1
|
Pal S, Hait A, Mandal S, Roy A, Sar P, Kazy SK. Crude oil degrading efficiency of formulated consortium of bacterial strains isolated from petroleum-contaminated sludge. 3 Biotech 2024; 14:220. [PMID: 39247458 PMCID: PMC11377402 DOI: 10.1007/s13205-024-04066-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
Crude oil contamination has been widely recognized as a major environmental issue due to its various adverse effects. The use of inhabitant microorganisms (native to the contaminated sites) to detoxify/remove pollutants owing to their diverse metabolic capabilities is an evolving method for the removal/degradation of petroleum industry contaminants. The present study deals with the exploitation of native resident bacteria from crude oil contaminated site (oil exploration field) for bioremediation procedures. Fifteen (out of forty-four) bioremediation-relevant aerobic bacterial strains, belonging to the genera of Bacillus, Stenotrophomonas, Pseudomonas, Paenibacillus, Rhizobium, Burkholderia, and Franconibacter, isolated from crude oil containing sludge, have been selected for the present bioremediation study. Crude oil bioremediation performance of the selected bacterial consortium was assessed using microcosm-based studies. Stimulation of the microbial consortium with nitrogen or phosphorous led to the degradation of 60-70% of total petroleum hydrocarbon (TPH) in 0.25% and 0.5% crude oil experimental sets. CO2 evolution, indicative of crude oil mineralization, was evident with the highest evolution being 28.6 mg mL-1. Ecotoxicity of treated crude oil-containing media was assessed using plant seed germination assay, in which most of the 0.25% and 0.5% treated crude oil sets gave positive results thereby suggesting a reduction in crude oil toxicity.
Collapse
Affiliation(s)
- Siddhartha Pal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| | - Arpita Hait
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| | - Sunanda Mandal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| | - Ajoy Roy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| | - Pinaki Sar
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Sufia K Kazy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| |
Collapse
|
2
|
Bai Y, Liang H, Wang L, Tang T, Li Y, Cheng L, Gao D. Bioremediation of Diesel-Contaminated Soil by Fungal Solid-State Fermentation. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 112:13. [PMID: 38103073 DOI: 10.1007/s00128-023-03840-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
To address the poor removal of diesel in soil by indigenous microorganisms, we proposed a fungal solid-state fermentation (SSF) method for bioremediation. We screened Pycnoporus sanguineus 5.815, Trametes versicolor 5.996, and Trametes gibbosa 5.952 for their diesel-degrading abilities, with Trametes versicolor 5.996 showing the most promise. The fungal inoculum was obtained through SSF using wood chips and bran. Trametes versicolor 5.996 was applied to two treatments: natural attenuation (NA, diesel-contaminated soil) and bioremediation (BR, 10% SSF added to diesel-contaminated soil). Over 20 days, NA removed 12.9% of the diesel, while BR achieved a significantly higher 38.3% degradation rate. BR also increased CO2 and CH4 emissions but reduced N2O emissions. High-throughput sequencing indicated SSF significantly enriched known diesel-degrading microorganisms like Ascomycota (83.82%), Proteobacteria (46.10%), Actinobacteria (27.88%), Firmicutes (10.35%), and Bacteroidota (4.66%). This study provides theoretical support for the application of fungal remediation technology for diesel and improves understanding of microbiologically mediated diesel degradation and soil greenhouse gas emissions.
Collapse
Affiliation(s)
- Yuhong Bai
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, 100044, Beijing, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, 100044, Beijing, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, 100044, Beijing, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, 100044, Beijing, China
| | - Litao Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, 100044, Beijing, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, 100044, Beijing, China
| | - Teng Tang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, 100044, Beijing, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, 100044, Beijing, China
| | - Ying Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, 100044, Beijing, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, 100044, Beijing, China
| | - Lang Cheng
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, 100044, Beijing, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, 100044, Beijing, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, 100044, Beijing, China.
