroid size and allocation to polyhydroxybutyrate under well-watered conditions, suggesting a trade-off between plant and rhizobial fitness. This study demonstrates the need to reassess rhizobial strain effectiveness across diverse environments, recognising the dynamic nature of their interaction with host plants.
Collapse
Affiliation(s)
- Nasir Iqbal
- School of Agriculture, Food and WineThe University of AdelaideUrrbraeSAAustralia
| | - Chris Brien
- School of Agriculture, Food and WineThe University of AdelaideUrrbraeSAAustralia
- Australian Plant Phenomics Facility, The Plant AcceleratorThe University of AdelaideGlen OsmondSAAustralia
| | - Nathaniel Jewell
- School of Agriculture, Food and WineThe University of AdelaideUrrbraeSAAustralia
- Australian Plant Phenomics Facility, The Plant AcceleratorThe University of AdelaideGlen OsmondSAAustralia
| | - Bettina Berger
- School of Agriculture, Food and WineThe University of AdelaideUrrbraeSAAustralia
- Australian Plant Phenomics Facility, The Plant AcceleratorThe University of AdelaideGlen OsmondSAAustralia
| | - Yi Zhou
- School of Agriculture, Food and WineThe University of AdelaideUrrbraeSAAustralia
| | - R. Ford Denison
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSaint PaulMNUSA
| | - Matthew D. Denton
- School of Agriculture, Food and WineThe University of AdelaideUrrbraeSAAustralia
| |
Collapse
|
2
|
Impact of Two Strains of Rhizobium leguminosarum on the Adaptation to Terminal Water Deficit of Two Cultivars Vicia faba. PLANTS 2022; 11:plants11040515. [PMID: 35214847 PMCID: PMC8879231 DOI: 10.3390/plants11040515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 02/03/2023]
Abstract
Drought stress has become one of the most uncontrolled and unpredictable constraints on crop production. The purpose of this study was to evaluate the impacts of two different Rhizobium leguminosarum strains on terminal drought tolerance induction in two faba bean genotypes cultivated in Algeria, Aquadulce and Maltais. To this end, we measured physiological parameters—osmoprotectants accumulation, oxidative stress markers and enzyme activities—to assess the effect of R. leguminosarum inoculation on V. faba under terminal water deficiency conditions in greenhouse trials. Upregulation of anti-oxidative mechanisms and production of compatible solutes were found differentially activated according to Rhizobium strain. Drought stress resilience of the Maltais variety was improved using the local Rhizobium strain OL13 compared to the common strain 3841. Symbiosis with OL13 strain leads in particular to a much better production of proline and soluble sugar in nodules but also in roots and leaves of Maltais plant. Even if additional work is still necessary to decipher the mechanism by which a Rhizobium strain can affect the accumulation of osmoprotectants or cellular redox status in all the plants, inoculation with selected Rhizobium could be a promising strategy for improving water stress management in the forthcoming era of climate change.
