1
|
Ligong Z, Hongxia L, Junjie L, Lu Z, Bie X. A duplex real-time NASBA assay targeting serotype-specific gene for rapid detection of viable S. enterica serovar Paratyphi C in retail foods of animal origin. Can J Microbiol 2022; 68:259-268. [PMID: 35025610 DOI: 10.1139/cjm-2021-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Salmonella enterica serovars Paratyphi C is highly adapted to humans and can cause a typhoid-like disease with high mortality rates. In this study, three serovar-specific genes were determined for S. Paratyphi C, SPC_0871,SPC_0872, and SPC_0908, by comparative genomics method. Based on SPC_0908 and xcd gene for testing Salmonella spp., we have developed a duplex real-time nucleic acid sequence-based amplification (real-time NASBA) with molecular beacon approach for simultaneous detection of viable cells of Salmonella spp. and serotype Paratyphi C. The test selectively and consistently detected 53 Salmonella spp. (representing 31 serotypes) and 18 non-Salmonella strains. Additionally, the method showed high resistance to interference by natural background flora in pork and chicken samples. The sensitivity of the established approach was determined to be 4.89 CFU/25 g in artificially contaminated pork and chicken samples after pre-enrichment. We propose this NASBA-based protocol as a potential detection method for Salmonella spp. and serotype Paratyphi C in food of animal origin.
Collapse
Affiliation(s)
- Zhai Ligong
- Anhui Science and Technology University, 177515, Bengbu, China, 233100;
| | - Liu Hongxia
- Ministry of Agriculture of China, Nanjing, China;
| | - Li Junjie
- Nanjing Agricultural University, 70578, Nanjing, Jiangsu, China;
| | - Zhaoxin Lu
- Colleges of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China;
| | - Xiaomei Bie
- Colleges of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China;
| |
Collapse
|
2
|
Kong XH, Kong LY, Hu AT, Li JJ, Lu ZX, Bie XM. Establishment of PCR Assay with Internal Amplification Control for Rapid Detection of Salmonella sp. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821050094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Wan J, Zheng L, Kong L, Lu Z, Tao Y, Feng Z, Lv F, Meng F, Bie X. Development of a rapid detection method for real-time fluorescent quantitative PCR of Salmonella spp. and Salmonella Enteritidis in ready-to-eat fruits and vegetables. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Shang Y, Ye Q, Wu Q, Pang R, Xiang X, Wang C, Li F, Zhou B, Xue L, Zhang Y, Sun X, Zhang J. PCR identification of Salmonella serovars for the E serogroup based on novel specific targets obtained by pan-genome analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Loop-mediated isothermal amplification (LAMP) for rapid detection of Salmonella in foods based on new molecular targets. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Ye Q, Shang Y, Chen M, Pang R, Li F, Xiang X, Zhou B, Wang C, Zhang S, Zhang J, Wang J, Xue L, Ding Y, Wu Q. Mining and evaluating novel serovar-specific Salmonella C1 serogroup genes by polymerase chain reaction analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Ye Q, Shang Y, Chen M, Pang R, Li F, Xiang X, Wang C, Zhou B, Zhang S, Zhang J, Yang X, Xue L, Ding Y, Wu Q. Identification of Novel Sensitive and Reliable Serovar-Specific Targets for PCR Detection of Salmonella Serovars Hadar and Albany by Pan-Genome Analysis. Front Microbiol 2021; 12:605984. [PMID: 33815306 PMCID: PMC8011537 DOI: 10.3389/fmicb.2021.605984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/22/2021] [Indexed: 01/16/2023] Open
Abstract
The accurate and rapid classification of Salmonella serovars is an essential focus for the identification of isolates involved in disease in humans and animals. The purpose of current research was to identify novel sensitive and reliable serovar-specific targets and to develop PCR method for Salmonella C2 serogroups (O:8 epitopes) in food samples to facilitate timely treatment. A total of 575 genomic sequences of 16 target serovars belonging to serogroup C2 and 150 genomic sequences of non-target serovars were analysed by pan-genome analysis. As a result, four and three specific genes were found for serovars Albany and Hadar, respectively. Primer sets for PCR targeting these serovar-specific genes were designed and evaluated based on their specificity; the results showed high specificity (100%). The sensitivity of the specific PCR was 2.8 × 101–103 CFU/mL and 2.3 × 103–104 CFU/mL for serovars Albany and Hadar, respectively, and the detection limits were 1.04 × 103–104 CFU/g and 1.16 × 104–105 CFU/g in artificially contaminated raw pork samples. Furthermore, the potential functions of these serovar-specific genes were analysed; all of the genes were functionally unknown, except for one specific serovar Albany gene known to be a encoded secreted protein and one specific gene for serovars Hadar and Albany that is a encoded membrane protein. Thus, these findings demonstrate that pan-genome analysis is a precious method for mining new high-quality serovar-targets for PCR assays or other molecular methods that are highly sensitive and can be used for rapid detection of Salmonella serovars.