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, 100044, Beijing, China.
| |
Collapse
|
3
|
Cauduro GP, Leal AL, Marmitt M, de Ávila LG, Kern G, Quadros PD, Mahenthiralingam E, Valiati VH. New benzo(a)pyrene-degrading strains of the Burkholderia cepacia complex prospected from activated sludge in a petrochemical wastewater treatment plant. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:163. [PMID: 33675444 DOI: 10.1007/s10661-021-08952-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The prospection of bacteria that are resistant to polyaromatic hydrocarbons (PAH) of activated sludge from a Petrochemical Wastewater Treatment Plant (WWTP) allows investigating potential biodegraders of PAH. For this purpose, sludge samples were cultured with benzo(a)pyrene and/or naphthalene as carbon sources. The recovered isolates were characterized by biochemical methods and identified based on the analysis of the sequence of three genes: 16S, recA and gyrB. The isolated strains were shown to be capable of producing surfactants, which are important for compound degradation. The ability to reduce benzo(a)pyrene in vitro was tested by gas chromatography. After 20 days of experiment, the consortium that was enriched with 1 mg/L of benzo(a)pyrene was able to reduce 30% of the compound when compared to a control without bacteria. The four isolated strains that significantly reduced benzo(a)pyrene belong to the Burkholderia cepacia complex and were identified within the consortium as the species B. cenocepacia IIIa, B. vietnamiensis, B. cepacia, and B. multivorans. This finding demonstrates the biotechnological potential of the B. cepacia complex strains for use in wastewater treatment and bioremediation. Previous studies on hydrocarbon-degrading strains focused mainly on contaminated soil or marine areas. In this work, the strains were prospected from activated sludge in a WWTP and showed the potential of indigenous samples to be used in both improving treatment systems and bioremediation of areas contaminated with petrochemical waste.
Collapse
Affiliation(s)
- Guilherme Pinto Cauduro
- Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Ana Lusia Leal
- Superintendence for the Treatment of Wastewater, Companhia Riograndense de Saneamento (SITEL/CORSAN) Polo Petroquímico do Sul, Triunfo, RS, Brazil
| | - Marcela Marmitt
- Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Letícia Gomes de Ávila
- Superintendence for the Treatment of Wastewater, Companhia Riograndense de Saneamento (SITEL/CORSAN) Polo Petroquímico do Sul, Triunfo, RS, Brazil
| | - Gabriela Kern
- Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil
| | - Patrícia Dörr Quadros
- Laboratório de Biodeterioração de Combustíveis e Biocombustíveis, UFRGS, Brazil Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Victor Hugo Valiati
- Laboratory of Molecular Biology, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, RS, 93022-750, Brazil.
| |
Collapse
|
4
|
Gonzalez E, Brereton NJB, Li C, Lopez Leyva L, Solomons NW, Agellon LB, Scott ME, Koski KG. Distinct Changes Occur in the Human Breast Milk Microbiome Between Early and Established Lactation in Breastfeeding Guatemalan Mothers. Front Microbiol 2021; 12:557180. [PMID: 33643228 PMCID: PMC7907006 DOI: 10.3389/fmicb.2021.557180] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Human breast milk contains a diverse community of bacteria, but as breast milk microbiome studies have largely focused on mothers from high income countries where few women breastfeed to 6 months, the temporal changes in the breast milk microbiome that occur during later lactation stages have not been explored. For this cross-sectional study, microbiota from breast milk samples of Mam-Mayan mothers living in eight remote rural communities in the Western Highlands of Guatemala were analyzed. All mothers delivered vaginally and breastfed their infants for 6 months. Breast milk from 76 unrelated mothers was used to compare two lactation stages, either “early” (6–46 days post-partum, n = 33) or “late” (109–184 days post-partum, n = 43). Breast milk microbial communities were assessed using 16S ribosomal RNA gene sequencing and lactation stages were compared using DESeq2 differential abundance analysis. A total of 1,505 OTUs were identified, including 287 which could be annotated as putative species. Among several maternal factors, lactation stage explained microbiome variance and inertia in ordination with the most significance (p < 0.001). Differential abundance analysis identified 137 OTUs as significantly higher in either early or late lactation. These included a general shift from Staphylococcus and Streptococcus species in early lactation to Sphingobium and Pseudomonas species in late lactation. Species enriched in early lactation included putative commensal bacteria known to colonize the infant oral and intestinal tracts whereas species enriched in late lactation had a uniform functional trait associated with aromatic compound degradation. Differentially abundant species also included several species which have not previously been reported within breast milk, such as Janthinobacterium agaricidamnosum, Novosphingobium clariflavum, Ottowia beijingensis, and Flavobacterium cucumis. These discoveries describe temporal changes to the breast milk microbiome of healthy Guatemalan mothers from early to late lactation. Collectively, these findings illustrate how studying under-represented human populations might advance our understanding of factors that modulate the human milk microbiome in low and middle income countries (LMIC).
