1
|
Guo J, He X, Bai Y, Sun H, Yang J. Virulence factors of Salmonella Typhi: interplay between the bacteria and host macrophages. Arch Microbiol 2025; 207:89. [PMID: 40095029 DOI: 10.1007/s00203-025-04297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
Salmonella Typhi (S. Typhi) is a Gram-negative bacterium that exclusively infects humans and causes typhoid fever- a major global public health concern responsible for approximately 9 million infections and 110,000 deaths annually. Macrophages, a key component of the innate immune system, play essential roles in pathogen clearance, antigen presentation, immune regulation, and tissue repair. As one of the primary targets of S. Typhi infection, macrophages significantly influence disease onset and progression. S. Typhi expresses a range of virulence factors, including the virulence-associated (Vi) capsule, outer membrane proteins (OMPs), flagella, fimbriae, type III secretion systems (T3SSs) and other genes encoded on Salmonella pathogenicity islands (SPIs), as well as toxins, regulatory factors, and virulence plasmids. These virulence factors facilitate S. Typhi's intracellular survival within macrophages by mediating processes such as adhesion, invasion, nutrient acquisition and immune evasion, ultimately enabling systemic infection. This review explores the role and molecular mechanisms of S. Typhi virulence factors in counteracting macrophage antimicrobial functions, providing insights for future research on typhoid pathogenesis and the development of potential therapeutic interventions.
Collapse
Affiliation(s)
- Jiayin Guo
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China
| | - Xiaoe He
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China
| | - Yanrui Bai
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China
| | - Hui Sun
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China
| | - Jing Yang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
2
|
Yang D, Chen S, Borijihan H, Aoqier A, Sarula S, Siqin S, Manda M, Temuqile T, Baigude H. Mechanism of Mongolian Medicine Batri-7 on Salmonella Enteritis. J Inflamm Res 2025; 18:1523-1541. [PMID: 39925931 PMCID: PMC11804236 DOI: 10.2147/jir.s491957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Purpose Traditional Mongolian Medicine Batri-7 (BT-7) is the key Mongolian Medicine (MM) for bacterial enteritis. BT-7 is a well-known clinical MM due to its antibacterial properties. BT-7 contains plant-derived bioactive compounds, but its molecular mechanism of action remains unclear. This study explores BT-7's antibacterial compounds and therapeutic mechanism in a Salmonella enteritis mouse model. Methods The active components of BT-7 were detected by liquid chromatography-tandem mass spectrometry assay and identified by UPLC/Q-TOF-MS. An enteritis mouse model induced by Salmonella typhimurium was used in this study. Pathological analysis of small intestine was conducted with hematoxylin and eosin staining. The macrophage recruitment in model mice's intestines was detected by flow cytometry. Simultaneously, the Minimum Inhibitory Concentration of BT-7 was evaluated against bacterial by microbroth dilution method, BT-7 regulation of Salmonella typhimurium gene was performed by RNA-Seq methods and verified by qRT-PCR. Results In the LC-MS/MS assay, negative and positive-ion modes are identified for 511 and 699 compounds from BT-7, respectively. Of them, we found multiple antibacterial and anti inflammation compounds including chrysin, oroxylin A and luteolin. In vivo, we observed that treatment of mouse Salmonella enteritis with BT-7 decreases inflammation score and macrophages on intestinal tenue. In vitro, BT-7 presented the highest antibacterial activities against tested strains with MIC was 2-4 mg/mL. Meanwhile, BT-7 significantly down regulated Salmonella infection genes. Conclusion Twenty key anti-bacterial components were identified in the BT-7. In vivo experiment shows that orally administered BT-7 effectively reduce the inflammation of intestine in model of Salmonella-induced mouse enteritis by down regulating the infection-related virulence genes of Salmonella. Through this study, we discovered the mechanism of BT-7's dual action on the host and pathogenic bacteria. This gives inspiration for anti-infective disease research in traditional medicine and also proves that traditional medicines still have good prospects for treating infectious diseases.
