1
|
Abstract
Multiple E. coli cultivations, producing recombinant proteins, lead to the formation of inclusion bodies (IBs). IBs historically were considered as nondesired by-products, due to their time- and cost-intensive purification. Nowadays, many obstacles in IB processing can be overcome. As a consequence, several industrial processes with E. coli favor IB formation over soluble production options due to the high space time yields obtained. Within this chapter, we discuss the state-of-the art biopharmaceutical IB process, review its challenges, highlight the recent developments and perspectives, and also propose alternative solutions, compared to the state-of-the art processing.
Collapse
Affiliation(s)
- Julian Kopp
- Research Division Integrated Bioprocess Development, TU Wien Institute of Chemical, Environmental, and Bioscience Engineering, Vienna, Austria.
| | - Oliver Spadiut
- Research Division Integrated Bioprocess Development, TU Wien Institute of Chemical, Environmental, and Bioscience Engineering, Vienna, Austria.
| |
Collapse
|
2
|
Kachhawaha K, Singh S, Joshi K, Nain P, Singh SK. Bioprocessing of recombinant proteins from Escherichia coli inclusion bodies: insights from structure-function relationship for novel applications. Prep Biochem Biotechnol 2022; 53:728-752. [PMID: 36534636 DOI: 10.1080/10826068.2022.2155835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The formation of inclusion bodies (IBs) during expression of recombinant therapeutic proteins using E. coli is a significant hurdle in producing high-quality, safe, and efficacious medicines. The improved understanding of the structure-function relationship of the IBs has resulted in the development of novel biotechnologies that have streamlined the isolation, solubilization, refolding, and purification of the active functional proteins from the bacterial IBs. Together, this overall effort promises to radically improve the scope of experimental biology of therapeutic protein production and expand new prospects in IBs usage. Notably, the IBs are increasingly used for applications in more pristine areas such as drug delivery and material sciences. In this review, we intend to provide a comprehensive picture of the bio-processing of bacterial IBs, including assessing critical gaps that still need to be addressed and potential solutions to overcome them. We expect this review to be a useful resource for those working in the area of protein refolding and therapeutic protein production.
Collapse
Affiliation(s)
- Kajal Kachhawaha
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Santanu Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Khyati Joshi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Priyanka Nain
- Department of Chemical and Bimolecular Engineering, University of Delaware, Newark, DE, USA
| | - Sumit K Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
3
|
Slouka C, Kopp J, Spadiut O, Herwig C. Perspectives of inclusion bodies for bio-based products: curse or blessing? Appl Microbiol Biotechnol 2019; 103:1143-1153. [PMID: 30569219 PMCID: PMC6394472 DOI: 10.1007/s00253-018-9569-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022]
Abstract
The bacterium Escherichia coli is a major host for recombinant protein production of non-glycosylated products. Depending on the expression strategy, the recombinant protein can be located intracellularly, which often leads to protein aggregates inside of the cytoplasm, forming so the called inclusion bodies (IBs). When compared to other protein expression strategies, inclusion body formation allows high product titers and also the possibility of expressing proteins being toxic for the host. In the past years, the comprehension of inclusion bodies being only inactive protein aggregates changed, and the new term of non-classical inclusion bodies emerged. These inclusion bodies are believed to contain a reasonable amount of active protein within their structure. However, subsequent downstream processing, such as homogenisation of cells, centrifugation or solubilisation of IBs, is prone to variable process performance and is often known to result in low extraction yields. It is hypothesised that variations in IB quality attributes are responsible for those effects and that such attributes can be controlled by upstream process conditions. In this review, we address the impact of process design (process parameters) in the upstream on defined inclusion body quality attributes. The following topics are therefore addressed: (i) an overview of the range of inclusion body applications (including emerging technologies); (ii) analytical methods to determine quality attributes; and (iii) screws in process engineering to achieve the desired quality attributes for different inclusion body-based applications. Process parameters in the upstream can be used to trigger different quality attributes including protein activity, but are not exploited to a satisfying content yet. Design by quality approaches in the upstream are already considered for a multitude of existing processes. Further intensifying this approach may pave the industrial application for new IB-based products and improves IB processing, as discussed within this review.
Collapse
Affiliation(s)
- Christoph Slouka
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, TU Wien, Gumpendorfer Straße, 1a, 1060, Vienna, Austria
| | - Julian Kopp
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, TU Wien, Gumpendorfer Straße, 1a, 1060, Vienna, Austria
| | - Oliver Spadiut
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße, 1a, 1060, Vienna, Austria
| | - Christoph Herwig
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, TU Wien, Gumpendorfer Straße, 1a, 1060, Vienna, Austria.
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße, 1a, 1060, Vienna, Austria.
| |
Collapse
|
4
|
Humer D, Spadiut O. Wanted: more monitoring and control during inclusion body processing. World J Microbiol Biotechnol 2018; 34:158. [PMID: 30341583 PMCID: PMC6208753 DOI: 10.1007/s11274-018-2541-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/11/2018] [Indexed: 01/20/2023]
Abstract
Inclusion bodies (IBs) are insoluble aggregates of misfolded protein in Escherichia coli. Against the outdated belief that the production of IBs should be avoided during recombinant protein production, quite a number of recombinant products are currently produced as IBs, which are then processed to give correctly folded and soluble product. However, this processing is quite cumbersome comprising IB wash, IB solubilization and refolding. To date, IB processing often happens rather uncontrolled and relies on empiricism rather than sound process understanding. In this mini review we describe current efforts to introduce more monitoring and control in IB processes, focusing on the refolding step, and thus generate process understanding and knowledge.