Collapse
Affiliation(s)
- Emmanuel Gonzalez
- Canadian Centre for Computational Genomics (C3G), Department of Human Genetics, McGill University, Montréal, QC, Canada.,Microbiome Research Platform, McGill Interdisciplinary Initiative in Infection and Immunity (MI4), Genome Centre, McGill University, Montréal, QC, Canada
| | - Nicholas J B Brereton
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| | - Chen Li
- School of Human Nutrition, McGill University, Ste-Anne de Bellevue, QC, Canada
| | - Lilian Lopez Leyva
- School of Human Nutrition, McGill University, Ste-Anne de Bellevue, QC, Canada
| | - Noel W Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | - Luis B Agellon
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | - Marilyn E Scott
- Institute of Parasitology, McGill University, Ste-Anne de Bellevue, QC, Canada
| | - Kristine G Koski
- School of Human Nutrition, McGill University, Ste-Anne de Bellevue, QC, Canada
| |
Collapse
|
5
|
Ke CY, Qin FL, Yang ZG, Sha J, Sun WJ, Hui JF, Zhang QZ, Zhang XL. Bioremediation of oily sludge by solid complex bacterial agent with a combined two-step process. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111673. [PMID: 33396005 DOI: 10.1016/j.ecoenv.2020.111673] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/03/2020] [Accepted: 11/15/2020] [Indexed: 05/05/2023]
Abstract
In the present research, a bioremediation process was developed using solid complex bacterial agents (SCBA) through a combined two-step biodegradation process. Four isolated strains showed high efficiency for the degradation of total petroleum hydrocarbons (TPH) and the reduction of COD of the oily sludge, at 96.6% and 92.6%, respectively. The mixed strains together with bran prepared in form of SCBA exhibited improved performance compared to individual strains, all of which had an optimal temperature of around 35 °C. The use of SCBA provided advantages over commonly used liquid media for storage and transportation. The two-step process, consisting of firstly biosurfactant-assisted oil recovery and secondly biodegradation of the remaining TPH with SCBA, demonstrated the capability for treating oily sludge with high TPH content (>10 wt%) and short process period (60 days). The large-scale (5 tons oily sludge) field test, achieving a TPH removal efficiency of 93.8% and COD reduction of 91.5%, respectively, confirmed the feasibility and superiority of the technology for industrial applications.
Collapse
Affiliation(s)
- Cong-Yu Ke
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
| | - Fang-Ling Qin
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
| | - Zhi-Gang Yang
- Shaanxi Key Laboratory of Lacustrine Shale Gas Accumulation and Exploitation, Xi'an 710065, China; Research Institute of Yanchang Petroleum (Group) Company Limited, Xi'an 710065, China
| | - Jun Sha
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
| | - Wu-Juan Sun
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
| | - Jun-Feng Hui
- School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China
| | - Qun-Zheng Zhang
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China
| | - Xun-Li Zhang
- Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an 710065, China.
| |
Collapse
|
6
|
Andrade MVF, Delforno TP, Sakamoto IK, Silva EL, Varesche MBA. Dynamics and response of microbial diversity to nutritional conditions in denitrifying bioreactor for linear alkylbenzene sulfonate removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 263:110387. [PMID: 32174528 DOI: 10.1016/j.jenvman.2020.110387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
The aim of this study was to evaluate the microbial structure and phylogenetic diversity under the influence of nutritional conditions and hydraulic retention time (HRT) in fluidized bed reactors (FBR), operated in short HRT (8 h - FBR8; 12 h - FBR12) for linear alkylbenzene sulfonate (LAS) removal from laundry wastewater. After each phase, biofilm samples from FBR8 and FBR12 were submitted to microbial sequencing by Mi-Seq Illumina®. Higher LAS removal rates were observed after 313 days, achieving 99 ± 3% in FBR12 (22.5 ± 5.9 mg LAS/L affluent) and 93 ± 12% in FBR8 (20.6 ± 4.4 mg LAS/L affluent). Different modifications involving genera of bacteria were observed throughout the reactors operation. The identified microorganisms were, mostly, related to LAS degradation and nitrogen conversion such as Dechloromonas, Flavobacterium, Pseudomonas, and Zoogloea.