Collapse
Affiliation(s)
- Dezhi Yang
- National and Local Joint Engineering Research Center of Modern Mongolian Medicine Research and Testing, International Mongolian Hospital of Inner Mongolia, Hohhot, 010065, People’s Republic of China
| | - Shana Chen
- National and Local Joint Engineering Research Center of Modern Mongolian Medicine Research and Testing, International Mongolian Hospital of Inner Mongolia, Hohhot, 010065, People’s Republic of China
| | - Haiyan Borijihan
- National and Local Joint Engineering Research Center of Modern Mongolian Medicine Research and Testing, International Mongolian Hospital of Inner Mongolia, Hohhot, 010065, People’s Republic of China
| | - Aoqier Aoqier
- National and Local Joint Engineering Research Center of Modern Mongolian Medicine Research and Testing, International Mongolian Hospital of Inner Mongolia, Hohhot, 010065, People’s Republic of China
| | - Sarula Sarula
- National and Local Joint Engineering Research Center of Modern Mongolian Medicine Research and Testing, International Mongolian Hospital of Inner Mongolia, Hohhot, 010065, People’s Republic of China
| | - Siqin Siqin
- National and Local Joint Engineering Research Center of Modern Mongolian Medicine Research and Testing, International Mongolian Hospital of Inner Mongolia, Hohhot, 010065, People’s Republic of China
| | - Manda Manda
- National and Local Joint Engineering Research Center of Modern Mongolian Medicine Research and Testing, International Mongolian Hospital of Inner Mongolia, Hohhot, 010065, People’s Republic of China
| | - Temuqile Temuqile
- National and Local Joint Engineering Research Center of Modern Mongolian Medicine Research and Testing, International Mongolian Hospital of Inner Mongolia, Hohhot, 010065, People’s Republic of China
| | - Huricha Baigude
- National and Local Joint Engineering Research Center of Modern Mongolian Medicine Research and Testing, International Mongolian Hospital of Inner Mongolia, Hohhot, 010065, People’s Republic of China
- School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010020, People’s Republic of China
| |
Collapse
|
3
|
Xie H, Wu F, Mao J, Wang Y, Zhu J, Zhou X, Hong K, Li B, Qiu X, Wen C. The role of microglia in neurological diseases with involvement of extracellular vesicles. Neurobiol Dis 2024; 202:106700. [PMID: 39401551 DOI: 10.1016/j.nbd.2024.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/20/2024] Open
Abstract
As a subset of mononuclear phagocytes in the central nervous system, microglia play a crucial role in immune defense and homeostasis maintenance. Microglia can regulate their states in response to specific signals of health and pathology. Microglia-mediated neuroinflammation is a pathological hallmark of neurodegenerative diseases, neurological damage and neurological tumors, underscoring its key immunoregulatory role in these conditions. Intriguingly, a substantial body of research has indicated that extracellular vesicles can mediate intercellular communication by transporting cargoes from parental cells, a property that is also reflected in microenvironmental signaling networks involving microglia. Based on the microglial characteristics, we briefly outline the biological features of extracellular vesicles and focus on summarizing the integrative role played by microglia in the maintenance of nervous system homeostasis and progression of different neurological diseases. Extracellular vesicles may engage in the homeostasis maintenance and pathological process as a medium of intercellular communication. Here, we aim to provide new insights for further exploration of neurological disease pathogenesis, which may provide theoretical foundations for cell-free therapies.