Collapse
Affiliation(s)
- Diana Humer
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Oliver Spadiut
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| |
Collapse
|
5
|
Gong X, Zhao X, Zhang W, Wang J, Chen X, Hameed MF, Zhang N, Ge H. Structural characterization of the hypothetical protein Lpg2622, a new member of the C1 family peptidases from Legionella pneumophila. FEBS Lett 2018; 592:2798-2810. [PMID: 30071124 DOI: 10.1002/1873-3468.13210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/23/2018] [Accepted: 07/29/2018] [Indexed: 12/14/2022]
Abstract
The Legionella pneumophila type II secretion system can promote bacterial growth under a wide variety of conditions and mediates the secretion of more than 25 proteins, including the uncharacterized effector Lpg2622. Here, we determined the crystal structures of apo-Lpg2622 and Lpg2622 in complex with the cysteine protease inhibitor E64. Structural analysis suggests that Lpg2622 belongs to the C1 family peptidases. Interestingly, unlike the other structurally resolved papain-like cysteine proteases, the propeptide of Lpg2622 forms a novel super-secondary structural fold (hairpin-turn-helix) and can be categorized into a new group. In addition, the N-terminal β-sheet of the Lpg2622 propeptide plays a regulatory role on enzymatic activity. This study enhances our understanding of the classification and regulatory mechanisms of the C1 family peptidases.
Collapse
Affiliation(s)
- Xiaojian Gong
- School of Life Sciences, Anhui University, Hefei, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China.,School of Chemistry and Chemical Engineering, Anhui University, Hefei, China
| | - Xiaolei Zhao
- School of Life Sciences, Anhui University, Hefei, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Wei Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Jinzhao Wang
- Department of Biology, Taiyuan Normal University, China
| | - Xiaofang Chen
- School of Life Sciences, Anhui University, Hefei, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China.,School of Chemistry and Chemical Engineering, Anhui University, Hefei, China
| | - Muhammad Fazal Hameed
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Nannan Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Honghua Ge
- School of Life Sciences, Anhui University, Hefei, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| |
Collapse
|
6
|
Liu H, Zhang Z, Li Y, Wang X, Zhang Y, Chu Y, Yuan X, Wang X. Preparation and evaluation of anti-renal fibrosis activity of novel truncated TGF-β receptor type II. Biotechnol Appl Biochem 2018; 65:834-840. [PMID: 30066965 DOI: 10.1002/bab.1667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022]
Abstract
Production of excessive transforming growth factor-beta 1 (TGF-β1) with elevated TGF-β1 activity has been implicated in renal fibrosis via renal epithelial cells activation and collagen deposition. As such, attenuating the binding of TGF-β1 to its receptor TGF-beta receptor type II (TGF-βRII) in TGF-β1-dependent signaling is an attractive target for the control of renal fibrosis. Here, we verified the interaction between novel truncated human TGF-βRII (thTβRII, Thr23-Gln166) and TGF-β1, prepared thTβRII in Escherichia coli, and assessed the effects of thTβRII on TGF-β1-induced human kidney epithelial cells (HK-2) and unilateral ureteral obstruction (UUO) model of renal fibrosis. Our data showed that thTβRII accounted for up to 20% of the total protein and 40% of the inclusion bodies of whole cell lysates under the optimal conditions (0.8 mM IPTG and 25°C for 6 H). Most of the expressed protein in inclusion body was refolded by dialysis refolding procedures and purified by Ni2+ -IDA affinity chromatography. Furthermore, thTβRII decreased type I collagen and α-smooth muscle actin protein expression in TGF-β1-induced HK-2 cells, and ameliorated kidney morphology and fibrotic responses in fibrosis animal. These findings indicate that thTβRII holds great promise for developing new treatments for renal fibrosis.
Collapse
Affiliation(s)
- Haifeng Liu
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People's Republic of China.,Laboratory of Medical Immunology and Pathogen Biology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Zhongmin Zhang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Yuting Li
- Laboratory of Medical Immunology and Pathogen Biology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Xiaoli Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Yufei Zhang
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Yanhui Chu
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Xiaohuan Yuan
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Xiaohua Wang
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People's Republic of China.,Laboratory of Medical Immunology and Pathogen Biology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| |
Collapse
|
7
|
The FEN1 L209P mutation interferes with long-patch base excision repair and induces cellular transformation. Oncogene 2016; 36:194-207. [PMID: 27270424 PMCID: PMC5140775 DOI: 10.1038/onc.2016.188] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 12/20/2022]
Abstract
Flap endonuclease-1 (FEN1) is a multifunctional, structure-specific nuclease that has a critical role in maintaining human genome stability. FEN1 mutations have been detected in human cancer specimens and have been suggested to cause genomic instability and cancer predisposition. However, the exact relationship between FEN1 deficiency and cancer susceptibility remains unclear. In the current work, we report a novel colorectal cancer-associated FEN1 mutation, L209P. This mutant protein lacks the FEN, exonuclease (EXO) and gap endonuclease (GEN) activities of FEN1 but retains DNA-binding affinity. The L209P FEN1 variant interferes with the function of the wild-type FEN1 enzyme in a dominant-negative manner and impairs long-patch base excision repair in vitro and in vivo. Expression of L209P FEN1 sensitizes cells to DNA damage, resulting in endogenous genomic instability and cellular transformation, as well as tumor growth in a mouse xenograft model. These data indicate that human cancer-associated genetic alterations in the FEN1 gene can contribute substantially to cancer development.
Collapse
|