1
|
Balaei F, Pouraghajan K, Mohammadi S, Ghobadi S, Khodarahmi R. Enhancing cryo-enzymatic efficiency in cold-adapted lipase from Psychrobacter sp. C18 via site-directed mutagenesis. Arch Biochem Biophys 2025; 768:110388. [PMID: 40090439 DOI: 10.1016/j.abb.2025.110388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
As industrial demands for cold-active enzymes have been increased, psychrophilic lipases present a promising solution with potential for innovation and growth in food, pharmaceutical, and detergent industries. Cold-adapted enzymes achieve high catalytic efficiency at low temperatures through their structural flexibility and conformational adaptability. Therefore, in this study, the lipase gene from Psychrobacter sp. C18 was cloned and subjected to site-directed mutagenesis based on computer aided predictions to enhance the enzyme's cold-adapted properties and flexibility. Mutations were strategically selected in loops of the active site to improve the enzyme's accessibility to the substrate under cold conditions. The P163G, L186G, and Q239W mutations were selected for further analysis. Enzyme activity, along with its stability and structural flexibility, was assessed using techniques including UV-Vis spectroscopy, fluorescence, and circular dichroism (CD) spectroscopy. The obtained data revealed that the optimal temperature for the wild-type lipase was 30 °C, which shifted to lower temperatures in the mutants: 15 °C for P163G and L186G, and 20 °C for Q239W. Additionally, the optimal pH of the mutant lipases shifted to more alkaline conditions compared to the wild-type enzyme. While the thermal and pH stability of the mutant enzymes slightly decreased, these findings can be attributed to their enhanced flexibility. Far-UV CD spectroscopy revealed a reduction in α-helical content of the mutant enzymes. Molecular dynamics simulations corroborated these findings, confirming increased structural flexibility in all three mutants compared to the wild-type enzyme. This research underlines the importance of applying engineered cold-adapted enzymes for industrial application.
Collapse
Affiliation(s)
- Fatemeh Balaei
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| | - Khadijeh Pouraghajan
- Bioinformatics Laboratory, Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sirous Ghobadi
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Balaei F, Ghobadi S, Khodarahmi R, Mohammadi S. Bilayer electrospun nanofibrous membrane: A matrix for lipase immobilization with high stability and reusability and its application on the synthesis of benzyl acetate. Int J Biol Macromol 2025; 311:143893. [PMID: 40339843 DOI: 10.1016/j.ijbiomac.2025.143893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/21/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025]
Abstract
A cold-adapted recombinant lipase from the deep-sea psychrophilic bacterium Psychrobacter sp. C18 was purified and immobilized onto glutaraldehyde-activated bilayer nanofibers (BNFs) composed of polycaprolactone, chitosan, polyvinyl alcohol, and zinc oxide (PCL/Cs/PVA/ZnO), fabricated by electrospinning. The nanofibers were characterized using Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy, confirming their favorable morphology and chemical structure. Immobilization of Lipase C18 onto BNFs led to notable biochemical changes. While the free enzyme showed optimum activity at pH 8.0, the immobilized form shifted to ~pH 6.0, likely due to local microenvironmental effects. The immobilized lipase exhibited improved thermal and pH stability, enhanced storage durability, and better tolerance to mono- and divalent metal ions such as Na+, Fe2+, and Mg2+. Operational stability tests demonstrated that 91 % of enzymatic activity was retained after 20 reuse cycles. In transesterification reactions, the immobilized enzyme outperformed the free form, yielding more benzyl acetate, emphasizing its potential in fragrance and cosmetic industries. The bilayer nanofiber system provided superior performance over conventional immobilization supports, with the hydrophilic top layer enhancing wettability and the matrix structure improving enzyme functionality and robustness.
Collapse
Affiliation(s)
- Fatemeh Balaei
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Sirous Ghobadi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Liao X, Dong W, Chen X, Zheng X, Chen Z, Huang R, Wei J, Zhang X. Biodiversity and antifouling activity of microbes associated with gorgonian corals Leptogorgia rigida and Menella kanisa from the South China Sea. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106783. [PMID: 39406173 DOI: 10.1016/j.marenvres.2024.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 11/20/2024]
Abstract
Recently, coral-associated microorganisms have attracted widespread attention, and most of these studies have focused on stony and soft corals. However, our knowledge of the diversity and bioactivity of microorganisms in gorgonian corals is still limited. In this study, the biodiversity of microbes in two gorgonian corals (Leptogorgia rigida and Menella kanisa) from the South China Sea was investigated by combining traditional culture method with molecular biology technique (bacterial 16S or fungal internal transcribed spacer (ITS) rRNA gene sequences). A total of 216 bacterial and 98 fungal isolates were obtained using 4 different isolation media. These isolates were identified and belonged to 31 bacterial and 12 fungal species, suggesting an unexpectedly diverse microbial community harbored in the South China Sea gorgonian corals L. rigida and M. kanisa. Furthermore, 56% of the tested microbial isolates displayed various antifouling activities against four biofouling organisms (including two microfouling bacteria Micrococcus luteus and Shewanella onedensis, and two macrofouling organisms Bugula neritina and Balanus amphitrite). Among the microbial isolates with antifouling activity, Bacillus firmus SCAU-038 and Streptomyces parvulus SCAU-062 displayed moderate or strong antifouling activity against all tested biofouling organisms. This is the first study on the biodiversity and antifouling activity of microorganisms associated with gorgonians L. rigida and M. kanisa from the South China Sea. These results contribute to the further understanding of microorganisms associated with gorgonian corals and provide potential resources for new natural antifouling agents.