Collapse
Affiliation(s)
| | - Tiago Palladino Delforno
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP, Campinas, 13081-970, SP, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Trabalhador São-carlense, 13566-590, São Carlos, SP, Brazil
| | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz, Km 235, SP 310, 13565-905, São Carlos, SP, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Trabalhador São-carlense, 13566-590, São Carlos, SP, Brazil
| |
Collapse
|
7
|
Hassan IA, Mohamedelhassan EE, Yanful EK, Weselowski B, Yuan ZC. Isolation and characterization of novel bacterial strains for integrated solar-bioelectrokinetic of soil contaminated with heavy petroleum hydrocarbons. CHEMOSPHERE 2019; 237:124514. [PMID: 31408796 DOI: 10.1016/j.chemosphere.2019.124514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the isolation and characterization of three novel bacterial strains; Acinetobacter calcoaceticus, Sphingobacterium multivorum, and Sinorhizobium, isolated form agriculture land. From three hundred strains of bacteria, the three isolates were identified for their superior diesel degradation ability by a series of bench-scale tests. The isolates were further investigated in bench tests for their ability to grow in different diesel fuel concentrations, temperature and pH; degrade diesel fuel in vitro; and for the identification of functional genes. Semi-pilot bioelectrokinetic tests were conducted in three electrokinetic cells. An innovative electrode configuration was adopted to stabilize the soil pH and water content during the test. The genes expressed in the diesel degradation process including Lipases enzymes Lip A, LipB, Alk-b2, rubA, P450, and 1698/2041 were detected in the three isolates. The results showed that the solar panel voltage output is in agreement with the trapezoid model. The temperatures in the cells were found to be 5-7 °C higher than the ambient temperature. The electrode configuration succeeded in stabilizing the soil pH and water content, preventing the development of a pH gradient, important progress for the survival of bacteria. The diesel degradation in the soil after bioelectrokinetic tests were 20-30%, compared to 10-12% in the controls. The study succeeded in developing environmentally friendly technology employing novel bacterial strains to degrade diesel fuel and utilizing solar panels to produce renewable energy for bioelectrokinetics during the winter season.
Collapse
Affiliation(s)
- Ikrema A Hassan
- Department of Civil and Environmental Engineering, Taibah University, Al Medina, Saudi Arabia; London Research and Development Centre, Agriculture and Agri-Food Canada, London, Canada.
| | | | - Ernest K Yanful
- Department of Civil and Environmental Engineering, Western University, London, Canada
| | - Brian Weselowski
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Canada
| | - Ze-Chun Yuan
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Canada; Department of Microbiology and Immunology, Western University, London, Canada
| |
Collapse
|
8
|
Pires JF, Schwan RF, Silva CF. Assessing the efficiency in assisted depuration of coffee processing wastewater from mixed wild microbial selected inoculum. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:284. [PMID: 30997565 DOI: 10.1007/s10661-019-7398-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
This work evaluated the efficiency of bacterial bio-augmentation to the biological treatment of coffee processing wastewater (CPWW) in a pilot wastewater treatment plant (WTP). Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) values were the basis for the treatment efficiency. Serratia marcescens CCMA 1010 and CCMA 1013, Corynebacterium flavescens CCMA 1006 and Acetobacter indonesiensis CCMA 1002 were previously selected. The microbial cocktail was inoculated and persisted in CPWW during all treatments. The richness of wild species was a little altered over time and up to nine species were found in each sampled season. The microbiota composition presented variation of a total of 13 species, despite the inoculation of the microbial inoculum. The biodegradability index of effluent, close to 0.5, was favourable to biological treatment. The pollution parameters of CPWW were decreased in function of the variation of community composition and microbial activity. The greatest reduction of BOD (~ 33%) and COD (~ 25%) was observed between 72 h and 8 days of the biological treatment. The CPWW toxicity in Allium cepa seeds was lower by up to 60%, and the germination index (GI) exceeded 100% in the treated CPWW. The results of the CPWW biological treatment by bio-augmentation from native micro-organisms in the pilot-scale WTP indicated the greatest efficiency relating to the spontaneous biological treatment of CPWW. After this treatment, the discharge of effluent in the environment would not have toxic effects on the plants.
