1
|
Zhgun AA. Comparative Genomic Analysis Reveals Key Changes in the Genome of Acremonium chrysogenum That Occurred During Classical Strain Improvement for Production of Antibiotic Cephalosporin C. Int J Mol Sci 2024; 26:181. [PMID: 39796039 PMCID: PMC11719821 DOI: 10.3390/ijms26010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
From the 1950s to the present, the main tool for obtaining fungal industrial producers of secondary metabolites remains the so-called classical strain improvement (CSI) methods associated with multi-round random mutagenesis and screening for the level of target products. As a result of the application of such techniques, the yield of target secondary metabolites in high-yielding (HY) strains was increased hundreds of times compared to the wild-type (WT) parental strains. However, the events that occur at the molecular level during CSI programs are still unknown. In this paper, an attempt was made to identify characteristic changes at the genome level that occurred during CSI of the Acremonium chrysogenum WT strain (ATCC 11550) and led to the creation of the A. chrysogenum HY strain (RNCM F-4081D), which produces 200-300 times more cephalosporin C, the starting substance for obtaining cephalosporin antibiotics of the 1st-5th generations. We identified 3730 mutational changes, 56 of which led to significant disturbances in protein synthesis and concern: (i) enzymes of primary and secondary metabolism; (ii) transporters, including MDR; (iii) regulators, including cell cycle and chromatin remodeling; (iv) other processes. There was also a focus on mutations occurring in the biosynthetic gene clusters (BGCs) of the HY strain; polyketide synthases were found to be hot spots for mutagenesis. The obtained data open up the possibility not only for understanding the molecular basis for the increase in cephalosporin C production in A. chrysogenum HY, but also show the universal events that occur when improving mold strains for the production of secondary metabolites by classical methods.
Collapse
Affiliation(s)
- Alexander A Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Prosp. 33-2, 119071 Moscow, Russia
| |
Collapse
|
2
|
Ibrahim AA, El-Housseiny GS, Aboshanab KM, Stratmann A, Yassien MA, Hassouna NA. Scaling up production of cephalosporin C by Acremonium chrysogenum W42-I in a fermenter using submerged fermentation. AMB Express 2024; 14:121. [PMID: 39500746 PMCID: PMC11538202 DOI: 10.1186/s13568-024-01778-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Cephalosporins presently stand as the most extensively utilized antibiotic in clinical settings. Acremonium (A.) chrysogenum is the main strain used in the manufacturing of cephalosporin C (CPC), which offers distinct advantages, including a wide-ranging antibacterial spectrum and powerful antibacterial efficacy. Our study aimed to determine the optimal conditions for scaling up the production of CPC from A. chrysogenum W42-I starting with the optimized conditions on the shake flask level obtained from our previous study and utilizing the optimized media (CPC2). The results indicated that an inoculum size equivalent to 1% v/v, aeration at 1 vvm, and an agitation rate of 400 rpm, with controlled pH at 4, were the most favorable conditions for the CPC production using a laboratory fermentor (14 L). The concentration of generated CPC was assessed using two standard curves obtained from agar well diffusion and high-performance liquid chromatography (HPLC). These optimized conditions resulted in a production of 399.52 µg/mL showing a significant increase of approximately 3.4 folds when compared to the unoptimized fermentation run. In conclusion, our findings demonstrated a more favorable time course for CPC production in the fermentor compared to that in the shake flask. Notably, there was a two-fold increase in production within the first three days. Fortunately, the fermentor achieved a noteworthy increase in output, generating 1.598 gm of the CPC within 4 L.