Collapse
Affiliation(s)
- Xinyu Liao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyu Dong
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xinye Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoning Zheng
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zihui Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jingguang Wei
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Paun VI, Ion SG, Gheorghita GR, Podolean I, Tudorache M, Purcarea C. Cold-Active Lipase from the Ice Cave Psychrobacter SC65A.3 Strain, a Promising Biocatalyst for Silybin Acylation. Molecules 2024; 29:5125. [PMID: 39519766 PMCID: PMC11547725 DOI: 10.3390/molecules29215125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Cold-active lipase from the psychrophilic bacterial strain Psychrobacter SC65A.3 isolated from Scarisoara Ice Cave (Romania) was cloned and characterized as an extremophilic biocatalyst for silybin acylation. Structural analyses highlighted conserved motifs confirming a functional lipase and the presence of primary structure elements for catalysis at low temperatures. The recombinant enzyme (PSL2) heterologously expressed in Escherichia coli was purified in one step by affinity chromatography with a yield of 12.08 ± 1.72 µg L-1 of culture and a specific activity of 20.1 ± 3.2 U mg-1 at 25 °C. Functional characterization of PSL2 showed a neutral (7.2) optimal pH and a high thermal stability up to 90 °C. Also, this lipase was stable in the presence of different organic solvents, with 60% residual activity when using 20% DMSO. Kinetic measurements indicated performant catalytic efficiency of PSL2 for different short and long chain fatty acids, with Km in the mM range. The catalytic activity of PSL2 was assessed for silybin acylation with various fatty acids and fatty acid methyl esters, demonstrating a 90% silybin conversion when methyl decanoate ester was used. This result clearly highlights the biocatalytic capability of this new cold-active lipase.
Collapse
Affiliation(s)
- Victoria I. Paun
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (V.I.P.); (G.R.G.)
| | - Sabina G. Ion
- Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030016 Bucharest, Romania; (S.G.I.); (I.P.)
| | - Giulia R. Gheorghita
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (V.I.P.); (G.R.G.)
| | - Iunia Podolean
- Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030016 Bucharest, Romania; (S.G.I.); (I.P.)
| | - Madalina Tudorache
- Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030016 Bucharest, Romania; (S.G.I.); (I.P.)
| | - Cristina Purcarea
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; (V.I.P.); (G.R.G.)
| |
Collapse
|
5
|
Irianto VS, Demirkan E, Cetinkaya AA. UV mutagenesis for lipase overproduction from Bacillus cereus ATA179, nutritional optimization, characterization and its usability in the detergent industry. Prep Biochem Biotechnol 2024; 54:918-931. [PMID: 38156984 DOI: 10.1080/10826068.2023.2299441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In this study, the wild-type Bacillus cereus ATA179 was mutagenized by random UV mutagenesis to increase lipase production. The mutant with maximum lipolytic activity was named Bacillus cereus EV4. The mutant strain (10.6 U/mL at 24 h) produced 60% more enzyme than the wild strain (6.6 U/mL at 48 h). Nutritional factors on lipase production were investigated. Sucrose was the best carbon source, (NH4)2HPO4 was the best nitrogen source and CuSO4 was the best metal ion source. Mutant EV4 showed a 32% increase in lipase production in the modified medium. The optimum temperature and pH were found to be 60 °C and 7.0, respectively. CuSO4, CaCl2, LiSO4, KCl, BaCl2, and Tween 20 had an activating effect on the enzyme. Vmax and Km values were found to be 17.36 U/mL and 0.036 mM, respectively. The molecular weight was determined as 28.2 kDa. The activity of lipase was found to be stable up to 60 days at 20 °C, 75 days at 4 °C, and 90 days at -20 °C. The potential of lipase in the detergent industry was investigated. The enzyme was not affected by detergent additives but was effective in removing stains in fabrics contaminated with oily substances.
Collapse
Affiliation(s)
- Vichi Sicha Irianto
- Department of Biology, Faculty of Arts and Sciences, Bursa Uludag University, Bursa, Turkey
| | - Elif Demirkan
- Department of Biology, Faculty of Arts and Sciences, Bursa Uludag University, Bursa, Turkey
| | - Aynur Aybey Cetinkaya
- Department of Biology, Faculty of Arts and Sciences, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
6
|
Eldesouky SE, Aseel DG, Elnouby MS, Galal FH, AL-Farga A, Hafez EE, Hussein HS. Synthesis of Tungsten Oxide, Iron Oxide, and Copper-Doped Iron Oxide Nanocomposites and Evaluation of Their Mixing Effects with Cyromazine against Spodoptera littoralis (Boisduval). ACS OMEGA 2023; 8:44867-44879. [PMID: 38046339 PMCID: PMC10688210 DOI: 10.1021/acsomega.3c06134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 12/05/2023]
Abstract
Nanotechnology research is emerging as a cutting-edge technology, and nanocomposites have played a significant role in pest control. Therefore, the present study focuses on the synthesis of tungsten oxide (WO3), iron oxide (magnetic nanoparticle, MNP), and copper-doped iron oxide (MNP-Cu) nanocomposites and explores the different effects of their binary combinations with the insecticide cyromazine against Spodoptera littoralis. The synthesized nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and Raman spectroscopy. None of the tested nanomaterials showed any toxicity against the different stages of S. littoralis. Larval and pupal durations increased with increasing cyromazine and nanomaterial concentrations. The longest larval and pupal durations were recorded under treatment with the mixture of cyromazine (100 mg/L) + MNP-Cu (500 mg/L); the survival periods were 23.5 and 15.6 days, compared with 10.8 and 7.7 days in the control, respectively. The percentages of pupation and adult emergence were negatively affected by all treatments. Among the 500 mg/L nanomaterial combinations, only cyromazine (25 mg/L) and WO3 (500 mg/L) resulted in adult emergence (at a rate of 27.3%). Some abnormalities in the S. littoralis stages were observed following treatment with the tested materials. The glutathione S-transferase and alpha-esterase enzyme activities in S. littoralis were significantly increased after treatment with cyromazine, followed by cyromazine/MNP-Cu combinations. The quantitative polymerase chain reaction (Q-PCR) data showed that all treated insects had a higher immune response than the control. Finally, mixes of nanocomposites and cyromazine may be suggested as viable alternatives for S. littoralis management.
