1
|
Hu ZC, Dai HW, Gu BQ, Wang YS, Liu ZQ, Zheng YG. The combination of ultraviolet mutagenesis and PPX1 overexpression synergistically enhanced S-adenosyl-L-methionine synthesis in industrial Saccharomyces cerevisiae. Enzyme Microb Technol 2025; 185:110591. [PMID: 39893828 DOI: 10.1016/j.enzmictec.2025.110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/18/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
S-adenosyl-L-methionine (SAM) is the only injectable drug among the hepatoprotective and choleretic drugs, which has remarkable efficacy and is favored by hepatopaths. The demand for SAM is constantly increasing in clinical settings. Therefore, many efforts have been made to increase SAM biosynthesis from L-methionine and ATP in Saccharomyces cerevisiae. This study aimed to construct a stable and high-accumulating SAM industrial strain through successive ultraviolet irradiation (UV) mutations coupled with three resistant (ethionine, nystatin, and cordycepin, respectively) screening procedures and metabolic engineering strategies. Following multiple UV mutagenesis, a higher production mutant strain ZJT15-33 was successfully obtained. In addition, the recombinant strain spe2△-PPX1 was derived from ZJT15-33 by deleting the SPE2 and overexpressing the PPX1, resulting in a 2.5-fold enhanced ATP accumulation, which promoted the synthesis of 2.41 g/L SAM in the shake-flask, representing an 11.4-fold enhancement over the original strain (0.21 g/L). Furthermore, 11.65 g/L SAM was accumulated with 113 mg/g DCW SAM content in a 5-L fermenter at 96 h, marking a 36.57 % increase compared to strain ZJT15-33 (8.53 g/L). These results indicated that UV mutagenesis combined with PPX1 overexpression could effectively improve SAM synthesis in S. cerevisiae, providing a feasible approach for developing highly SAM industrial production.
Collapse
Affiliation(s)
- Zhong-Ce Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Hong-Wei Dai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Bing-Qing Gu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yuan-Shan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
2
|
Tan L, Zhang Y, Liu P, Wu Y, Huang Z, Hu Z, Liu Z, Wang Y, Zheng Y. System metabolic engineering modification of Saccharomyces cerevisiae to increase SAM production. BIORESOUR BIOPROCESS 2025; 12:19. [PMID: 40072693 PMCID: PMC11904041 DOI: 10.1186/s40643-025-00858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
S-adenosyl-L-methionine (SAM) is an important compound with significant pharmaceutical and nutraceutical applications. Currently, microbial fermentation is dominant in SAM production, which remains challenging due to its complex biosynthetic pathway and insufficient precursor availability. In this study, a multimodule engineering strategy based on CRISPR/Cas9 was established to improve the SAM productivity of Saccharomyces cerevisiae. This strategy consists of (1) improving the growth of S. cerevisiae by overexpressing the hxk2 gene; (2) enhancing the metabolic flux toward SAM synthesis by upregulating the expression of the aat1, met17, and sam2 genes and weakening the synthesis pathway of L-threonine; (3) elevating precursor ATP synthesis by introducing the vgb gene; (4) blocking the SAM degradation pathway by knocking out the sah1 and spe2 genes. The SAM titer of the resulting mutant AU18 reached 1.87 g/L, representing an increase of 227.67% compared to the parental strain. With optimal medium, SAM titer of mutant AU18 reached 2.46 g/L in flask shake fermentation. The SAM titer of mutant AU18 further reached 13.96 g/L after 96 h incubation with a continuous L-Met feeding strategy in a 5 L fermenter. Therefore, with comprehensive optimization of both synthesis and degradation pathways of SAM, a multimodule strategy was established, which significantly elevated the SAM production of S. cerevisiae. This laid a foundation for the construction of hyperproducer for SAM and other valuable amino acids or chemicals.
Collapse
Affiliation(s)
- Liangzhuang Tan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yuehan Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ping Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yihang Wu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zuoyu Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhongce Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhiqiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yuanshan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China.
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China.