Collapse
Affiliation(s)
- Josiane Ferreira Pires
- Department of Biology, Universidade Federal de Lavras. Campus Universitário, CEP: 37.200-000, Lavras, MG, Brazil
| | - Rosane Freitas Schwan
- Department of Biology, Universidade Federal de Lavras. Campus Universitário, CEP: 37.200-000, Lavras, MG, Brazil
| | - Cristina Ferreira Silva
- Department of Biology, Universidade Federal de Lavras. Campus Universitário, CEP: 37.200-000, Lavras, MG, Brazil.
| |
Collapse
|
9
|
Hassan IA, Mohamedelhassan EE, Yanful EK, Yuan ZC. Mitigation of soil contaminated with diesel fuel using bioelectrokinetics. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:416-426. [PMID: 30676255 DOI: 10.1080/10934529.2018.1558903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/21/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
This study investigated the effectiveness of bioelectrokinetics in rehabilitating a silty clayey sand contaminated with diesel fuel using three novel bacterial strains; Acinetobacter calcoaceticus, Sphingobacterium multivorum, and Sinorhizobium, isolated form agriculture land. Three electrokinetic bioremediation cells were used to conduct the tests and a novel electrode configuration technique was used to stabilize pH and water content in the soil specimen. Solar photovoltaic panels were used to generate sustainable energy for the process. The tests were carried out in outdoors for 55 days. Applied voltage, current passing through the electrokinetic cell, and the temperature of the soil specimen were recorded periodically during the test. The pH, water content, and diesel concentration were determined at the end of the tests. Over the test period, the voltage typically increased from zero before sunrise, remained relatively stabilized for about 4 h, and then started to decrease and dropped to zero by sunset. The temperatures in the cells were found to be 5-7 °C higher than the ambient temperature. The innovative electrode configuration succeeded in keeping the pH of soil to remain the same and thereby prevented the development of a pH gradient in the soil, an important development for survival of the bacteria. The diesel degradation in the soil after bioelectrokinetics were 20-30%, compared to 10-12% in the control test. The study was successful in developing environmentally friendly technology employing novel bacterial strains to degrade diesel fuel and utilizing solar panel to produce renewable energy for bioelectrokinetic during the winter season.
Collapse
Affiliation(s)
- Ikrema A Hassan
- a Department of Civil and Environmental Engineering , Western University , London , Ontario, Canada
- b London Research and Development Centre , Agriculture and Agri-Food Canada , London , Ontario, Canada
| | | | - Ernest K Yanful
- c Department of Civil Engineering , Lakehead University , Thunder Bay , Ontario, Canada
| | - Ze-Chun Yuan
- d Department of Microbiology and Immunology , Western University , London , Ontario, Canada
| |
Collapse
|
10
|
Napp AP, Pereira JES, Oliveira JS, Silva-Portela RCB, Agnez-Lima LF, Peralba MCR, Bento FM, Passaglia LMP, Thompson CE, Vainstein MH. Comparative metagenomics reveals different hydrocarbon degradative abilities from enriched oil-drilling waste. CHEMOSPHERE 2018; 209:7-16. [PMID: 29908430 DOI: 10.1016/j.chemosphere.2018.06.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/24/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
The oil drilling process generates large volumes of waste with inadequate treatments. Here, oil drilling waste (ODW) microbial communities demonstrate different hydrocarbon degradative abilities when exposed to distinct nutrient enrichments as revealed by comparative metagenomics. The ODW was enriched in Luria Broth (LBE) and Potato Dextrose (PDE) media to examine the structure and functional variations of microbial consortia. Two metagenomes were sequenced on Ion Torrent platform and analyzed using MG-RAST. The STAMP software was used to analyze statistically significant differences amongst different attributes of metagenomes. The microbial diversity presented in the different enrichments was distinct and heterogeneous. The metabolic pathways and enzymes were mainly related to the aerobic hydrocarbons degradation. Moreover, our results showed efficient biodegradation after 15 days of treatment for aliphatic hydrocarbons (C8-C33) and polycyclic aromatic hydrocarbons (PAHs), with a total of about 50.5% and 46.4% for LBE and 44.6% and 37.9% for PDE, respectively. The results obtained suggest the idea that the enzymatic apparatus have the potential to degrade petroleum compounds.