Collapse
Affiliation(s)
- Sahar E. Eldesouky
- Cotton
Pesticides Evaluation Department, Plant
Protection Research Institute, Agricultural Research Center, El-Sabhia, Alexandria 21616, Egypt
| | - Dalia G. Aseel
- Plant
Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation
Research Institute (ALCRI), City of Scientific
Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Mohamed S. Elnouby
- Composite
and Nanostructured Materials Research Department, Advanced Technology
and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Fatma H. Galal
- Biology
Department, College of Science, Jouf University, Sakaka 72341, Saudi Arabia
| | - Ammar AL-Farga
- Biochemistry
Department, Faculty of Science, Jeddah University, Jeddah 21577, Saudi Arabia
| | - Elsayed E. Hafez
- Plant
Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation
Research Institute (ALCRI), City of Scientific
Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Hanaa S. Hussein
- Applied Entomology
and Zoology Department, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria 21545, Egypt
| |
Collapse
|
7
|
Ng YK, Ikeno S, Kadhim Almansoori AK, Muhammad I, Abdul Rahim R. Characterization of Sphingobacterium sp. Ab3 Lipase and Its Coexpression with LEA Peptides. Microbiol Spectr 2022; 10:e0142221. [PMID: 36314920 PMCID: PMC9769720 DOI: 10.1128/spectrum.01422-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Sphingobacterium sp. is a yellowish Gram-negative bacterium that is usually characterized by high concentrations of sphingophospholipids as lipid components. As microbial enzymes have been in high demand in industrial fields in the past few decades, this study hopes to provide significant information on lipase activities of Sphingobacterium sp., since limited studies have been conducted on the Sphingobacterium sp. lipase. A microbe from one collected Artic soil sample, ARC4, was identified as psychrotolerant Sphingobacterium sp., and it could grow in temperatures ranging from 0°C to 24°C. The expression of Sphingobacterium sp. lipase was successfully performed through an efficient approach of utilizing mutated group 3 late embryogenesis abundant (G3LEA) proteins developed from Polypedilum vanderplanki. Purified enzyme was characterized using a few parameters, such as temperature, pH, metal ion cofactors, organic solvents, and detergents. The expressed enzyme is reported to be cold adapted and has the capability to work efficiently under neutral pH (pH 5.0 to 7.0), cofactors like Na+ ion, and the water-like solvent methanol. Addition of nonionic detergents greatly enhanced the activity of purified enzyme. IMPORTANCE The mechanism of action of LEA proteins has remained unknown to many; in this study we reveal their presence and improved protein expression due to the molecular shielding effect reported by others. This paper should be regarded as a useful example of using such proteins to influence an existing expression system to produce difficult-to-express proteins.
Collapse
Affiliation(s)
- You Kiat Ng
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Shinya Ikeno
- Department of Biological Functions and Engineering, Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | | | - Ibrahim Muhammad
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Department of Science Lab. Technology, Ramat Polytechnic Maiduguri, Maiduguri, Nigeria
| | | |
Collapse
|
8
|
Esakkiraj P, Bharathi C, Ayyanna R, Jha N, Panigrahi A, Karthe P, Arul V. Functional and molecular characterization of a cold-active lipase from Psychrobacter celer PU3 with potential a*ntibiofilm property. Int J Biol Macromol 2022; 211:741-753. [PMID: 35504418 DOI: 10.1016/j.ijbiomac.2022.04.174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/07/2022] [Accepted: 04/24/2022] [Indexed: 11/05/2022]
Abstract
The lipase gene from Psychrobacter celer PU3 was cloned into pET-28a(+) expression vector and overexpressed in E. coli BL21 (DE3) pLysS cells. The purified Psychrobacter celer lipase (PCL) was characterized as an alkaline active enzyme and has a molecular mass of around 30 kDa. The PCL was active even at a low temperature and the optimum range was observed between 10 and 40 °C temperatures. MALDI-TOF and phylogenetic analysis ensued that Psychrobacter celer PU3 lipase (PCL) was closely related to P. aureginosa lipase (PAL). MD simulation results suggests that temperature change did not affect overall structure of PCL, but it may alter temperature- dependent PCL structural changes. R1 (129-135 AA) and R2 (187-191 AA) regions could be important for temperature-dependent PCL function as they fluctuate much at 35 °C temperature. PMSF completely inhibited PCL lipase activity and it demonstrates the presence of serine residues in the active site of PCL. PCL is moderately halophilic and most of the tested organic solvents found to be inhibiting the lipase activity except the solvents ethanol and methanol. PCL activity was increased with surfactants (SDS and CTAB) and bleaching agents (hydrogen peroxide). The effect of different metal ions on PCL resulted that only mercuric chloride was found as the enhancer of the lipase activity. Antibiofilm property of PCL was evaluated against pathogenic Vibrio parahaemolyticus isolated from the diseased shrimp and MIC value was 500 U. PCL significantly altered the morphology and biofilm density of V. parahaemolyticus and the same was observed through scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM) imaging. RT-PCR analysis revealed that the mRNA expression level of biofilm, colony morphology and major toxin-related (aphA, luxS, opaR, tolC, toxR) genes of V. parahaemolyticus were significantly downregulated with PCL treatment.