Collapse
Affiliation(s)
- Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuting Shang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinran Xiang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chufang Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Baoqing Zhou
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuhong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Technology, Jinan University, Institute of Food Safety & Nutrition, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
8
|
Kreitlow A, Becker A, Schotte U, Malorny B, Plötz M, Abdulmawjood A. Evaluation of different target genes for the detection of Salmonella sp. by loop-mediated isothermal amplification. Lett Appl Microbiol 2020; 72:420-426. [PMID: 33030743 DOI: 10.1111/lam.13409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022]
Abstract
The loop-mediated isothermal amplification (LAMP) technique was used to investigate six salmonella-specific sequences for their suitability to serve as targets for the pathogen identification. Sequences selected for designing LAMP primers were genes invA, bcfD, phoP, siiA, gene62181533 and a region within the ttrRSBCA locus. Primers including single nucleotide polymorphisms were configured as degenerate primers. Specificity of the designed primer sets was determined by means of 46 salmonella and 32 other food- and waterborne bacterial reference species and strains. Primers targeting the ttrRSBCA locus showed 100 % inclusivity of target and exclusivity of other test species and strains. Other primer sets revealed deficiencies, especially regarding Salmonella enterica subsp. II-IV and Salmonella bongori. Additionally, primers targeting the siiA gene failed to detect S. enterica subsp. enterica serotypes Newport and Stanley, whereas bcfD primers did not amplify DNA of S. enterica subsp. enterica serotype Schleissheim. TtrRSBCA primers, providing short detection times and constant melting temperatures of amplification products, achieved best overall performance.
Collapse
Affiliation(s)
- A Kreitlow
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - A Becker
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - U Schotte
- Department A - Veterinary Medicine, Central Institute of the Bundeswehr Medical Service Kiel, Kronshagen, Germany
| | - B Malorny
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - M Plötz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| | - A Abdulmawjood
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
9
|
Hai D, Yin X, Lu Z, Lv F, Zhao H, Bie X. Occurrence, drug resistance, and virulence genes of Salmonella isolated from chicken and eggs. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Wan J, Guo J, Lu Z, Bie X, Lv F, Zhao H. Development of a test kit for visual loop-mediated isothermal amplification of Salmonella in spiked ready-to-eat fruits and vegetables. J Microbiol Methods 2019; 169:105830. [PMID: 31891738 DOI: 10.1016/j.mimet.2019.105830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 02/02/2023]
Abstract
The purpose of this study was to assemble two types of loop-mediated isothermal amplification (LAMP) kit that have the ability to visually detect Salmonella in ready-to-eat fruits and vegetables. The reaction results were obtained within 20-40 min after addition of DNA and can be discerned by the naked eye or an amplification plot. The stability of the LAMP wet kit was evident after multiple freezing and thawing cycles, and the one-step LAMP lyophilized kit was further evolved to allow ambient temperature transport for deployment in resource-limited settings. The cost-effective wet kit had the ability to detect minimum amounts of 1.8 CFU/ml Salmonella DNA without enrichment, while the sensitivity of the one-step LAMP lyophilized kit was only 9.8 × 103 CFU/ml. They both have good anti-interference, as they were both able to detect 2.1 × 102 CFU/ml Salmonella mixed with 106 CFU/ml four non-Salmonella strain mixture. Moreover, cucumber and lettuce that were contaminated with an initial inoculation of 1.7 CFU of Salmonella/10 g showed detection within a reaction time of 30 min after 10 h enrichment. The present research setup is a convenient and practical kit for Salmonella rapid detection that has good application prospects in food safety monitoring.