Collapse
Affiliation(s)
- Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Binbin Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xinying Qiu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
4
|
Wang M, Liu H, Huang M, Huang Y, Ming Y, Chen W, Chen Y, Tang Z, Jia B. Immunomodulatory functions of microorganisms in tissue regenerative healing. Acta Biomater 2023; 172:38-52. [PMID: 37816417 DOI: 10.1016/j.actbio.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
External pathogenic microorganisms and commensal microorganisms in the body have either harmful or beneficial impacts on the regenerative repair of tissues, and the immune system plays a crucial regulatory role in this process. This review summarises our current understanding of microorganism-immune system interactions, with a focus on how these interactions impact the renewal and repair ability of tissues, including skin, bone, gut, liver, and nerves. This review concludes with a discussion of the mechanisms by which microbes act on various types of immune cells to affect tissue regeneration, offers potential strategies for using microbial therapies to enhance the regenerative repair function of tissues, and suggest novel therapeutic approaches for regenerative medicine. STATEMENT OF SIGNIFICANCE: Microbiological communities have crucial impacts on human health and illness by participating in energy collection and storage and performing various metabolic processes. External pathogenic microorganisms and commensal microorganisms in the body have either harmful or beneficial impacts on the regenerative repair of tissues, and the immune system plays a critical regulatory role in this process. This study reviews the important correlation between microorganisms and the immune system and investigates the mechanism of various microorganism that participate in the regeneration and repair of tissues and organs by modulating immune system.
Collapse
Affiliation(s)
- Min Wang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Quaresma TC, de Aguiar Valentim L, de Sousa JR, de Souza Aarão TL, Fuzii HT, Duarte MIS, de Souza J, Quaresma JAS. Immunohistochemical Characterization of M1, M2, and M4 Macrophages in Leprosy Skin Lesions. Pathogens 2023; 12:1225. [PMID: 37887741 PMCID: PMC10610015 DOI: 10.3390/pathogens12101225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Mycobacterium leprae is the etiological agent of leprosy. Macrophages (Mφs) are key players involved in the pathogenesis of leprosy. In this study, immunohistochemical analysis was performed to examine the phenotype of Mφ subpopulations, namely M1, M2, and M4, in the skin lesions of patients diagnosed with leprosy. Based on the database of treatment-naïve patients treated between 2015 and 2019 at the Department of Dermatology of the University of the State of Pará, Belém, routine clinical screening samples were identified. The monolabeling protocol was used for M1 macrophages (iNOS, IL-6, TNF-α) and M2 macrophages (IL-10, IL-13, CD163, Arginase 1, TGF-β, FGFb), and the double-labeling protocol was used for M4 macrophages (IL-6, MMP7, MRP8, TNF-α e CD68). To confirm the M4 macrophage lineage, double labeling of the monoclonal antibodies CD68 and MRP8 was also performed. Our results demonstrated a statistically significant difference for the M1 phenotype among the Virchowian (VV) (4.5 ± 1.3, p < 0.0001), Borderline (1.6 ± 0.4, p < 0.0001), and tuberculoid (TT) (12.5 ± 1.8, p < 0.0001) clinical forms of leprosy. Additionally, the M2 phenotype showed a statistically significant difference among the VV (12.5 ± 2.3, p < 0.0001), Borderline (1.3 ± 0.2, p < 0.0001), and TT (3.2 ± 0.7, p < 0.0001) forms. For the M4 phenotype, a statistically significant difference was observed in the VV (9.8 ± 1.7, p < 0.0001), Borderline (1.2 ± 0.2, p < 0.0001), and TT (2.6 ± 0.7, p < 0.0001) forms. A significant correlation was observed between the VV M1 and M4 (r = 0.8712; p = 0.0000) and between the VV M2 × TT M1 (r = 0.834; p = 0.0002) phenotypes. The M1 Mφs constituted the predominant Mφ subpopulation in the TT and Borderline forms of leprosy, whereas the M2 Mφs showed increased immunoexpression and M4 was the predominant Mφ phenotype in VV leprosy. These results confirm the relationship of the Mφ profile with chronic pathological processes of the inflammatory response in leprosy.