Collapse
Affiliation(s)
- Palanichamy Esakkiraj
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai 600 028, India
| | - Christian Bharathi
- CAS in Crystallography and Biophysics, University of Madras, Chennai 600025, India
| | - Repally Ayyanna
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Natwar Jha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Akshaya Panigrahi
- Crustacean Culture Division, ICAR-Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai 600 028, India
| | - Ponnuraj Karthe
- CAS in Crystallography and Biophysics, University of Madras, Chennai 600025, India
| | - Venkatesan Arul
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
9
|
Uddin MR, Roy P, Mandal S. Production of extracellular lipase from psychrotrophic bacterium Oceanisphaera sp. RSAP17 isolated from arctic soil. Antonie van Leeuwenhoek 2021; 114:2175-2188. [PMID: 34665377 DOI: 10.1007/s10482-021-01671-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/03/2021] [Indexed: 01/08/2023]
Abstract
Cold-active extracellular lipases produced by different psychrotrophs are important for various industrial applications. We have isolated a Gram-negative, rod-shaped, aerobe, non-pigment producing psychrotrophic bacterial strain RSAP17 (MTCC 12991, MCC 4275) from the unexplored Arctic soil sample of NyAlesund, Svalbard, Norway (78° 55″ N, 11° 54″ E). The detailed morphological, biochemical, and molecular characteristics were investigated to characterize the isolate RSAP17. Analyses of the 16S rDNA sequence of strain RSAP17 (Accession no. MK391379) shows the closest match with Oceanisphaera marina YM319T (99.45%) and Oceanisphaera sediminis TW92 JCM 17329T (97.40%). The isolate is capable of producing extracellular lipase but not amylase, cellulase or urease. The optimal parameters for lipase production have been found in tributyrin based (10 mL/L) agar media supplemented with 3% (w/v) NaCl after 2-3 days of incubation at 20-22 °C temperature and pH 9 at shaking condition. We have purified the extracellular lipase from the RSAP17 grown culture supernatant through 75% ammonium sulfate precipitation followed by dialysis and DEAE cellulose column chromatography. The invitro lipolytic activity of the purified lipase enzymes has been done through zymogram analysis. The molecular weight found for the lipase is 103.8 kD. The optimal activity of the purified lipase has been found at 25 °C and pH 9. MALDI-TOF-MS study of the purified lipase showed the highest match with the sequence of prolipoprotein diacylglyceryl transferase with 44% sequence coverage. Further study on large-scale production, substrate utilization and enzymatic kinetics of this lipase could unravel its possibility in future biotechnological applications.
Collapse
Affiliation(s)
- Md Raihan Uddin
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Pranab Roy
- Department of Molecular Biology, Institute of Child Health, 11, Dr. Biresh Guha Street, Kolkata, West Bengal, 700017, India
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
10
|
Draft Genome Sequences of the Lipid-Degrading Bacteria Moritella sp. Strains F1 and F3, Isolated from Mesopelagic Seawater from the Sagami Trough, in Japan. Microbiol Resour Announc 2021; 10:e0004621. [PMID: 34410153 PMCID: PMC8375486 DOI: 10.1128/mra.00046-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moritella sp. strains F1 and F3 are lipid-degrading bacteria that were isolated from intermediate water from the Sagami Trough, in Japan. We present the draft genome sequences of these two strains, which have 4,983,334 bp and 4,967,310 bp, respectively.
Collapse
|
11
|
Mhetras N, Mapare V, Gokhale D. Cold Active Lipases: Biocatalytic Tools for Greener Technology. Appl Biochem Biotechnol 2021; 193:2245-2266. [PMID: 33544363 DOI: 10.1007/s12010-021-03516-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Lipases are enzymes that catalyze the ester bond hydrolysis in triglycerides with the release of fatty acids, mono- and diglycerides, and glycerol. The microbial lipases account for $400 million market size in 2017 and it is expected to reach $590 million by 2023. Many biotechnological processes are expedited at high temperatures and hence much research is dealt with thermostable enzymes. Cold active lipases are now gaining importance in the detergent, synthesis of chiral intermediates and frail/fragile compounds, and food and pharmaceutical industries. In addition, they consume less energy since they are active at low temperatures. These cold active lipases have not been commercially exploited so far compared to mesophilic and thermophilc lipases. Cold active lipases are distributed in microbes found at low temperatures. Only a few microbes were studied for the production of these enzymes. These cold-adapted enzymes show increased flexibility of their structures in response to freezing effect of the cold habitats. This review presents an update on cold-active lipases from microbial sources along with some structural features justifying high enzyme activity at low temperature. In addition, recent achievements on their use in various industries will also be discussed.
Collapse
Affiliation(s)
- Nutan Mhetras
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) Lavale, Pune, India
| | - Vidhyashri Mapare
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Digambar Gokhale
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India.
| |
Collapse
|
12
|
Complete Genome Sequence of Psychrobacter sp. Strain KH172YL61, Isolated from Deep-Sea Sediments in the Nankai Trough, Japan. Microbiol Resour Announc 2019; 8:8/16/e00326-19. [PMID: 31000557 PMCID: PMC6473151 DOI: 10.1128/mra.00326-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Psychrobacter sp. strain KH172YL61 is a Gram-negative bacterium isolated from deep-sea sediment in the Nankai Trough in Japan. Here, we report the complete genome sequence of this strain, which has a genome size of 3.19 Mb, with a G+C content of 44.0%. Psychrobacter sp. strain KH172YL61 is a Gram-negative bacterium isolated from deep-sea sediment in the Nankai Trough in Japan. Here, we report the complete genome sequence of this strain, which has a genome size of 3.19 Mb, with a G+C content of 44.0%.
Collapse
|
13
|
Salwoom L, Raja Abd Rahman RNZ, Salleh AB, Mohd Shariff F, Convey P, Mohamad Ali MS. New Recombinant Cold-Adapted and Organic Solvent Tolerant Lipase from Psychrophilic Pseudomonas sp. LSK25, Isolated from Signy Island Antarctica. Int J Mol Sci 2019; 20:ijms20061264. [PMID: 30871178 PMCID: PMC6470613 DOI: 10.3390/ijms20061264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 01/03/2023] Open
Abstract
In recent years, studies on psychrophilic lipases have become an emerging area of research in the field of enzymology. The study described here focuses on the cold-adapted organic solvent tolerant lipase strain Pseudomonas sp. LSK25 isolated from Signy Station, South Orkney Islands, maritime Antarctic. Strain LSK25 lipase was successfully cloned, sequenced, and over-expressed in an Escherichia coli system. Sequence analysis revealed that the lipase gene of Pseudomonas sp. LSK25 consists of 1432 bp, lacks an N-terminal signal peptide and encodes a mature protein consisting of 476 amino acids. The recombinant LSK25 lipase was purified by single-step purification using Ni-Sepharose affinity chromatography and had a molecular mass of approximately 65 kDa. The final recovery and purification fold were 44% and 1.3, respectively. The LSK25 lipase was optimally active at 30 °C and at pH 6. Stable lipolytic activity was reported between temperatures of 5–30 °C and at pH 6–8. A significant enhancement of lipolytic activity was observed in the presence of Ca2+ ions, the organic lipids of rice bran oil and coconut oil, a synthetic C12 ester and a wide range of water immiscible organic solvents. Overall, lipase strain LSK25 is a potentially desirable candidate for biotechnological application, due to its stability at low temperatures, across a range of pH and in organic solvents.