Collapse
Affiliation(s)
- Amanda P Napp
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-070, Brazil.
| | - José Evandro S Pereira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-070, Brazil.
| | - Jorge S Oliveira
- INESC-ID/IST-Instituto de Engenharia de Sistemas e Computadores/Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1000-029, Portugal; Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN 59072-970, Brazil.
| | - Rita C B Silva-Portela
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN 59072-970, Brazil.
| | - Lucymara F Agnez-Lima
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN 59072-970, Brazil.
| | - Maria C R Peralba
- Departamento de Química Inorgânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91500-970, Brazil.
| | - Fátima M Bento
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90050-170, Brazil.
| | - Luciane M P Passaglia
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91500-970, Brazil.
| | - Claudia E Thompson
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-070, Brazil; Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS 90050-170, Brazil.
| | - Marilene H Vainstein
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-070, Brazil.
| |
Collapse
|
11
|
Pedro AMDA, Armando CFD, Simone RC, Diogo PDC, João TCO, Lucianne FPDO, Fernando JF, Fernando DA, Julia KS. Differential niche occupation and the biotechnological potential of Methylobacterium species associated with sugarcane plants. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/ajmr2018.8905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Nkhalambayausi Chirwa EM, Mampholo CT, Fayemiwo OM, Bezza FA. Biosurfactant assisted recovery of the C 5-C 11 hydrocarbon fraction from oily sludge using biosurfactant producing consortium culture of bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 196:261-269. [PMID: 28288360 DOI: 10.1016/j.jenvman.2017.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/27/2017] [Accepted: 03/03/2017] [Indexed: 06/06/2023]
Abstract
A biosurfactant producing culture of bacteria was isolated from an automobile engine oil dump site which was later used as an inoculum in batch and continuous flow oil recovery from oily sludge. Initially, an emulsion of oily sludge was prepared by mixing 5% m/v solids: 21% v/v bituminous sludge: 77% v/v water. The isolated cultures were added to vessels with stable emulsions to facilitate the separation of oil droplets from the sludge matrix. In batches with live cultures, up to 35% oil recovery was achieved after incubation for 10 days. Further investigations were conducted in a semi-continuous feed, fed-batch plug flow reactor (FB-PFR) system. Up to 99.7% was achieved in the FB-PFR after operation for 10 days, much higher than the recovery achieved in the pure batch systems where only 35% oil was recovered after incubation for 10 days. The improved performance in the FB-PFR was attributed to differential separation of particles under variable velocity along the reactor. The culture in the reactor was predominated by Klebsiellae, Enterobacteriaceae and Bacilli throughout the experiment. A crude biosurfactant produced by the cultures was partially purified and analyzed using the liquid chromatograph coupled to a tandem mass spectrometer (LC-MS/MS) which showed that the molecular structure of the biosurfactant produced closely matched the structure of lipopeptides identified in earlier studies. This process is aimed at recovering useful oil from oily waste sludge with the added advantage of degrading aromatic organic impurities in the oil to produce a cleaner oil product. The further advantage of the FB-PFR system was that, the bacteria discharged together with effluent sludge residue further degraded chemical oxygen demand (COD) in the treated sludge thereby reducing the polluting potential of the final disposed sludge.