Collapse
Affiliation(s)
- Tatiane Costa Quaresma
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Lívia de Aguiar Valentim
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Jorge Rodrigues de Sousa
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Tinara Leila de Souza Aarão
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
- School of Medicine, Federal University of Para-UFPA, Altamira 68440-000, Brazil
| | - Hellen Thais Fuzii
- Health Department, Tropical Medicine Center, Federal University of Para-NMT-UFPA, Belem 66055-240, Brazil
| | | | - Juarez de Souza
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Juarez Antônio Simões Quaresma
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
- School of Medicine, Federal University of Para-UFPA, Altamira 68440-000, Brazil
- Health Department, Tropical Medicine Center, Federal University of Para-NMT-UFPA, Belem 66055-240, Brazil
- School of Medicine, Sao Paulo University, Sao Paulo 01246-903, Brazil
| |
Collapse
|
6
|
Liu L, Xin W, Li Q, Huang B, Yin T, Hua S, Yang C, Chen C, Han C, Hua Z. Neutrophil-Mediated Tumor-Targeting Delivery System of Oncolytic Bacteria Combined with ICB for Melanoma Lung Metastasis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301835. [PMID: 37565362 PMCID: PMC10582430 DOI: 10.1002/advs.202301835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Oncolytic bacteria are the most promising tumor target vector. Questions also remain regarding finding a balance between the therapeutic efficacy and safety of oncolytic bacteria. The critical measure of how this balance is maintained is the improvement in tumor colonization. Attenuated Salmonella typhimurium (VNP20009) as the only Salmonella strain to be evaluated in a clinical trial is a potential tumor therapeutic bacterium. A delivery system with controlled release of VNP after being loaded into neutrophils, which significantly increases the tumor-targeting of VNP and enhances its therapeutic efficacy in a melanoma lung metastasis model is constructed. To improve the synergistic therapeutic effect, a PD1 nanobody is applied to this system (NE(PD1nb)). NE(PD1nb) activate dendritic cells (DCs) differentiation and stimulate the M1-like differentiation of macrophages, and induce CD4+ T-cells maturity and cytotoxic CD8+ T-cells activation through DCs tumor antigen presentation.
Collapse
Affiliation(s)
- Lina Liu
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Wenjie Xin
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Qiang Li
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Baolian Huang
- School of BiopharmacyChina Pharmaceutical UniversityNanjingJiangsu210023China
| | - Te Yin
- School of BiopharmacyChina Pharmaceutical UniversityNanjingJiangsu210023China
| | - Siqi Hua
- School of BiopharmacyChina Pharmaceutical UniversityNanjingJiangsu210023China
| | - Chen Yang
- School of BiopharmacyChina Pharmaceutical UniversityNanjingJiangsu210023China
| | - Chen Chen
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Chao Han
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
- School of BiopharmacyChina Pharmaceutical UniversityNanjingJiangsu210023China
- Changzhou High‐Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.ChangzhouJiangsu213164China
| |
Collapse
|
7
|
Strizova Z, Benesova I, Bartolini R, Novysedlak R, Cecrdlova E, Foley L, Striz I. M1/M2 macrophages and their overlaps - myth or reality? Clin Sci (Lond) 2023; 137:1067-1093. [PMID: 37530555 PMCID: PMC10407193 DOI: 10.1042/cs20220531] [Citation(s) in RCA: 180] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
Macrophages represent heterogeneous cell population with important roles in defence mechanisms and in homoeostasis. Tissue macrophages from diverse anatomical locations adopt distinct activation states. M1 and M2 macrophages are two polarized forms of mononuclear phagocyte in vitro differentiation with distinct phenotypic patterns and functional properties, but in vivo, there is a wide range of different macrophage phenotypes in between depending on the microenvironment and natural signals they receive. In human infections, pathogens use different strategies to combat macrophages and these strategies include shaping the macrophage polarization towards one or another phenotype. Macrophages infiltrating the tumours can affect the patient's prognosis. M2 macrophages have been shown to promote tumour growth, while M1 macrophages provide both tumour-promoting and anti-tumour properties. In autoimmune diseases, both prolonged M1 activation, as well as altered M2 function can contribute to their onset and activity. In human atherosclerotic lesions, macrophages expressing both M1 and M2 profiles have been detected as one of the potential factors affecting occurrence of cardiovascular diseases. In allergic inflammation, T2 cytokines drive macrophage polarization towards M2 profiles, which promote airway inflammation and remodelling. M1 macrophages in transplantations seem to contribute to acute rejection, while M2 macrophages promote the fibrosis of the graft. The view of pro-inflammatory M1 macrophages and M2 macrophages suppressing inflammation seems to be an oversimplification because these cells exploit very high level of plasticity and represent a large scale of different immunophenotypes with overlapping properties. In this respect, it would be more precise to describe macrophages as M1-like and M2-like.