Collapse
|
3
|
Benjelloun I, Thami Alami I, Douira A, Udupa SM. Phenotypic and Genotypic Diversity Among Symbiotic and Non-symbiotic Bacteria Present in Chickpea Nodules in Morocco. Front Microbiol 2019; 10:1885. [PMID: 31620094 PMCID: PMC6759536 DOI: 10.3389/fmicb.2019.01885] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 07/30/2019] [Indexed: 11/19/2022] Open
Abstract
Environmental pollution problems and increased demand for green technologies in production are forcing farmers to introduce agricultural practices with a lower impact on the environment. Chickpea (Cicer arietinum) in arid and semi-arid environments is frequently affected by harsh environmental stresses such as heat, drought and salinity, which limit its growth and productivity and affect biological nitrogen fixation ability of rhizobia. Climate change had further aggravated these stresses. Inoculation with appropriate stress tolerant rhizobia is necessary for an environmentally friendly and sustainable agricultural production. In this study, endophytic bacteria isolated from chickpea nodules from different soil types and regions in Morocco, were evaluated for their phenotypic and genotypic diversity in order to select the most tolerant ones for further inoculation of this crop. Phenotypic characterization of 135 endophytic bacteria from chickpea nodules showed a wide variability for tolerance to heavy metals and antibiotics, variable response to extreme temperatures, salinity, pH and water stress. 56% of isolates were able to nodulate chickpea. Numerical analysis of rep-PCR results showed that nodulating strains fell into 22 genotypes. Sequencing of 16S rRNA gene of endophytic bacteria from chickpea nodules revealed that 55% of isolated bacteria belong to Mesorhizobium genus. Based on MLSA of core genes (recA, atpD, glnII and dnaK), tasted strains were distributed into six clades and were closely related to Mesorhizobium ciceri, Mesorhizobium opportunistum, Mesorhizobium qingshengii, and Mesorhizobium plurifarium. Most of nodulating strains were belonging to a group genetically distinct from reference Mesorhizobium species. Three isolates belong to genus Burkholderia of the class β- proteobacteria, and 55 other strains belong to the class γ- proteobacteria. Some of the stress tolerant isolates have great potential for further inoculation of chickpea in the arid and semiarid environments to enhance biological nitrogen fixation and productivity in the context of climate change adaptation and mitigation.
Collapse
Affiliation(s)
- Imane Benjelloun
- Department of Microbiology, National Institute of Agronomical Research, Rabat, Morocco
- Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
- ICARDA-INRA Cooperative Research Project, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Imane Thami Alami
- Department of Microbiology, National Institute of Agronomical Research, Rabat, Morocco
| | - Allal Douira
- Department of Biology, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Sripada M. Udupa
- ICARDA-INRA Cooperative Research Project, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| |
Collapse
|
4
|
Kallala N, M'sehli W, Jelali K, Kais Z, Mhadhbi H. Inoculation with Efficient Nitrogen Fixing and Indoleacetic Acid Producing Bacterial Microsymbiont Enhance Tolerance of the Model Legume Medicago truncatula to Iron Deficiency. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9134716. [PMID: 30406145 PMCID: PMC6201330 DOI: 10.1155/2018/9134716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
The aim of this study was to assess the effect of symbiotic bacteria inoculation on the response of Medicago truncatula genotypes to iron deficiency. The present work was conducted on three Medicago truncatula genotypes: A17, TN8.20, and TN1.11. Three treatments were performed: control (C), direct Fe deficiency (DD), and induced Fe deficiency by bicarbonate (ID). Plants were nitrogen-fertilized (T) or inoculated with two bacterial strains: Sinorhizobium meliloti TII7 and Sinorhizobium medicae SII4. Biometric, physiological, and biochemical parameters were analyzed. Iron deficiency had a significant lowering effect on plant biomass and chlorophyll content in all Medicago truncatula genotypes. TN1.11 showed the highest lipid peroxidation and leakage of electrolyte under iron deficiency conditions, which suggest that TN1.11 was more affected than A17 and TN8.20 by Fe starvation. Iron deficiency affected symbiotic performance indices of all Medicago truncatula genotypes inoculated with both Sinorhizobium strains, mainly nodules number and biomass as well as nitrogen-fixing capacity. Nevertheless, inoculation with Sinorhizobium strains mitigates the negative effect of Fe deficiency on plant growth and oxidative stress compared to nitrogen-fertilized plants. The highest auxin producing strain, TII7, preserves relatively high growth and root biomass and length when inoculated to TN8.20 and A17. On the other hand, both TII7 and SII4 strains improve the performance of sensitive genotype TN1.11 through reduction of the negative effect of iron deficiency on chlorophyll and plant Fe content. The bacterial inoculation improved Fe-deficient plant response to oxidative stress via the induction of the activities of antioxidant enzymes.