Collapse
Affiliation(s)
- Asmaa A Ibrahim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., POB: 11566, Abbassia, Cairo, 11566, Egypt
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., POB: 11566, Abbassia, Cairo, 11566, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., POB: 11566, Abbassia, Cairo, 11566, Egypt.
| | | | - Mahmoud A Yassien
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., POB: 11566, Abbassia, Cairo, 11566, Egypt
| | - Nadia A Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., POB: 11566, Abbassia, Cairo, 11566, Egypt
| |
Collapse
|
3
|
Zhgun AA. Fungal BGCs for Production of Secondary Metabolites: Main Types, Central Roles in Strain Improvement, and Regulation According to the Piano Principle. Int J Mol Sci 2023; 24:11184. [PMID: 37446362 PMCID: PMC10342363 DOI: 10.3390/ijms241311184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Filamentous fungi are one of the most important producers of secondary metabolites. Some of them can have a toxic effect on the human body, leading to diseases. On the other hand, they are widely used as pharmaceutically significant drugs, such as antibiotics, statins, and immunosuppressants. A single fungus species in response to various signals can produce 100 or more secondary metabolites. Such signaling is possible due to the coordinated regulation of several dozen biosynthetic gene clusters (BGCs), which are mosaically localized in different regions of fungal chromosomes. Their regulation includes several levels, from pathway-specific regulators, whose genes are localized inside BGCs, to global regulators of the cell (taking into account changes in pH, carbon consumption, etc.) and global regulators of secondary metabolism (affecting epigenetic changes driven by velvet family proteins, LaeA, etc.). In addition, various low-molecular-weight substances can have a mediating effect on such regulatory processes. This review is devoted to a critical analysis of the available data on the "turning on" and "off" of the biosynthesis of secondary metabolites in response to signals in filamentous fungi. To describe the ongoing processes, the model of "piano regulation" is proposed, whereby pressing a certain key (signal) leads to the extraction of a certain sound from the "musical instrument of the fungus cell", which is expressed in the production of a specific secondary metabolite.
Collapse
Affiliation(s)
- Alexander A Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky Prosp. 33-2, 119071 Moscow, Russia
| |
Collapse
|
4
|
Zhgun AA, Eldarov MA. Spermidine and 1,3-Diaminopropane Have Opposite Effects on the Final Stage of Cephalosporin C Biosynthesis in High-Yielding Acremonium chrysogenum Strain. Int J Mol Sci 2022; 23:14625. [PMID: 36498951 PMCID: PMC9738377 DOI: 10.3390/ijms232314625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
The addition of exogenous polyamines increases the production of antibiotic cephalosporin C (CPC) in Acremonium chrysogenum high-yielding (HY) strain during fermentation on a complex medium. However, the molecular basis of this phenomenon is still unknown. In the current study, we developed a special synthetic medium on which we revealed the opposite effect of polyamines. The addition of 1,3-diaminopropane resulted in an increase in the yield of CPC by 12-15%. However, the addition of spermidine resulted in a decrease in the yield of CPC by 14-15% and accumulation of its metabolic pathway precursor, deacetylcephalosporin C (DAC); the total amount of cephems (DAC and CPC) was the same as after the addition of DAP. This indicates that spermidine, but not 1,3-diaminopropane, affects the final stage of CPC biosynthesis, associated with the acetylation of its precursor. In both cases, upregulation of biosynthetic genes from beta-lactam BGCs occurred at the same level as compared to the control; expression of transport genes was at the control level. The opposite effect may be due to the fact that N1-acetylation is much more efficient during spermidine catabolism than for 1,3-diaminopropane. The addition of spermidine, but not 1,3-diaminopropane, depleted the pool of acetyl coenzyme A by more than two-fold compared to control, which could lead to the accumulation of DAC.