Collapse
Affiliation(s)
- Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Robin Bartolini
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, U.K
| | - Rene Novysedlak
- Third Department of Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Eva Cecrdlova
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Lily Koumbas Foley
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, U.K
| | - Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Xu S, Xiong Y, Fu B, Guo D, Sha Z, Lin X, Wu H. Bacteria and macrophages in the tumor microenvironment. Front Microbiol 2023; 14:1115556. [PMID: 36825088 PMCID: PMC9941202 DOI: 10.3389/fmicb.2023.1115556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer and microbial infections are significant worldwide health challenges. Numerous studies have demonstrated that bacteria may contribute to the emergence of cancer. In this review, we assemble bacterial species discovered in various cancers to describe their variety and specificity. The relationship between bacteria and macrophages in cancer is also highlighted, and we look for ample proof to establish a biological basis for bacterial-induced macrophage polarization. Finally, we quickly go over the potential roles of metabolites, cytokines, and microRNAs in the regulation of the tumor microenvironment by bacterially activated macrophages. The complexity of bacteria and macrophages in cancer will be revealed as we gain a better understanding of their pathogenic mechanisms, which will lead to new therapeutic approaches for both inflammatory illnesses and cancer.
Collapse
Affiliation(s)
| | | | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing, China
| | | | | |
Collapse
|
9
|
Huo S, Li X, Wang S, Wu P, Nan D, Rao C, Li Q, Mao X, Yan J. Characterization of Burkholderia pseudomallei O antigens in different clinical strains. Int J Biol Macromol 2023; 225:795-808. [PMID: 36402383 DOI: 10.1016/j.ijbiomac.2022.11.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
O antigen is the major component of lipopolysaccharide LPS. The chemical structure of the O antigen determines the LPS serospecificity of the bacteria, and the diversity of O antigen is the basis for serotyping Burkholderia pseudomallei. In this study, structural elucidation of type B O antigen obtained from a clinical B. pseudomallei strain was conducted, and the effects of different types of LPS on macrophage differentiation were investigated. The O antigen was found to be composed of repeating units of [→4)-α-L-Rhap(1 → 4)-α-L-Rhap(1→2)-α-L-Rhap(1 → 2)-α-L-Rhap(1 → 3)-α-L-Rhap(1 → 3)-α-L-Rhap(1 → 4)-α-L-Rhap(1 → 6)-α-D-Galp(1→]n, where some of the →4)-α-L-Rhap(1 → units were substituted at O-3 by β-D-Xylp(1 → residues, and minor →3)-α-L-Rhap(1 → units were substituted at O-2 by β-D-Xylp(1 → residues. Meahwhile, the →6)-α-D-Galp(1 → units were substituted at O-3 by α-D-Galp(1 → residues. Furthermore, both type A and type B O antigens of B. pseudomallei could polarize macrophages toward the M1 phenotype, but the core oligosaccharides had no such activity. Therefore, we deduced that this polarization relies on the O antigen of LPS and might be related to the ability of B. pseudomallei to survive and replicate within macrophages. Thus, the characterization of different types of O antigen structural motifs is essential for further clarifying the persistence/survival mechanisms and inflammatory potential of B. pseudomallei.