Collapse
Affiliation(s)
- Nadia Kallala
- Laboratory of Legumes, Center of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif, Tunisia
- Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Wissal M'sehli
- Laboratory of Legumes, Center of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif, Tunisia
| | - Karima Jelali
- Laboratory of Legumes, Center of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif, Tunisia
- Faculty of Science, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Zribi Kais
- Laboratory of Legumes, Center of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif, Tunisia
| | - Haythem Mhadhbi
- Laboratory of Legumes, Center of Biotechnology of Borj-Cedria (CBBC), Hammam-Lif, Tunisia
| |
Collapse
|
5
|
Role of Secondary Metabolites from Plant Growth-Promoting Rhizobacteria in Combating Salinity Stress. PLANT MICROBIOME: STRESS RESPONSE 2018. [DOI: 10.1007/978-981-10-5514-0_6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Khalid SAL, Omar AH, Abdel FMEZ. Phylogenetic analysis of 23S rRNA gene sequences of some Rhizobium leguminosarum isolates and their tolerance to drought. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajb2016.15450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Isolation of salt-tolerant mutants of Mesorhizobium ciceri strain Rch125 and identification of genes involved in salt sensitivity. Symbiosis 2015. [DOI: 10.1007/s13199-015-0357-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 2015; 5:355-377. [PMID: 28324544 PMCID: PMC4522733 DOI: 10.1007/s13205-014-0241-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/19/2014] [Indexed: 11/24/2022] Open
Abstract
Modern agriculture faces challenges, such as loss of soil fertility, fluctuating climatic factors and increasing pathogen and pest attacks. Sustainability and environmental safety of agricultural production relies on eco-friendly approaches like biofertilizers, biopesticides and crop residue return. The multiplicity of beneficial effects of microbial inoculants, particularly plant growth promoters (PGP), emphasizes the need for further strengthening the research and their use in modern agriculture. PGP inhabit the rhizosphere for nutrients from plant root exudates. By reaction, they help in (1) increased plant growth through soil nutrient enrichment by nitrogen fixation, phosphate solubilization, siderophore production and phytohormones production (2) increased plant protection by influencing cellulase, protease, lipase and β-1,3 glucanase productions and enhance plant defense by triggering induced systemic resistance through lipopolysaccharides, flagella, homoserine lactones, acetoin and butanediol against pests and pathogens. In addition, the PGP microbes contain useful variation for tolerating abiotic stresses like extremes of temperature, pH, salinity and drought; heavy metal and pesticide pollution. Seeking such tolerant PGP microbes is expected to offer enhanced plant growth and yield even under a combination of stresses. This review summarizes the PGP related research and its benefits, and highlights the benefits of PGP rhizobia belonging to the family Rhizobiaceae, Phyllobacteriaceae and Bradyrhizobiaceae.
Collapse
Affiliation(s)
- Subramaniam Gopalakrishnan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Arumugam Sathya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Rajendran Vijayabharathi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Rajeev Kumar Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - C L Laxmipathi Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Lakshmanan Krishnamurthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India.