Collapse
Affiliation(s)
- Alexander A. Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Prosp. 33-2, 119071 Moscow, Russia
| | | |
Collapse
|
5
|
Cephalosporin C biosynthesis and fermentation in Acremonium chrysogenum. Appl Microbiol Biotechnol 2022; 106:6413-6426. [DOI: 10.1007/s00253-022-12181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
|
6
|
Ptitsyn LR, Yampolskaya TA, Kutukova EA, Altman IB. Identification of Core Cellulolytic Enzymes from the Talaromyces cellulolyticus Strains Y-94 and S6-25. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Zhgun AA, Eldarov MA. Polyamines Upregulate Cephalosporin C Production and Expression of β-Lactam Biosynthetic Genes in High-Yielding Acremonium chrysogenum Strain. Molecules 2021; 26:molecules26216636. [PMID: 34771045 PMCID: PMC8588317 DOI: 10.3390/molecules26216636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/18/2022] Open
Abstract
The high-yielding production of pharmaceutically significant secondary metabolites in filamentous fungi is obtained by random mutagenesis; such changes may be associated with shifts in the metabolism of polyamines. We have previously shown that, in the Acremonium chrysogenum cephalosporin C high-yielding strain (HY), the content of endogenous polyamines increased by four- to five-fold. Other studies have shown that the addition of exogenous polyamines can increase the production of target secondary metabolites in highly active fungal producers, in particular, increase the biosynthesis of β-lactams in the Penicillium chrysogenum Wis 54-1255 strain, an improved producer of penicillin G. In the current study, we demonstrate that the introduction of exogenous polyamines, such as spermidine or 1,3-diaminopropane, to A. chrysogenum wild-type (WT) and HY strains, leads to an increase in colony germination and morphological changes in a complete agar medium. The addition of 5 mM polyamines during fermentation increases the production of cephalosporin C in the A. chrysogenum HY strain by 15-20% and upregulates genes belonging to the beta-lactam biosynthetic cluster. The data obtained indicate the intersection of the metabolisms of polyamines and beta-lactams in A. chrysogenum and are important for the construction of improved producers of secondary metabolites in filamentous fungi.
Collapse
|
8
|
Alexandrova LA, Jasko MV, Negrya SD, Solyev PN, Shevchenko OV, Solodinin AP, Kolonitskaya DP, Karpenko IL, Efremenkova OV, Glukhova AA, Boykova YV, Efimenko TA, Kost NV, Avdanina DA, Nuraeva GK, Volkov IA, Kochetkov SN, Zhgun AA. Discovery of novel N 4-alkylcytidines as promising antimicrobial agents. Eur J Med Chem 2021; 215:113212. [PMID: 33582576 DOI: 10.1016/j.ejmech.2021.113212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/18/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
The emergence of drug-resistant strains of pathogenic microorganisms necessitates the creation of new drugs. In order to find new compounds that effectively inhibit the growth of pathogenic bacteria and fungi, we synthesized a set of N4-derivatives of cytidine, 2'-deoxycytidine and 5-metyl-2'-deoxycytidine bearing extended N4-alkyl and N4-phenylalkyl groups. The derivatives demonstrate activity against a number of Gram-positive bacteria, including Mycobacterium smegmatis (MIC = 24-200 μM) and Staphylococcus aureus (MIC = 50-200 μM), comparable with the activities of some antibiotics in medical use. The most promising compound appeared to be N4-dodecyl-5-metyl-2'-deoxycytidine 4h with activities of 24 and 48 μM against M. smegmatis and S. aureus, respectively, and high inhibitory activity of 0.5 mM against filamentous fungi that can, among other things, damage works of art, such as tempera painting. Noteworthy, some of other synthesized compounds are active against fungal growth with the inhibitory concentration in the range of 0.5-3 mM.
Collapse
Affiliation(s)
| | - Maxim V Jasko
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilova St., 119991, Moscow, Russia
| | - Sergey D Negrya
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilova St., 119991, Moscow, Russia
| | - Pavel N Solyev
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilova St., 119991, Moscow, Russia.