Collapse
Affiliation(s)
| | - Chidinyane T Mampholo
- Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa
| | | | - Fisseha A Bezza
- Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
13
|
Peixoto J, Silva LP, Krüger RH. Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2017; 324:634-644. [PMID: 27889181 DOI: 10.1016/j.jhazmat.2016.11.037] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/07/2016] [Accepted: 11/13/2016] [Indexed: 05/16/2023]
Abstract
Discarded PE-based products pose a social and environmental threat because of their recalcitrance to degradation, a consequence of the unique set of PE's physicochemical properties. In this study we isolated nine novel PE-degrading bacteria from plastic debris found in soil of the savanna-like Brazilian Cerrado. These bacterial strains from the genera Comamonas, Delftia, and Stenotrophomonas showed metabolic activity and cellular viability after a 90-day incubation with PE as the sole carbon source. ATR/FTIR indicated that biodegraded PE undergone oxidation, vinylene formation, chain scission, among other chemical changes. Considerable nanoroughness shifts and vast damages to the micrometric surface were confirmed by AFM and SEM. Further, phase imaging revealed a 46.7% decrease in the viscous area of biodegraded PE whereas Raman spectroscopy confirmed a loss in its crystalline content, suggesting the assimilation of smaller fragments. Intriguingly, biodegraded PE chemical fingerprint suggests that these strains use novel biochemical strategies in the biodegradation process. Our results indicate that these microbes are capable of degrading unpretreated PE of very high molecular weight (191,000gmol-1) and survive for long periods under this condition, suggesting not only practical applications in waste management and environmental decontamination, but also future directions to understand the unraveled metabolism of synthetic polymers.
Collapse
Affiliation(s)
- Julianna Peixoto
- Laboratory of Enzymology, Cellular Biology Department, Biological Sciences Institute, University of Brasilia, Brasilia, 70910-900, DF, Brazil.
| | - Luciano P Silva
- Laboratory of Nanobiotechnology, Embrapa Genetic Resources and Biotechnology, Brasilia, 70770-917, DF, Brazil.
| | - Ricardo H Krüger
- Laboratory of Enzymology, Cellular Biology Department, Biological Sciences Institute, University of Brasilia, Brasilia, 70910-900, DF, Brazil.
| |
Collapse
|
14
|
Perez KJ, Viana JDS, Lopes FC, Pereira JQ, Dos Santos DM, Oliveira JS, Velho RV, Crispim SM, Nicoli JR, Brandelli A, Nardi RMD. Bacillus spp. Isolated from Puba as a Source of Biosurfactants and Antimicrobial Lipopeptides. Front Microbiol 2017; 8:61. [PMID: 28197131 PMCID: PMC5281586 DOI: 10.3389/fmicb.2017.00061] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/10/2017] [Indexed: 11/13/2022] Open
Abstract
Several products of industrial interest are produced by Bacillus, including enzymes, antibiotics, amino acids, insecticides, biosurfactants and bacteriocins. This study aimed to investigate the potential of two bacterial isolates (P5 and C3) from puba, a regional fermentation product from cassava, to produce multiple substances with antimicrobial and surface active properties. Phylogenetic analyses showed close relation of isolates P5 and C3 with Bacillus amyloliquefaciens and Bacillus thuringiensis, respectively. Notably, Bacillus sp. P5 showed antimicrobial activity against pathogens such as Listeria monocytogenes and Bacillus cereus, in addition to antifungal activity. The presence of genes encoding pre-subtilosin (sboA), malonyl CoA transacylase (ituD), and the putative transcriptional terminator of surfactin (sfp) were detected in Bacillus sp. P5, suggesting the production of the bacteriocin subtilosin A and the lipopeptides iturin A and surfactin by this strain. For Bacillus sp. C3 the presence of sboA and spas (subtilin) genes was observed by the first time in members of B. cereus cluster. Bacillus sp. P5 showed emulsifying capability on mineral oil, soybean biodiesel and toluene, while Bacillus sp. C3 showed emulsifying capability only on mineral oil. The reduction of the surface tension in culture medium was also observed for strain P5, confirming the production of surface-active compounds by this bacterium. Monoprotonated molecular species and adducts of sodium and potassium ions of surfactin, iturin, and fengycin were detected in the P5 culture medium. Comparative MS/MS spectra of the peak m/z 1030 (C14 surfactin A or C15 surfactin B [M+Na]+) and peak m/z 1079 (C15 iturin [M+Na]+) showed the same fragmentation profile of standards, confirming the molecular identification. In conclusion, Bacillus sp. P5 showed the best potential for the production of antifungal, antibacterial, and biosurfactant substances.