Collapse
Affiliation(s)
- Shengyuan Huo
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiwei Wang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Pan Wu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dongqi Nan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chenglong Rao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Jingmin Yan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
10
|
Strittmatter N, Kanvatirth P, Inglese P, Race AM, Nilsson A, Dannhorn A, Kudo H, Goldin RD, Ling S, Wong E, Seeliger F, Serra MP, Hoffmann S, Maglennon G, Hamm G, Atkinson J, Jones S, Bunch J, Andrén PE, Takats Z, Goodwin RJA, Mastroeni P. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2791-2802. [PMID: 34767352 DOI: 10.1021/jasms.1c00240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A more complete and holistic view on host-microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
Collapse
Affiliation(s)
- Nicole Strittmatter
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Panchali Kanvatirth
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| | - Paolo Inglese
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Alan M Race
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Anna Nilsson
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Andreas Dannhorn
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Hiromi Kudo
- Division of Digestive Diseases, Section of Pathology, Imperial College London, St. Mary's Hospital, London W2 1NY, U.K
| | - Robert D Goldin
- Division of Digestive Diseases, Section of Pathology, Imperial College London, St. Mary's Hospital, London W2 1NY, U.K
- Department of Cellular Pathology, Charing Cross Hospital, London W6 8RF, U.K
| | - Stephanie Ling
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Edmond Wong
- Biologics Engineering, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Frank Seeliger
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Maria Paola Serra
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Scott Hoffmann
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, U.K
| | - Gareth Maglennon
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Gregory Hamm
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - James Atkinson
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Stewart Jones
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
| | - Josephine Bunch
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
- National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), National Physical Laboratory, Teddington TW11 0LW, U.K
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
- Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, 751 24 Uppsala, Sweden
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, U.K
| | - Richard J A Goodwin
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, U.K
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K
| |
Collapse
|
11
|
Yu C, Du F, Zhang C, Li Y, Liao C, He L, Cheng X, Zhang X. Salmonella enterica serovar Typhimurium sseK3 induces apoptosis and enhances glycolysis in macrophages. BMC Microbiol 2020; 20:151. [PMID: 32517648 PMCID: PMC7282050 DOI: 10.1186/s12866-020-01838-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Background Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important infectious disease pathogen that can survive and replicate in macrophages. Glycolysis is essential for immune responses against S. Typhimurium infection in macrophages, and is also associated with apoptosis. S. Typhimurium secreted effector K3 (SseK3) was recently identified as a novel translated and secreted protein. However, there is no study about the role of sseK3 in the relationship between apoptosis and glycolysis in cells infected with S. Typhimurium. It is unclear whether this protein exerts a significant role in the progress of apoptosis and glycolysis in S. Typhimurium-infected macrophages. Results Macrophages were infected with S. Typhimurium SL1344 wild-type (WT), ΔsseK3 mutant or sseK3-complemented strain, and the effects of sseK3 on apoptosis and glycolysis were determined. The adherence and invasion in the ΔsseK3 mutant group were similar to that in the WT and sseK3-complemented groups, indicating that SseK3 was not essential for the adherence and invasion of S. Typhimurium in macrophages. However, the percentage of apoptosis in the ΔsseK3 mutant group was much lower than that in the WT and sseK3-complemented groups. Caspase-3, caspase-8, and caspase-9 enzyme activity in the ΔsseK3 mutant group were significantly lower than in the WT group and sseK3-complemented groups, indicating that sseK3 could improve the caspase-3, caspase-8, and caspase-9 enzyme activity. We also found that there were no significant differences in pyruvic acid levels between the three groups, but the lactic acid level in the ΔsseK3 mutant group was much lower than that in the WT and sseK3-complemented groups. The ATP levels in the ΔsseK3 mutant group were remarkably higher than those in the WT and sseK3-complemented groups. These indicated that the sseK3 enhanced the level of glycolysis in macrophages infected by S. Typhimurium. Conclusions S. Typhimurium sseK3 is likely involved in promoting macrophage apoptosis and modulating glycolysis in macrophages. Our results could improve our understanding of the relationship between apoptosis and glycolysis in macrophages induced by S. Typhimurium sseK3.