| | - Oleg V Shevchenko
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilova St., 119991, Moscow, Russia
| | - Andrei P Solodinin
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilova St., 119991, Moscow, Russia
| | - Daria P Kolonitskaya
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilova St., 119991, Moscow, Russia
| | - Inna L Karpenko
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilova St., 119991, Moscow, Russia
| | - Olga V Efremenkova
- Gause Institute of New Antibiotics, 11 Bol'shaya Pirogovskaya St., 119021, Moscow, Russia
| | - Alla A Glukhova
- Gause Institute of New Antibiotics, 11 Bol'shaya Pirogovskaya St., 119021, Moscow, Russia
| | - Yuliya V Boykova
- Gause Institute of New Antibiotics, 11 Bol'shaya Pirogovskaya St., 119021, Moscow, Russia
| | - Tatiana A Efimenko
- Gause Institute of New Antibiotics, 11 Bol'shaya Pirogovskaya St., 119021, Moscow, Russia
| | - Natalya V Kost
- Federal State Budgetary Scientific Institution "Mental Health Research Centre", 34 Kashirskoe Highway, 115522, Moscow, Russia
| | - Darya A Avdanina
- Research Center of Biotechnology RAS, 33 Leninsky Ave, 119071, Moscow, Russia
| | - Gulgina K Nuraeva
- Moscow Institute of Physics and Technology (National Research University), 9 Institutsky Alley, 141700, Dolgoprudny, Russia
| | - Ivan A Volkov
- Moscow Institute of Physics and Technology (National Research University), 9 Institutsky Alley, 141700, Dolgoprudny, Russia
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology RAS, 32 Vavilova St., 119991, Moscow, Russia
| | - Alexander A Zhgun
- Research Center of Biotechnology RAS, 33 Leninsky Ave, 119071, Moscow, Russia
| |
Collapse
|
9
|
High-Yielding Lovastatin Producer Aspergillus terreus Shows Increased Resistance to Inhibitors of Polyamine Biosynthesis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The biosynthesis of pharmaceutically significant secondary metabolites in filamentous fungi is a multistep process that depends on a wide range of various factors, one of which is the intracellular content of polyamines. We have previously shown that in Aspergillus terreus lovastatin high-yielding strain (HY) exogenous introduction of polyamines during fermentation can lead to an increase in the production of lovastatin by 20–45%. However, the molecular mechanisms of this phenomenon have not been elucidated. In this regard, we carried out an inhibitory analysis at the key stage of polyamine biosynthesis, the conversion of L-ornithine to putrescine by the enzyme ornithine decarboxylase (ODC). A. terreus HY strain showed upregulation of genes for biosynthesis of polyamines, 3–10-fold, and increased resistance compared to the original wild-type strain upon inhibition of ODC on synthetic medium with 5 mM α-difluoromethylornithine (DFMO), by 20–25%, and 5 mM 1-aminooxy-3-aminopropane (APA), by 40–45%. The data obtained indicate changes in the metabolism of polyamines in A. terreus HY strain. The observed phenomenon may have a universal character among fungal producers of secondary metabolites improved by classical methods, since previously the increased resistance to ODC inhibitors was also shown for Acremonium chrysogenum, a high-yielding producer of cephalosporin C.
Collapse
|
10
|
Zhgun A, Dumina M, Valiakhmetov A, Eldarov M. The critical role of plasma membrane H+-ATPase activity in cephalosporin C biosynthesis of Acremonium chrysogenum. PLoS One 2020; 15:e0238452. [PMID: 32866191 PMCID: PMC7458343 DOI: 10.1371/journal.pone.0238452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/16/2020] [Indexed: 11/19/2022] Open
Abstract
The filamentous fungus Acremonium chrysogenum is the main industrial producer of cephalosporin C (CPC), one of the major precursors for manufacturing of cephalosporin antibiotics. The plasma membrane H+-ATPase (PMA) plays a key role in numerous fungal physiological processes. Previously we observed a decrease of PMA activity in A. chrysogenum overproducing strain RNCM 408D (HY) as compared to the level the wild-type strain A. chrysogenum ATCC 11550. Here we report the relationship between PMA activity and CPC biosynthesis in A. chrysogenum strains. The elevation of PMA activity in HY strain through overexpression of PMA1 from Saccharomyces cerevisiae, under the control of the constitutive gpdA promoter from Aspergillus nidulans, results in a 1.2 to 10-fold decrease in CPC production, shift in beta-lactam intermediates content, and is accompanied by the decrease in cef genes expression in the fermentation process; the characteristic colony morphology on agar media is also changed. The level of PMA activity in A. chrysogenum HY OE::PMA1 strains has been increased by 50–100%, up to the level observed in WT strain, and was interrelated with ATP consumption; the more PMA activity is elevated, the more ATP level is depleted. The reduced PMA activity in A. chrysogenum HY strain may be one of the selected events during classical strain improvement, aimed at elevating the ATP content available for CPC production.