| |
Collapse
|
9
|
Mhamdi R, Nouairi I, ben Hammouda T, Mhamdi R, Mhadhbi H. Growth capacity and biochemical mechanisms involved in rhizobia tolerance to salinity and water deficit. J Basic Microbiol 2014; 55:451-61. [PMID: 25546228 DOI: 10.1002/jobm.201400451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/02/2014] [Indexed: 11/08/2022]
Abstract
The aim of the present study was to evaluate abiotic stress tolerance of rhizobial strains belonging to Mesorhizobium, Sinorhizobium, and Rhizobium genera, as well as to investigate specie specific stress response mechanisms. Effect of NaCl and PEG on growth capacity, protein, lipid peroxydation (MDA), membrane fatty acid composition and antioxidant enzymes were investigated. Growth capacity and viability of overall rhizobia strains decreased proportionally to the increase of NaCl and PEG levels in the medium. Sinorhizobium strains appeared the most tolerant, where 4H41strain was able to grow at 800 mM NaCl and 40% PEG. On the other hand, growth of R. gallicum and M. mediterraneum was inhibited by 200 mM NaCl. The content of MDA was unchanged in Sinorhizobium strains under both stresses. For Mesorhizobium, only PEG treatment increased the content of MDA. Amount of the C19:0 cyclo fatty-acid was increased in both Sinorhizobium and Mesorhizobium tolerant strains. NaCl stress increased Superoxide dismutase (SOD) activity of overall species; especially the most tolerant strain 4H41. Both treatments increased catalase (CAT) activity in 4H41, TII7, and 835 strains. Obtained results suggest that major response of tolerant Sinorhizobium and Mesorhizobium strains to NaCl and PEG stresses is a preferential accumulation of the C19:0 cyclo fatty acid within bacterial membrane as mechanism to reduce fluidity and maintain integrity. Cell integrity and functioning is also assured by maintaining and/or increasing activity of SOD and CAT antioxidant enzymes for tolerant strains to omit structural and functional damages related to reactive oxygen species overproduced under stressful conditions.
Collapse
Affiliation(s)
- Rakia Mhamdi
- Laboratory of Legumes, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | | | | | | | | |
Collapse
|
10
|
Esfahani MN, Sulieman S, Schulze J, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS. Approaches for enhancement of N₂ fixation efficiency of chickpea (Cicer arietinum L.) under limiting nitrogen conditions. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:387-97. [PMID: 24267445 DOI: 10.1111/pbi.12146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/19/2013] [Accepted: 10/03/2013] [Indexed: 05/16/2023]
Abstract
Chickpea (Cicer arietinum) is an important pulse crop in many countries in the world. The symbioses between chickpea and Mesorhizobia, which fix N₂ inside the root nodules, are of particular importance for chickpea's productivity. With the aim of enhancing symbiotic efficiency in chickpea, we compared the symbiotic efficiency of C-15, Ch-191 and CP-36 strains of Mesorhizobium ciceri in association with the local elite chickpea cultivar 'Bivanij' as well as studied the mechanism underlying the improvement of N₂ fixation efficiency. Our data revealed that C-15 strain manifested the most efficient N₂ fixation in comparison with Ch-191 or CP-36. This finding was supported by higher plant productivity and expression levels of the nifHDK genes in C-15 nodules. Nodule specific activity was significantly higher in C-15 combination, partially as a result of higher electron allocation to N₂ versus H⁺. Interestingly, a striking difference in nodule carbon and nitrogen composition was observed. Sucrose cleavage enzymes displayed comparatively lower activity in nodules established by either Ch-191 or CP-36. Organic acid formation, particularly that of malate, was remarkably higher in nodules induced by C-15 strain. As a result, the best symbiotic efficiency observed with C-15-induced nodules was reflected in a higher concentration of the total and several major amino metabolites, namely asparagine, glutamine, glutamate and aspartate. Collectively, our findings demonstrated that the improved efficiency in chickpea symbiotic system, established with C-15, was associated with the enhanced capacity of organic acid formation and the activities of the key enzymes connected to the nodule carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Maryam Nasr Esfahani
- Department of Biology, Faculty of Sciences, Lorestan University, Khorramabad, Iran
| | | | | | | | | | | |
Collapse
|
11
|
Chihaoui SA, Mhadhbi H, Mhamdi R. The antibiosis of nodule-endophytic agrobacteria and its potential effect on nodule functioning of Phaseolus vulgaris. Arch Microbiol 2012; 194:1013-21. [DOI: 10.1007/s00203-012-0837-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/04/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