Collapse
Affiliation(s)
- Leelatulasi Salwoom
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
- National Antarctic Research Centre (NARC) B303, Block B, Level 3, IPS Building, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
| | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 OET, UK.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang Selangor 43400, Malaysia.
| |
Collapse
|
14
|
Ai L, Huang Y, Wang C. Purification and characterization of halophilic lipase of Chromohalobacter sp. from ancient salt well. J Basic Microbiol 2018; 58:647-657. [PMID: 29869411 DOI: 10.1002/jobm.201800116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 01/17/2023]
Abstract
A halophilic lipase (LipS2) was produced by Chromohalobacter canadensis strain which was isolated from ancient salt well of Zigong, China. LipS2 was purified to homogeneity and showed a single band with molecular mass of 58 kDa by SDS-PAGE. LipS2 preferred middle-to-long acyl chain esters with C14 triglycerides as optimum substrate. It was noteworthy that LipS2 displayed efficient hydrolysis activity to some vegetable oils which were composed of polyunsaturated fatty acid. LipS2 showed high activity in range of 2.5-3.5 M NaCl, no activity without salt. Optimum temperature and pH were 55 °C and pH 8.5, respectively. Notably, the thermostability and pH stability of LipS2, varying with salt concentration, reached optimum in the presence of 3.0 M NaCl. LipS2 was stimulated by Ca2+ and Mg2+ , inhibited by Zn2+ , Cu2+ , Mn2+ , Fe2+ , and Hg2+ . Moreover, LipS2 displayed significant tolerance to organic solvents including methanol, ethanol, ethyl acetate and acetone, especially, LipS2 activity was enhanced markedly by the hexane and benzene. Non-ionic surfactants increased LipS2 activity, while ionic surfactants decreased activity. This was the first report on halophilic lipase of Chromohalobacter from ancient salt well. The results suggested that LipS2 may have considerable potential for biotechnological applications.
Collapse
Affiliation(s)
- Li Ai
- Sichuan University of Science and Engineering, Zigong City, Sichuan Province, China
| | - Yaping Huang
- Sichuan University of Science and Engineering, Zigong City, Sichuan Province, China
| | - Chuan Wang
- Sichuan University of Science and Engineering, Zigong City, Sichuan Province, China
| |
Collapse
|
15
|
Zhang Y, Ji F, Wang J, Pu Z, Jiang B, Bao Y. Purification and characterization of a novel organic solvent-tolerant and cold-adapted lipase from Psychrobacter sp. ZY124. Extremophiles 2018; 22:287-300. [DOI: 10.1007/s00792-018-0997-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 12/23/2017] [Indexed: 01/17/2023]
|
16
|
Dong H, Secundo F, Xue C, Mao X. Whole-Cell Biocatalytic Synthesis of Cinnamyl Acetate with a Novel Esterase from the DNA Library of Acinetobacter hemolyticus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2120-2128. [PMID: 28220703 DOI: 10.1021/acs.jafc.6b05799] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cinnamyl acetate has a wide application in the flavor and fragrance industry because of its sweet, balsamic, and floral odor. Up to now, lipases have been mainly used in enzyme-mediated synthesis of cinnamyl acetate, whereas esterases are used in only a few cases. Moreover, the use of purified enzymes is often a disadvantage, which leads to increases of the production costs. In this paper, a genomic DNA library of Acinetobacter hemolyticus was constructed, and a novel esterase (EstK1) was identified. After expression in Escherichia coli, the whole-cell catalyst of EstK1 displayed high transesterification activity to produce cinnamyl acetate in nonaqueous systems. Furthermore, under optimal conditions (vinyl acetate as acyl donor, isooctane as solvent, molar ratio 1:4, temperature 40 °C), the conversion ratio of cinnamyl alcohol could be up to 94.1% at 1 h, and it reached an even higher level (97.1%) at 2 h.
Collapse
Affiliation(s)
- Hao Dong
- College of Food Science and Engineering, Ocean University of China , Qingdao 266003, China
| | - Francesco Secundo
- Istituto di Chimica del Riconoscimento Molecolare, CNR , v. Mario Bianco 9, 20131 Milan, Italy
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China , Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China , Qingdao 266003, China
| |
Collapse
|
17
|
Latip W, Raja Abd Rahman RNZ, Chor Leow AT, Mohd Shariff F, Mohamad Ali MS. Expression and characterization of thermotolerant lipase with broad pH profiles isolated from an Antarctic Pseudomonas sp strain AMS3. PeerJ 2016; 4:e2420. [PMID: 27781152 PMCID: PMC5075702 DOI: 10.7717/peerj.2420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/08/2016] [Indexed: 11/30/2022] Open
Abstract
A gene encoding a thermotolerant lipase with broad pH was isolated from an Antarctic Pseudomonas strain AMS3. The recombinant lipase AMS3 was purified by single-step purification using affinity chromatography, yielding a purification fold of approximately 1.52 and a recovery of 50%. The molecular weight was approximately ∼60 kDa including the strep and affinity tags. Interestingly, the purified Antarctic AMS3 lipase exhibited broad temperature profile from 10-70 °C and stable over a broad pH range from 5.0 to pH 10.0. Various mono and divalent metal ions increased the activity of the AMS3 lipase, but Ni2+ decreased its activity. The purified lipase exhibited the highest activity in the presence of sunflower oil. In addition, the enzyme activity in 25% v/v solvents at 50 °C particularly to n-hexane, DMSO and methanol could be useful for catalysis reaction in organic solvent and at broad temperature.
Collapse
Affiliation(s)
- Wahhida Latip
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
18
|
Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes. Front Microbiol 2016; 7:1408. [PMID: 27667987 PMCID: PMC5016527 DOI: 10.3389/fmicb.2016.01408] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022] Open
Abstract
Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.