Collapse
Affiliation(s)
- Alexander Zhgun
- Research Center of Biotechnology RAS, Moscow, Russia
- * E-mail:
| | - Mariya Dumina
- Research Center of Biotechnology RAS, Moscow, Russia
| | - Ayrat Valiakhmetov
- Skryabin Institute of Biophysics and Physiology of Microorganisms, RAS, Pushchino, Russia
| | | |
Collapse
|
11
|
Zhgun A, Avdanina D, Shumikhin K, Simonenko N, Lyubavskaya E, Volkov I, Ivanov V. Detection of potential biodeterioration risks for tempera painting in 16th century exhibits from State Tretyakov Gallery. PLoS One 2020; 15:e0230591. [PMID: 32240187 PMCID: PMC7117676 DOI: 10.1371/journal.pone.0230591] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/04/2020] [Indexed: 11/23/2022] Open
Abstract
In this study, we investigated biodeterioration of materials used in tempera painting by analyzing the structure of the microbiome in ancient tempera paintings exhibited in State Tretyakov Gallery, Moscow, Russia. Samples were obtained from 16th-century paintings, including a grand Russian Orthodox icon “The Church Militant” (all exhibits were without visible signs of biodeterioration), and from surrounding walls and ceilings (with vast zones of visible microbial growth). A number of microorganisms isolated from visible signs of environmental bio-damage were also detected in tempera paintings kept in temperature- and humidity-controlled conditions unfavorable for the growth of microflora. To determine the biodegrading potential of the microbiome for tempera paintings, we developed a set of mock layers from paintwork materials used in tempera painting of 16th century and their modern analogues and inoculated them with cultures containing filamentous fungi and bacteria. The susceptibility to microbial degradation of individual tempera painting materials was examined by micro-Fourier Transform Infrared (FTIR) spectroscopy, which enabled detection of even invisible signs of biodeterioration. The results indicate that the microorganisms isolated from paintings and surrounding areas in the museum are capable of causing significant damage of various tempera materials, among which varnishes were the most resistant; however, the addition of antiseptic (sodium pentachlorophenolate) can inhibit microbial growth on sturgeon glue.
Collapse
Affiliation(s)
- Alexander Zhgun
- Research Center of Biotechnology RAS, Moscow, Russia
- * E-mail:
| | | | | | - Nikolay Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, RAS, Moscow, Russia
| | | | - Ivan Volkov
- Institute of Physics and Technology, Dolgoprudniy, Russia
| | - Victor Ivanov
- Institute of Physics and Technology, Dolgoprudniy, Russia
| |
Collapse
|
12
|
Hyvönen MT, Keinänen TA, Nuraeva GK, Yanvarev DV, Khomutov M, Khurs EN, Kochetkov SN, Vepsäläinen J, Zhgun AA, Khomutov AR. Hydroxylamine Analogue of Agmatine: Magic Bullet for Arginine Decarboxylase. Biomolecules 2020; 10:E406. [PMID: 32155745 PMCID: PMC7175277 DOI: 10.3390/biom10030406] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
The biogenic polyamines, spermine, spermidine (Spd) and putrescine (Put) are present at micro-millimolar concentrations in eukaryotic and prokaryotic cells (many prokaryotes have no spermine), participating in the regulation of cellular proliferation and differentiation. In mammalian cells Put is formed exclusively from L-ornithine by ornithine decarboxylase (ODC) and many potent ODC inhibitors are known. In bacteria, plants, and fungi Put is synthesized also from agmatine, which is formed from L-arginine by arginine decarboxylase (ADC). Here we demonstrate that the isosteric hydroxylamine analogue of agmatine (AO-Agm) is a new and very potent (IC50 3•10-8 M) inhibitor of E. coli ADC. It was almost two orders of magnitude less potent towards E. coli ODC. AO-Agm decreased polyamine pools and inhibited the growth of DU145 prostate cancer cells only at high concentration (1 mM). Growth inhibitory analysis of the Acremonium chrysogenum demonstrated that the wild type (WT) strain synthesized Put only from L-ornithine, while the cephalosporin C high-yielding strain, in which the polyamine pool is increased, could use both ODC and ADC to produce Put. Thus, AO-Agm is an important addition to the set of existing inhibitors of the enzymes of polyamine biosynthesis, and an important instrument for investigating polyamine biochemistry.