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- Engineering Research Centre of Bioconversion and Biopurification, Ministry of Education, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, Zhejiang Province, 310014, P. R. China
- The National and Local Joint Engineering Research Centre for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
3
|
Li Q, Li C, Zhong J, Wang Y, Yang Q, Wang B, He W, Huang J, Lin S, Qi F. Metabolic engineering of Escherichia coli for N-methylserotonin biosynthesis. Metab Eng 2025; 87:49-59. [PMID: 39603333 DOI: 10.1016/j.ymben.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/28/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
N-methylserotonin (NMS) is a valuable indole alkaloid with therapeutic potential for psychiatric and neurological disorders, and it is used in health foods, cosmetics, and weight loss supplements. However, environmental challenges and low reaction efficiencies significantly hinder cost-effective, large-scale production of NMS in plants or through chemical synthesis. Herein, we have successfully engineered Escherichia coli strains to enhance NMS production from L-tryptophan using whole-cell catalysis. We developed multiple biosynthesis pathways incorporating modules for serotonin (5-hydroxytryptamine, 5-HT), tetrahydromonapterin (MH₄), and S-adenosylmethionine (SAM) synthesis. To enhance MH₄ availability, we employed a high-activity Bacillus subtilis FolE and minimized carbon flux loss through targeted gene knockouts in competitive metabolic pathways, improving 5-HT production. Additionally, we constructed a comprehensive SAM biosynthesis module to facilitate transmethylation by a selected N-methyltransferase fused with ProS2. These engineered modules were coexpressed in two plasmids within the optimized strain NMS-19, producing 128.6 mg/L of NMS in a 5-L bioreactor using fed-batch cultivation-a 92-fold increase over the original strain. This study introduces a viable strategy for NMS production and provides insights into the biosynthesis of SAM-dependent methylated tryptamine derivatives.
Collapse
Affiliation(s)
- Qingchen Li
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Chenxi Li
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Jie Zhong
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Yukun Wang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Qinghua Yang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Bingmei Wang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Wenjin He
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Jianzhong Huang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Shengyuan Lin
- Department of TCM, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Feng Qi
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, China.
| |
Collapse
|
4
|
Wang J, Zhang X, Zhan S, Han F, Wang Q, Liu Y, Huang Z. Possible Metabolic Remodeling based on de novo Biosynthesis of L-serine in Se-Subtoxic or -Deficient Mammals. J Nutr 2025; 155:9-26. [PMID: 39477017 DOI: 10.1016/j.tjnut.2024.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/23/2024] [Accepted: 10/20/2024] [Indexed: 11/18/2024] Open
Abstract
Current research studies point to an increased risk of diabetes with selenium (Se) intake beyond the physiological requirement used to prevent cancers. The existing hypothesis of "selenoprotein overexpression leads to intracellular redox imbalance" cannot clearly explain the U-shaped dose-effect relationship between Se intake and the risk of diabetes. In this review, it is speculated that metabolic remodeling based on the de novo biosynthesis of L-serine may occur in mammals at supranutritional or subtoxic levels of Se. It is also speculated that a large amount of L-serine is consumed by the body during insufficient Se intake, thus resulting in similar metabolic reprogramming. The increase in atypical ceramide and its derivatives due to the lack of L-serine may also play a role in the development of diabetes.
Collapse
Affiliation(s)
- Jianrong Wang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Xue Zhang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Shuo Zhan
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Feng Han
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Qin Wang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China.
| | - Zhenwu Huang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China; Key Laboratory of Public Nutrition and Health, National Health Commission, Beijing, PR China.
| |
Collapse
|
5
|
Jiang C, Zou D, Ruan L, Han W, Wei X. Multilevel metabolic engineering for enhanced synthesis of S-adenosylmethionine by Bacillus amyloliquefaciens. Biotechnol Lett 2024; 46:1155-1162. [PMID: 39162861 DOI: 10.1007/s10529-024-03523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/21/2024]
Abstract
OBJECTIVES To enhance the de novo synthesis of SAM, the effects of several key genes on SAM synthesis were examined based on modular strategy, and the key genes were manipulated to obtain an engineered strain with high SAM production. RESULTS In Bacillus amyloliquefaciens HSAM6, the deletion of argG gene to block aspartic acid branching degradation increased SAM titer to 254.78 ± 15.91 mg/L, up 18% from HSAM6. Subsequently, deleting the moaA gene to boost the supply of 5-methyltetrahydrofolate led to the stunted growth and the plummeting yield of SAM. Further improvement of strain growth by overexpression of the citA gene, while SAM synthesis was not significantly enhanced. Finally, the maximum SAM titer (452.89 ± 13.42 mg/L) was obtained by overexpression SAM2 gene using the multicopy plasmid. CONCLUSIONS The deletion of argG gene and the overexpression of SAM2 gene significantly improved SAM synthesis in B. amyloliquefaciens.