|
12
|
Li X, Yu E, Fan C, Zhang C, Fu T, Zhou Y. Developmental, cytological and transcriptional analysis of autotetraploid Arabidopsis. PLANTA 2012; 236:579-96. [PMID: 22476290 DOI: 10.1007/s00425-012-1629-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/16/2012] [Indexed: 05/09/2023]
Abstract
An autopolyploid that contains more than two sets of the same chromosomes causes apparent alterations in morphology, development, physiology and gene expression compared to diploid. However, the mechanisms for these changes remain largely unknown. In the present study, cytological observations of mature embryos and growing cotyledons demonstrated that enlarged organ size of an autotetraploid Arabidopsis was caused by cell size and not by cell number. Quantitative real time PCR (qRT-PCR) analysis of 34 core cell cycle genes revealed a subtle but stable increase in the expression of ICK1, ICK2 and ICK5 in autotetraploid seedlings. Autotetraploid Arabidopsis plants were found to be more sensitive to glucose treatment than diploid with decreased number of rosette leaves and suppressed root elongation. Cytological observations demonstrated that both cell proliferation and cell expansion of autotetraploid were dramatically suppressed under glucose treatment. Expression levels of ICK1, ICK5 together with Cyclin D and Cyclin B was increased under glucose treatment in both diploid and autotetraploid plants. These results suggest that ICK1 and ICK5 may be involved in developmental delay and that the suppressed growth under glucose treatment probably resulted from disturbed mitotic and endoreduplication cycle in autotetraploid Arabidopsis.
Collapse
Affiliation(s)
- Xiaodong Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Mhadhbi H, Fotopoulos V, Mylona PV, Jebara M, Elarbi Aouani M, Polidoros AN. Antioxidant gene-enzyme responses in Medicago truncatula genotypes with different degree of sensitivity to salinity. PHYSIOLOGIA PLANTARUM 2011; 141:201-214. [PMID: 21114673 DOI: 10.1111/j.1399-3054.2010.01433.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Antioxidant responses and nodule function of Medicago truncatula genotypes differing in salt tolerance were studied. Salinity effects on nodules were analysed on key nitrogen fixation proteins such as nitrogenase and leghaemoglobin as well as estimating lipid peroxidation levels, and were found more dramatic in the salt-sensitive genotype. Antioxidant enzyme assays for catalase (CAT, EC 1.11.1.6), superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11) and guaiacol peroxidase (EC 1.11.1.7) were analysed in nodules, roots and leaves treated with increasing concentrations of NaCl for 24 and 48 h. Symbiosis tolerance level, depending essentially on plant genotype, was closely correlated with differences of enzyme activities, which increased in response to salt stress in nodules (except CAT) and roots, whereas a complex pattern was observed in leaves. Gene expression responses were generally correlated with enzymatic activities in 24-h treated roots in all genotypes. This correlation was lost after 48 h of treatment for the sensitive and the reference genotypes, but it remained positively significant for the tolerant one that manifested a high induction for all tested genes after 48 h of treatment. Indeed, tolerance behaviour could be related to the induction of antioxidant genes in plant roots, leading to more efficient enzyme stimulation and protection. High induction of CAT gene was also distinct in roots of the tolerant genotype and merits further consideration. Thus, part of the salinity tolerance in M. truncatula is related to induction and sustained expression of highly regulated antioxidant mechanisms.
Collapse
Affiliation(s)
- Haythem Mhadhbi
- Laboratory of Legumes (LL), CBBC, BP 901, 2050 Hammam lif, Tunisia INA, CERTH, 6th km Charilaou-Thermis Road, 57001 Thermi, Greece.
| | | | | | | | | | | |
Collapse
|
15
|
Salt tolerance of a Sinorhizobium meliloti strain isolated from dry lands: growth capacity and protein profile changes. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0153-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Yang L, Yang Q, Sun K, Tian Y, Li H. Agrobacterium tumefaciens-mediated transformation of SOD gene to Trichoderma harzianum. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0182-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Sabir JSM, El-Bestawy E. Enhancement of nodulation by some arid climate strains of Rhizobium leguminosarum biovar trifolii using protoplast fusion. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9922-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|