Collapse
Affiliation(s)
- Mervi T. Hyvönen
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, FI-70211 Kuopio, Finland; (T.A.K.); (J.V.)
| | - Tuomo A. Keinänen
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, FI-70211 Kuopio, Finland; (T.A.K.); (J.V.)
| | - Gulgina K. Nuraeva
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (G.K.N.); (A.A.Z.)
| | - Dmitry V. Yanvarev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (D.V.Y.); (M.K.); (E.N.K.); (S.N.K.)
| | - Maxim Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (D.V.Y.); (M.K.); (E.N.K.); (S.N.K.)
| | - Elena N. Khurs
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (D.V.Y.); (M.K.); (E.N.K.); (S.N.K.)
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (D.V.Y.); (M.K.); (E.N.K.); (S.N.K.)
| | - Jouko Vepsäläinen
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Kuopio Campus, P.O. Box 1627, FI-70211 Kuopio, Finland; (T.A.K.); (J.V.)
| | - Alexander A. Zhgun
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (G.K.N.); (A.A.Z.)
| | - Alex R. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; (D.V.Y.); (M.K.); (E.N.K.); (S.N.K.)
| |
Collapse
|
13
|
Zhgun AA, Nuraeva GK, Eldarov MA. The Role of LaeA and LovE Regulators in Lovastatin Biosynthesis with Exogenous Polyamines in Aspergillus terreus. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819060176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Zhgun AA, Nuraeva GK, Dumina MV, Voinova TM, Dzhavakhiya VV, Eldarov MA. 1,3-Diaminopropane and Spermidine Upregulate Lovastatin Production and Expression of Lovastatin Biosynthetic Genes in Aspergillus terreus via LaeA Regulation. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819020170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Zhgun AA, Dumina MV, Voinova TM, Dzhavakhiya VV, Eldarov MA. Role of acetyl-CoA Synthetase and LovE Regulator Protein of Polyketide Biosynthesis in Lovastatin Production by Wild-Type and Overproducing Aspergillus terreus Strains. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818020138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Hu Y, Zhu B. Study on genetic engineering of Acremonium chrysogenum, the cephalosporin C producer. Synth Syst Biotechnol 2016; 1:143-149. [PMID: 29062938 PMCID: PMC5640796 DOI: 10.1016/j.synbio.2016.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/11/2016] [Accepted: 09/11/2016] [Indexed: 11/02/2022] Open
Abstract
Acremonium chrysogenum is an important filamentous fungus which produces cephalosporin C in industry. This review summarized the study on genetic engineering of Acremonium chrysogenum, including biosynthesis and regulation for fermentation of cephalosporin C, molecular techniques, molecular breeding and transcriptomics of Acremonium chrysogenum. We believe with all the techniques available and full genomic sequence, the industrial strain of Acremonium chrysogenum can be genetically modified to better serve the pharmaceutical industry.
Collapse
Affiliation(s)
- Youjia Hu
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Baoquan Zhu
- China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|