Collapse
Affiliation(s)
- Margarita Santiago
- Department of Chemical Engineering and Biotechnology, Centre for Biochemical Engineering and Biotechnology, Universidad de ChileSantiago, Chile
| | - César A. Ramírez-Sarmiento
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Ricardo A. Zamora
- Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Loreto P. Parra
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|
19
|
Cold-adapted organic solvent tolerant alkalophilic family I.3 lipase from an Antarctic Pseudomonas. Int J Biol Macromol 2016; 92:1266-1276. [PMID: 27506122 DOI: 10.1016/j.ijbiomac.2016.06.095] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 11/23/2022]
Abstract
Lipolytic enzymes with cold adaptation are gaining increasing interest due to their biotechnological prospective. Previously, a cold adapted family I.3 lipase (AMS8 lipase) was isolated from an Antarctic Pseudomonas. AMS8 lipase was largely expressed in insoluble form. The refolded His-tagged recombinant AMS8 lipase was purified with 23.0% total recovery and purification factor of 9.7. The purified AMS8 lipase migrated as a single band with a molecular weight approximately 65kDa via electrophoresis. AMS8 lipase was highly active at 30°C at pH 10. The half-life of AMS8 lipase was reported at 4 and 2h under the incubation of 30 and 40°C, respectively. The lipase was stable over a broad range of pH. It showed enhancement effect in its relative activity under the presence of Li+, Na+, K+, Rb+ and Cs+ after 30min treatment. Heavy metal ions such as Cu2+, Fe3+ and Zn2+ inhibited AMS8 activity. This cold adapted alkalophilic AMS lipase was also active in various organic solvent of different polarity. These unique properties of this biological macromolecule will provide considerable potential for many biotechnological applications and organic synthesis at low temperature.
Collapse
|
20
|
Affiliation(s)
- M. Kavitha
- School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
21
|
Complete Genome Sequence of Psychrobacter alimentarius PAMC 27889, a Psychrophile Isolated from an Antarctic Rock Sample. GENOME ANNOUNCEMENTS 2016; 4:4/4/e00704-16. [PMID: 27445386 PMCID: PMC4956459 DOI: 10.1128/genomea.00704-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Psychrobacter alimentarius PAMC 27889, a Gram-negative, psychrophilic bacterium, was isolated from an Antarctic rock sample. Here, we report the complete genome of P. alimentarius PAMC 27889, which has the nonmevalonate methylerythritol phosphate pathway of terpenoid biosynthesis and a complete gene cluster for benzoate degradation.
Collapse
|
22
|
Patnala HS, Kabilan U, Gopalakrishnan L, Rao RMD, Kumar DS. Marine Fungal and Bacterial Isolates for Lipase Production: A Comparative Study. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 78:71-94. [PMID: 27452166 DOI: 10.1016/bs.afnr.2016.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lipases, belonging to the class of enzymes called hydrolases, can catalyze triglycerides to fatty acids and glycerol. They are produced by microbes of plant and animal origin, and also by marine organisms. As marine microorganisms thrive in extreme conditions, lipases isolated from their origin possess characteristics of extremozymes, retain its activity in extreme conditions and can catalyze few chemical reactions which are impossible otherwise relative to the lipase produced from terrestrial microorganisms. Lipases are useful in many industries like detergent, food, leather, pharmaceutical, diary, etc. Few commercial enzymes have been developed and the use of them in certain industries like dairy, soaps are proved to be beneficial. There are few research papers reporting the production of lipase from marine bacteria and fungi. Lipase production involves two types of fermentation processes-solid-state fermentation (SSF) and submerged fermentation (SmF). Although SmF process is used conventionally, SSF process produces lipase in higher amounts. The production is also influenced by the composition of the medium, physiochemical parameters like temperature, pH, carbon, and nitrogen sources.
Collapse
Affiliation(s)
- H S Patnala
- Indian Institute of Technology, Hyderabad, Telangana, India
| | - U Kabilan
- School of Bioengineering, SRM University, Kattankulattur, Tamil Nadu, India
| | | | - R M D Rao
- Indian Institute of Technology, Hyderabad, Telangana, India
| | - D S Kumar
- Indian Institute of Technology, Hyderabad, Telangana, India.
| |
Collapse
|
23
|
Water-related environments: a multistep procedure to assess the diversity and enzymatic properties of cultivable bacteria. World J Microbiol Biotechnol 2016; 32:42. [DOI: 10.1007/s11274-015-1997-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
|
24
|
Novototskaya-Vlasova KA, Petrovskaya LE, Rivkina EM, Dolgikh DA, Kirpichnikov MP. Characterization of a cold-active lipase from Psychrobacter cryohalolentis K5(T) and its deletion mutants. BIOCHEMISTRY (MOSCOW) 2014; 78:385-94. [PMID: 23590441 DOI: 10.1134/s000629791304007x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A gene coding for cold-active lipase from the psychrotrophic Gram-negative bacterium Psychrobacter cryohalolentis K5(T) isolated from a Siberian cryopeg has been cloned and expressed in Escherichia coli. The recombinant protein Lip1Pc with a 6× histidine tag at its C-terminus was purified by nickel affinity chromatography. With p-nitrophenyl dodecanoate (C12) as a substrate, the purified recombinant protein displayed maximum lipolytic activity at 25°C and pH 8.0. Increasing the temperature above 40°C and addition of various metal ions and organic solvents inhibited the enzymatic activity of Lip1Pc. Most nonionic detergents, such as Triton X-100 and Tween 20, slightly increased the lipase activity, while SDS completely inhibited it. To investigate the functional significance of the Lip1Pc N-terminal domain, we constructed five deletion mutants of this protein. The ND1 and ND2 mutants displayed specific activity reduced by 30-35%, while other truncated proteins were completely inactive. Both mutants demonstrated increased activity towards p-nitrophenyl decanoate (C10) and impaired utilization of C16 substrate. Although optimum reaction temperature of ND2 lowered to 20°C, it displayed enhanced stability by 44% after incubation at 40°C. The results prove that the N-terminal domain of Lip1Pc has a fundamental impact on the activity and stability of the protein.