Collapse
Affiliation(s)
- Chuan Yu
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China.,Luoyang Polytechnic, 6 Airport Road, Luoyang, 471023, Henan, China
| | - Fuyu Du
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Chunjie Zhang
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China. .,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China.
| | - Yinju Li
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Chengshui Liao
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Lei He
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| | - Xiangchao Cheng
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China.,Luoyang Polytechnic, 6 Airport Road, Luoyang, 471023, Henan, China
| | - Xiaojie Zhang
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, 471023, Henan, China.,Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang, 471023, Henan, China
| |
Collapse
|
12
|
de Sousa JR, Da Costa Vasconcelos PF, Quaresma JAS. Functional aspects, phenotypic heterogeneity, and tissue immune response of macrophages in infectious diseases. Infect Drug Resist 2019; 12:2589-2611. [PMID: 31686866 PMCID: PMC6709804 DOI: 10.2147/idr.s208576] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
Macrophages are a functionally heterogeneous group of cells with specialized functions depending not only on their subgroup but also on the function of the organ or tissue in which the cells are located. The concept of macrophage phenotypic heterogeneity has been investigated since the 1980s, and more recent studies have identified a diverse spectrum of phenotypic subpopulations. Several types of macrophages play a central role in the response to infectious agents and, along with other components of the immune system, determine the clinical outcome of major infectious diseases. Here, we review the functions of various macrophage phenotypic subpopulations, the concept of macrophage polarization, and the influence of these cells on the evolution of infections. In addition, we emphasize their role in the immune response in vivo and in situ, as well as the molecular effectors and signaling mechanisms used by these cells. Furthermore, we highlight the mechanisms of immune evasion triggered by infectious agents to counter the actions of macrophages and their consequences. Our aim here is to provide an overview of the role of macrophages in the pathogenesis of critical transmissible diseases and discuss how elucidation of this relationship could enhance our understanding of the host-pathogen association in organ-specific immune responses.
Collapse
Affiliation(s)
- Jorge Rodrigues de Sousa
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
| | - Pedro Fernando Da Costa Vasconcelos
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
| | - Juarez Antonio Simões Quaresma
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
- School of Medicine, São Paulo University, São Paulo, SP, Brazil
| |
Collapse
|
13
|
Ciszek-Lenda M, Strus M, Walczewska M, Majka G, Machul-Żwirbla A, Mikołajczyk D, Górska S, Gamian A, Chain B, Marcinkiewicz J. Pseudomonas aeruginosa biofilm is a potent inducer of phagocyte hyperinflammation. Inflamm Res 2019; 68:397-413. [PMID: 30887082 PMCID: PMC6450861 DOI: 10.1007/s00011-019-01227-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 02/02/2023] Open
Abstract
Objective Pseudomonas aeruginosa effectively facilitate resistance to phagocyte killing by biofilm formation. However, the cross talk between biofilm components and phagocytes is still unclear. We hypothesize that a biofilm provides a concentrated extracellular source of LPS, DNA and exopolysaccharides (EPS), which polarize neighbouring phagocytes into an adverse hyperinflammatory state of activation. Methods We measured the release of a panel of mediators produced in vitro by murine neutrophils and macrophages exposed to various biofilm components of P. aeruginosa cultures. Results We found that conditioned media from a high biofilm-producing strain of P. aeruginosa, PAR5, accumulated high concentrations of extracellular bacterial LPS, DNA and EPS by 72 h. These conditioned media induced phagocytes to release a hyperinflammatory pattern of mediators, with enhanced levels of TNF-α, IL-6, IL12p40, PGE2 and NO. Moreover, the phagocytes also upregulated COX-2 and iNOS with no influence on the expression of arginase-1. Conclusions Phagocytes exposed to biofilm microenvironment, called by us biofilm-associated neutrophils/macrophages (BANs/BAMs), display secretory properties similar to that of N1/M1-type phagocytes. These results suggest that in vivo high concentrations of LPS and DNA, trapped in biofilm by EPS, might convert infiltrating phagocytes into cells responsible for tissue injury without direct contact with bacteria and phagocytosis.
Collapse
Affiliation(s)
- Marta Ciszek-Lenda
- Chair of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Magdalena Strus
- Chair of Microbiology, Jagiellonian University Medical College, Kraków, Poland
| | - Maria Walczewska
- Chair of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Majka
- Chair of Immunology, Jagiellonian University Medical College, Kraków, Poland
| | | | - Diana Mikołajczyk
- Chair of Microbiology, Jagiellonian University Medical College, Kraków, Poland
| | - Sabina Górska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Gamian
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | |
Collapse
|