Collapse
Affiliation(s)
- Karla J Perez
- Laboratório de Microbiologia Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil; Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Jaime Dos Santos Viana
- Laboratório de Microbiologia Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Fernanda C Lopes
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Jamile Q Pereira
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Daniel M Dos Santos
- Núcleo de Biomoléculas, Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Jamil S Oliveira
- Núcleo de Biomoléculas, Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Renata V Velho
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Silvia M Crispim
- Laboratório de Microbiologia Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Jacques R Nicoli
- Laboratório de Microbiologia Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Regina M D Nardi
- Laboratório de Microbiologia Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| |
Collapse
|
15
|
de Almeida DG, da Silva MDGC, do Nascimento Barbosa R, de Souza Pereira Silva D, da Silva RO, de Souza Lima GM, de Gusmão NB, de Queiroz Sousa MDFV. Biodegradation of marine fuel MF-380 by microbial consortium isolated from seawater near the petrochemical Suape Port, Brazil. INTERNATIONAL BIODETERIORATION & BIODEGRADATION 2017. [DOI: https://doi.org/10.1016/j.ibiod.2016.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Optimization of iron chelating biosurfactant production by Stenotrophomonas maltophilia NBS-11. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Abstract
Moonbeam is a newly isolated myophage of Bacillus megaterium, a common Gram-positive bacterium that is routinely used for large-scale protein production. Bacteriophages have potential to be useful tools for industrial applications. Here, we describe the complete genome of Moonbeam and describe its features.
Collapse
|
18
|
Panjiar N, Sachan SG, Sachan A. Screening of bioemulsifier-producing micro-organisms isolated from oil-contaminated sites. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0915-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
19
|
Aulenta F, Verdini R, Zeppilli M, Zanaroli G, Fava F, Rossetti S, Majone M. Electrochemical stimulation of microbial cis-dichloroethene (cis-DCE) oxidation by an ethene-assimilating culture. N Biotechnol 2013; 30:749-55. [DOI: 10.1016/j.nbt.2013.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/11/2013] [Accepted: 04/13/2013] [Indexed: 10/26/2022]
|
20
|
Ma HK, Liu MM, Li SY, Wu Q, Chen JC, Chen GQ. Application of polyhydroxyalkanoate (PHA) synthesis regulatory protein PhaR as a bio-surfactant and bactericidal agent. J Biotechnol 2013; 166:34-41. [DOI: 10.1016/j.jbiotec.2013.04.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 04/18/2013] [Accepted: 04/26/2013] [Indexed: 01/28/2023]
|
21
|
Biosurfactants in agriculture. Appl Microbiol Biotechnol 2013; 97:1005-16. [PMID: 23280539 PMCID: PMC3555348 DOI: 10.1007/s00253-012-4641-8] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 12/02/2022]
Abstract
Agricultural productivity to meet growing demands of human population is a matter of great concern for all countries. Use of green compounds to achieve the sustainable agriculture is the present necessity. This review highlights the enormous use of harsh surfactants in agricultural soil and agrochemical industries. Biosurfactants which are reported to be produced by bacteria, yeasts, and fungi can serve as green surfactants. Biosurfactants are considered to be less toxic and eco-friendly and thus several types of biosurfactants have the potential to be commercially produced for extensive applications in pharmaceutical, cosmetics, and food industries. The biosurfactants synthesized by environmental isolates also has promising role in the agricultural industry. Many rhizosphere and plant associated microbes produce biosurfactant; these biomolecules play vital role in motility, signaling, and biofilm formation, indicating that biosurfactant governs plant–microbe interaction. In agriculture, biosurfactants can be used for plant pathogen elimination and for increasing the bioavailability of nutrient for beneficial plant associated microbes. Biosurfactants can widely be applied for improving the agricultural soil quality by soil remediation. These biomolecules can replace the harsh surfactant presently being used in million dollar pesticide industries. Thus, exploring biosurfactants from environmental isolates for investigating their potential role in plant growth promotion and other related agricultural applications warrants details research. Conventional methods are followed for screening the microbial population for production of biosurfactant. However, molecular methods are fewer in reaching biosurfactants from diverse microbial population and there is need to explore novel biosurfactant from uncultured microbes in soil biosphere by using advanced methodologies like functional metagenomics.
Collapse
|
22
|
Characterization of novel diesel-degrading strains Acinetobacter haemolyticus MJ01 and Acinetobacter johnsonii MJ4 isolated from oil-contaminated soil. World J Microbiol Biotechnol 2012; 28:2057-67. [DOI: 10.1007/s11274-012-1008-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
|