Collapse
Affiliation(s)
- K A Novototskaya-Vlasova
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | | | |
Collapse
|
25
|
Adaptational properties and applications of cold-active lipases from psychrophilic bacteria. Extremophiles 2014; 19:235-47. [PMID: 25472009 DOI: 10.1007/s00792-014-0710-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/16/2014] [Indexed: 10/24/2022]
Abstract
Psychrophilic microorganisms are cold-adapted with distinct properties from other thermal classes thriving in cold conditions in large areas of the earth's cold environment. Maintenance of functional membranes, evolving cold-adapted enzymes and synthesizing a range of structural features are basic adaptive strategies of psychrophiles. Among the cold-evolved enzymes are the cold-active lipases, a group of microbial lipases with inherent stability-activity-flexibility property that have engaged the interest of researchers over the years. Current knowledge regarding these cold-evolved enzymes in psychrophilic bacteria proves a display of high catalytic efficiency with low thermal stability, which is a differentiating feature with that of their mesophilic and thermophilic counterparts. Improvement strategies of their adaptive structural features have significantly benefited the enzyme industry. Based on their homogeneity and purity, molecular characterizations of these enzymes have been successful and their properties make them unique biocatalysts for various industrial and biotechnological applications. Although, strong association of lipopolysaccharides from Antarctic microorganisms with lipid hydrolases pose a challenge in their purification, heterologous expression of the cold-adapted lipases with affinity tags simplifies purification with higher yield. The review discusses these cold-evolved lipases from bacteria and their peculiar properties, in addition to their potential biotechnological and industrial applications.
Collapse
|
26
|
Farrokh P, Yakhchali B, Karkhane AA. Rational Design of K173A Substitution Enhances Thermostability Coupled with Catalytic Activity of Enterobacter sp. Bn12 Lipase. J Mol Microbiol Biotechnol 2014; 24:262-9. [DOI: 10.1159/000365890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
27
|
Ugur A, Boran R. Production and characterization of a cold-active andn-hexane activated lipase from a newly isolatedSerratia grimesiiRB06-22. BIOCATAL BIOTRANSFOR 2014. [DOI: 10.3109/10242422.2014.934684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Kim S, Wi AR, Park HJ, Kim D, Kim HW, Yim JH, Han SJ. Enhancing extracellular lipolytic enzyme production in an arctic bacterium, Psychrobacter sp. ArcL13, by using statistical optimization and fed-batch fermentation. Prep Biochem Biotechnol 2014; 45:348-64. [PMID: 25035942 DOI: 10.1080/10826068.2014.940964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A strain isolated from seawater samples in the Chuckchi Sea and exhibiting extracellular lipolytic activity was identified using 16S rRNA gene sequence analysis as Psychrobacter sp. ArcL13. The lipolytic enzyme exhibited cold-active properties and high hydrolytic activity toward p-nitrophenyl caprylate (C8), p-nitrophenyl decanoate (C10), and sunflower oil. Statistical optimization of the medium components was performed to enhance the production of cold-active extracellular lipolytic activity. Glucose, yeast extract (YE), and NaCl were selected as the main efficient nutrient sources. Fed-batch fermentation using optimized medium with concentrated YE as the main feeding material showed a maximum lipolytic activity of 10.7 U/mL, which was a 21-fold increase in production over unoptimized flask culture conditions. The information obtained in the present study could prove applicable to the production of cold-active lipase on a large scale.
Collapse
Affiliation(s)
- Sunghui Kim
- a Division of Life Sciences , Korea Polar Research Institute , KIOST , Incheon , South Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Novototskaya-Vlasova K, Petrovskaya L, Kryukova E, Rivkina E, Dolgikh D, Kirpichnikov M. Expression and chaperone-assisted refolding of a new cold-active lipase from Psychrobacter cryohalolentis K5(T). Protein Expr Purif 2013; 91:96-103. [PMID: 23891837 DOI: 10.1016/j.pep.2013.07.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/03/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022]
Abstract
We describe cloning and expression of genes coding for lipase Lip2Pc and lipase-specific foldase LifPc from a psychrotrophic microorganism Psychrobacter cryohalolentis K5(T) isolated from a Siberian cryopeg (the lense of overcooled brine within permafrost). Upon expression in Escherichiacoli Lip2Pc accumulated in inclusion bodies while chaperone was synthesized in a soluble form. An efficient protocol for solubilization and subsequent refolding of the recombinant lipase in the presence of the truncated chaperone was developed. Using this procedure Lip2Pc with specific activity of 6900U/mg was obtained. Contrary to published data on other lipase-chaperone complexes, refolded Lip2Pc was mostly recovered from the complex with chaperone by metal-affinity chromatography. Recombinant Lip2Pc displayed maximum lipolytic activity at 25°C and pH 8.0 with p-nitrophenyl palmitate (C16) as a substrate. Activity assays conducted at different temperatures revealed that the recombinant Lip2Pc is a cold-adapted lipase with ability to utilize substrates with long (C10-C16) hydrocarbon chains in the temperature range from +5 to +65°C. It demonstrated relatively high stability at temperatures above 60°C and in the presence of various metal ions or organic solvents (ethanol, methanol, etc.). Non-ionic detergents, such as Triton X-100 and Tween 20 decreased Lip2Pc activity and SDS completely inhibited it.