Collapse
Affiliation(s)
- Jiajia Wan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jianping Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Fengxia Lv
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
11
|
Zhai L, Liu H, Chen Q, Lu Z, Zhang C, Lv F, Bie X. Development of a real-time nucleic acid sequence-based amplification assay for the rapid detection of Salmonella spp. from food. Braz J Microbiol 2018; 50:255-261. [PMID: 30637640 DOI: 10.1007/s42770-018-0002-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 08/01/2017] [Indexed: 11/26/2022] Open
Abstract
Salmonella spp. is one of the most common foodborne infectious pathogen. This study aimed to develop a real-time nucleic acid sequence-based amplification (NASBA) assay for detecting Salmonella in foods. Primers and a molecular beacon targeting the Salmonella-specific xcd gene were designed for mRNA transcription, and 48 Salmonella and 18 non-Salmonella strains were examined. The assay showed a high specificity and low detection limit for Salmonella (7 × 10-1 CFU/mL) after 12 h of pre-enrichment. Importantly, it could detect viable cells. Additionally, the efficacy of the NASBA assay was examined in the presence of pork background microbiota; it could detect Salmonella cells at 9.5 × 103 CFU/mL. Lastly, it was successfully used to detect Salmonella in pork, beef, and milk, and its detection limit was as low as 10 CFU/25 g (mL). The real-time NASBA assay developed in this study may be useful for rapid, specific, and sensitive detection of Salmonella in food of animal origin.
Collapse
Affiliation(s)
- Ligong Zhai
- College of Food Science and Technology, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Food and Drug, Anhui Science and Technology University, Fengyang, 233100, People's Republic of China
| | - Hongxia Liu
- College of Food Science and Technology, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qiming Chen
- College of Food Science and Technology, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chong Zhang
- College of Food Science and Technology, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Fengxia Lv
- College of Food Science and Technology, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
12
|
Xu Y, Hu Y, Guo Y, Zhou Z, Xiong D, Meng C, Li Q, Geng S, Pan Z, Jiao X. A new PCR assay based on the new gene-SPUL_2693 for rapid detection of Salmonella enterica subsp. enterica serovar Gallinarum biovars Gallinarum and Pullorum. Poult Sci 2018; 97:4000-4007. [PMID: 30101343 DOI: 10.3382/ps/pey254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/03/2018] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Gallinarum biovar Gallinarum (S. Gallinarum) and biovar Pullorum (S. Pullorum) are gram-negative bacteria, members of the most important infectious pathogens, and have caused common problems in the poultry industry, especially in the developing countries. O- and H-antigen specific anti-sera are commonly for slide and tube agglutination tests to identify Salmonella serovars. However, it is both labor intensive and time consuming, so there is an urgent need for a new technique for the rapid detection of the major Salmonella serovars. In this study, we developed a 1-step PCR assay to identify the serovar Gallinarum. This PCR-based assay was based on the SPUL_2693 gene, which was located in SPI-19 and found by comparing the genomes of the S. Pullorum and S. Gallinarum in the whole data of NCBI. The specificity of this gene was evaluated by bioinformatics analysis, and the results showed that the SPUL_2693 gene exists in all serovar Gallinarum. The specificity and sensitivity of this PCR assay were evaluated in our study. The developed PCR assay was able to distinguish the serovar Gallinarum from 27 different Salmonella serovars and 5 different non-Salmonella pathogens. The minimum limit of genomic DNA of S. Pullorum for PCR detection was 2.143 pg/μL, and the minimum limit number of cells was 6 CFU. This PCR assay was also applied to analyze Salmonella strains isolated from a chicken farm in this study. The PCR assay properly identified the serovar Gallinarum from other Salmonella serovars, and the results were in agreement with the results of a traditional serotyping assay. In general, the newly developed PCR-based assay can be used to accurately judge the presence of the serovar Gallinarum and can be combined with traditional serotyping assays, especially in the case of large quantities of samples.