Collapse
Affiliation(s)
- Ksenia Novototskaya-Vlasova
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Institutskaya str., 2, 142290 Pushchino, Moscow Region, Russian Federation.
| | | | | | | | | | | |
Collapse
|
30
|
Characterization of a cold-adapted and salt-tolerant esterase from a psychrotrophic bacterium Psychrobacter pacificensis. Extremophiles 2013; 17:809-19. [DOI: 10.1007/s00792-013-0562-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
|
31
|
Petrovskaya LE, Novototskaya-Vlasova KA, Spirina EV, Khokhlova GV, Rivkina EM, Gilichinsky DA, Dolgikh DA, Kirpichnikov MP. Lipolytic enzymes of microorganisms from permafrost cryopegs. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2012; 445:279-82. [PMID: 22945536 DOI: 10.1134/s0012496612040035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Indexed: 11/23/2022]
Affiliation(s)
- L E Petrovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang Q, Hou Y, Ding Y, Yan P. Purification and biochemical characterization of a cold-active lipase from Antarctic sea ice bacteria Pseudoalteromonas sp. NJ 70. Mol Biol Rep 2012; 39:9233-8. [PMID: 22714922 DOI: 10.1007/s11033-012-1796-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 06/09/2012] [Indexed: 12/12/2022]
Abstract
An extracellular cold-active lipase from Antarctic sea ice bacteria Pseudoalteromonas sp. NJ 70 was purified and characterized. The overall purification based on lipase activity was 27.5-fold with a yield of 25.4 %. The purified lipase showed as a single band on SDS-PAGE with an apparent molecular weight of 37 kDa. The optimum temperature and pH were 35 °C and 7.0, respectively. The lipase activity was enhanced by Ca(2+) and Mg(2+), while was partially inhibited by other metals such as Cu(2+), Zn(2+), Ba(2+), Pb(2+), Fe(2+) and Mn(2+). The lipase had high tolerance to a wide range of NaCl concentrations (0-2 M NaCl). It exhibited high levels of activity in the presence of DTT, Thiourea, H(2)O(2) as well as in the presence of various detergents such as Span 60, Tween-80, Triton X-100. In addition, the lipase showed a preference for long-chain p-nitrophenyl esters (C(12)-C(18)). These results indicated that this lipase could be a novel cold-active lipase.
Collapse
Affiliation(s)
- Quanfu Wang
- School of Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, People's Republic of China
| | | | | | | |
Collapse
|
33
|
Novototskaya-Vlasova K, Petrovskaya L, Yakimov S, Gilichinsky D. Cloning, purification, and characterization of a cold-adapted esterase produced by Psychrobacter cryohalolentis K5T from Siberian cryopeg. FEMS Microbiol Ecol 2012; 82:367-75. [PMID: 22486752 DOI: 10.1111/j.1574-6941.2012.01385.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/03/2012] [Accepted: 04/02/2012] [Indexed: 11/29/2022] Open
Abstract
A psychrotrophic gram-negative bacterium Psychrobacter cryohalolentis K5(T) was previously isolated from a cryopeg within Siberian permafrost and its genome has been completely sequenced. To clone and characterize potential cold-active lipases/esterases produced by P. cryohalolentis K5(T) , we have identified their potential genes by alignment with amino acid sequences of lipases/esterases from related bacteria. One of the targets, EstPc, was cloned and overexpressed in Escherichia coli BL21 (DE3) cells. The recombinant protein was produced with a 6x histidine tag at its C-terminus and purified by nickel affinity chromatography. Purified recombinant protein displayed maximum esterolytic activity with p-nitrophenyl butyrate (C4) as a substrate at 35 °C and pH 8.5. Activity assay conducted at different temperatures revealed that EstPc is a cold-adapted esterase which displayed more than 90% of its maximum activity at 0-5 °C. In contrast to many known cold-active enzymes, it possesses relatively high thermostability, preserving more than 60% of activity after incubation for 1 h at 80 °C. It was activated by Ca(2+) , Mn(2+) , and EDTA whereas Zn(+2) , Cu(+2) , Co(+2) , Ni(+2) , and Mg(+2) inhibited it. Various organic solvents (ethanol, methanol and others) inhibited the enzyme. Most non-ionic detergents, such as Triton X-100 and Tween 20 increased the lipase activity while SDS completely inhibited it.
Collapse
Affiliation(s)
- Ksenia Novototskaya-Vlasova
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Puschino, Moscow Region, Russia.
| | | | | | | |
Collapse
|
34
|
Lipases and esterases from extremophiles: overview and case example of the production and purification of an esterase from Thermus thermophilus HB27. Methods Mol Biol 2012; 861:239-66. [PMID: 22426723 DOI: 10.1007/978-1-61779-600-5_15] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extremophiles are organisms that have evolved to exist in a variety of extreme environments. They fall into a number of different classes that include thermophiles, halophiles, acidophiles, alkalophiles, psychrophiles, and barophiles (piezophiles). Extremophiles have the potential to produce uniquely valuable biocatalysts that function under conditions in which usually the enzymes of their nonextremophilic counterparts could not. Among novel enzymes isolated from extremophilic microorganisms, hydrolases, and particularly lipases and esterases are experiencing a growing demand. Lipases (EC 3.1.1.3) and esterases (EC 3.1.1.1) catalyze the cleavage of ester bounds in aqueous media and the reverse reaction in organic solvents. Both lipolytic enzymes have relevant applications in food, dairy, detergent, biofuel, and pharmaceutical industries. Here, we summarize the properties of lipases and esterases from the main extremophile groups: thermophiles and hyperthermophiles, psychrophiles, halophiles, alkalophiles/acidophiles, and solvent-resistant microorganisms.We report the biomass and lipolytic activity production by Thermus thermophilus HB27 in 5-L stirred-tank bioreactor at 70°C. Suitability of thermal spring water for culture media formulation is shown. In addition, a protocol to isolate and purify a cell-bound esterase from this microorganism is described.
Collapse
|
35
|
Yang J, Dang H. Cloning and characterization of a novel cold-active endoglucanase establishing a new subfamily of glycosyl hydrolase family 5 from a psychrophilic deep-sea bacterium. FEMS Microbiol Lett 2011; 325:71-6. [DOI: 10.1111/j.1574-6968.2011.02413.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/01/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022] Open
Affiliation(s)
- Jinying Yang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology; China University of Petroleum (East China); Qingdao; China
| | - Hongyue Dang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology; China University of Petroleum (East China); Qingdao; China
| |
Collapse
|
36
|
Behrens GA, Hummel A, Padhi SK, Schätzle S, Bornscheuer UT. Discovery and Protein Engineering of Biocatalysts for Organic Synthesis. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100446] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|