Collapse
Affiliation(s)
- Ying Xu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yachen Hu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yaxin Guo
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zihao Zhou
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Dan Xiong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiuchun Li
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Shizhong Geng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
13
|
Arunrut N, Kiatpathomchai W, Ananchaipattana C. Development and evaluation of real‐time loop mediated isothermal amplification assay for rapid and sensitive detection ofSalmonellaspp. in chicken meat products. J Food Saf 2018. [DOI: 10.1111/jfs.12564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Narong Arunrut
- Department of Biology, Faculty of Science and TechnologyRajamangala University of Technology Thanyaburi, 39 Muh1 Thanyaburi Pathum Thani Thailand
- Bioengineering and Sensing Technology Laboratory, BIOTECNational Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng Khlong Luang Pathum Thani Thailand
| | - Wansika Kiatpathomchai
- Bioengineering and Sensing Technology Laboratory, BIOTECNational Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng Khlong Luang Pathum Thani Thailand
| | - Chiraporn Ananchaipattana
- Department of Biology, Faculty of Science and TechnologyRajamangala University of Technology Thanyaburi, 39 Muh1 Thanyaburi Pathum Thani Thailand
| |
Collapse
|
14
|
Arunrut N, Kiatpathomchai W, Ananchaipattana C. Multiplex PCR assay and lyophilization for detection of Salmonella spp., Staphylococcus aureus and Bacillus cereus in pork products. Food Sci Biotechnol 2018; 27:867-875. [PMID: 30263813 DOI: 10.1007/s10068-017-0286-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/27/2017] [Accepted: 12/02/2017] [Indexed: 10/18/2022] Open
Abstract
Multiplex PCR (m-PCR) has the potential for more rapid detection of pathogens compared to simple PCR through the simultaneous amplification of multiple gene targets using several sets of specific primers. Here, we developed an m-PCR assay which combined dry reagent mixtures for ready-to-use simultaneous detection of Salmonella spp., Bacillus cereus, and Staphylococcus aureus. The assay did not show cross-reactivity with several common bacterial pathogens and the detection limit was 103 CFU/mL for mixed genomic DNA in pure culture. Lyophilized m-PCR reagents are stable for 2 months stored at 4 °C and for 1 month stored at 25 °C. Detection sensitivities of both dry and fresh mixes were able to simultaneously detect 10 CFU/mL of each pathogen in artificially inoculated samples after enrichment for 6 and 12 h. Results demonstrated that this method is both sensitive and specific and can be used for rapid detection and differentiation of foodborne diseases.
Collapse
Affiliation(s)
- Narong Arunrut
- 1Department of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, 39 Muh1, Thanyaburi, Pathum Thani Thailand.,2Bioengineering and Sensing Technology Laboratory, BIOTEC, National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Neung, Khlong Luang, Pathum Thani Thailand
| | - Wansika Kiatpathomchai
- 2Bioengineering and Sensing Technology Laboratory, BIOTEC, National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Neung, Khlong Luang, Pathum Thani Thailand
| | - Chiraporn Ananchaipattana
- 1Department of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, 39 Muh1, Thanyaburi, Pathum Thani Thailand
| |
Collapse
|
15
|
A novel visual loop-mediated isothermal amplification assay targeting gene62181533 for the detection of Salmonella spp. in foods. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.07.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Survey of five food-borne pathogens in commercial cold food dishes and their detection by multiplex PCR. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.06.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Skerniškytė J, Armalytė J, Kvietkauskaitė R, Šeputienė V, Povilonis J, Sužiedėlienė E. Detection ofSalmonellaspp.,Yersinia enterocolitica,Listeria monocytogenesandCampylobacterspp. by real-time multiplex PCR using amplicon DNA melting analysis and probe-based assay. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jūratė Skerniškytė
- Department of Biochemistry and Molecular Biology; Faculty of Natural Sciences; Vilnius University; M. K. Čiurlionio 21 Vilnius LT-03101 Lithuania
| | - Julija Armalytė
- Department of Biochemistry and Molecular Biology; Faculty of Natural Sciences; Vilnius University; M. K. Čiurlionio 21 Vilnius LT-03101 Lithuania
| | - Raimonda Kvietkauskaitė
- Department of Biochemistry and Molecular Biology; Faculty of Natural Sciences; Vilnius University; M. K. Čiurlionio 21 Vilnius LT-03101 Lithuania
| | - Vaida Šeputienė
- Department of Biochemistry and Molecular Biology; Faculty of Natural Sciences; Vilnius University; M. K. Čiurlionio 21 Vilnius LT-03101 Lithuania
| | - Justas Povilonis
- Department of Biochemistry and Molecular Biology; Faculty of Natural Sciences; Vilnius University; M. K. Čiurlionio 21 Vilnius LT-03101 Lithuania
| | - Edita Sužiedėlienė
- Department of Biochemistry and Molecular Biology; Faculty of Natural Sciences; Vilnius University; M. K. Čiurlionio 21 Vilnius LT-03101 Lithuania
| |
Collapse
|