Collapse
Affiliation(s)
- Cong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, People's Republic of China
| | - Dian Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, People's Republic of China
| | - Liying Ruan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, People's Republic of China
| | - Wenyuan Han
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, People's Republic of China
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Liu H, Zhang J, Wang L, Liu H, Yu C, Li H. Regulation of the RCK1 gene on the oxidative tolerance of Saccharomyces cerevisiae. Free Radic Biol Med 2024; 225:15-23. [PMID: 39326682 DOI: 10.1016/j.freeradbiomed.2024.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Our previous work indicated that the quorum sensing (QS) effect could regulate the oxidative tolerance of Saccharomyces cerevisiae, and QS may impact oxidative and antioxidative metabolisms of S. cerevisiae by regulating the RCK1 gene. Therefore, this work proposed a reasonable logic that RCK1 could play roles in regulating the oxidative and antioxidative metabolisms of yeast cells. The results presented here suggested that the overexpression of RCK1 has a regulatory effect on the reduction of ROS level and the promotion of oxidative tolerance of S. cerevisiae. The overexpression of RCK1 promoted the ROS generation through activating the MAPK pathway; on the other hand, RCK1-regulated antioxidative metabolism played a more significant role to realize lower ROS level and higher oxidative tolerance of S288c-RCK1 and ΔARO80-RCK1 strains. To improve the fermentation performance of yeast while circumventing metabolic burden, a recombinant strain with over time-controlled overexpression of the RCK1 gene (i.e., S288c'-RCK1 strain) derived from S288c strain was successfully constructed to achieve artificial regulation of yeast oxidative tolerance. Transcriptomics analysis was further performed on both S. cerevisiae wild-type and S288c'-RCK1 strains to identify differentially expressed genes and analyze their functional pathway classification. This work is instructive for artificially modulating the oxidative tolerance of strains to enhance the fermentation performance of yeast.
Collapse
Affiliation(s)
- Hui Liu
- School of Public Health, Jining Medical University, Jining, 272067, PR China
| | - Jiaxuan Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Lei Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Huan Liu
- School of Public Health, Jining Medical University, Jining, 272067, PR China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Hao Li
- School of Public Health, Jining Medical University, Jining, 272067, PR China.
| |
Collapse
|
7
|
Mota MN, Palma M, Sá-Correia I. Candida boidinii isolates from olive curation water: a promising platform for methanol-based biomanufacturing. AMB Express 2024; 14:93. [PMID: 39198272 PMCID: PMC11358584 DOI: 10.1186/s13568-024-01754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Methanol is a promising feedstock for biomanufacturing, but the efficiency of methanol-based bioprocesses is limited by the low rate of methanol utilization pathways and methanol toxicity. Yeast diversity is an attractive biological resource to develop efficient bioprocesses since any effort with strain improvement is more deserving if applied to innate robust strains with relevant catabolic and biosynthetic potential. The present study is in line with such rational and describes the isolation and molecular identification of seven isolates of the methylotrophic species Candida boidinii from waters derived from the traditional curation of olives, in different years, and from contaminated superficial soil near fuel stations. The yeast microbiota from those habitats was also characterized. The four C. boidinii isolates obtained from the curation of olives' water exhibited significantly higher maximum specific growth rates (range 0.15-0.19 h-1), compared with the three isolates obtained from the fuel contaminated soils (range 0.05-0.06 h-1) when grown on methanol as the sole C-source (1% (v/v), in shake flasks, at 30°C). The isolates exhibit significant robustness towards methanol toxicity that increases as the cultivation temperature decreases from 30°C to 25°C. The better methanol-based growth performance exhibited by C. boidinii isolates from olives´ soaking waters could not be essentially attributed to higher methanol tolerance. These methanol-efficient catabolizing isolates are proposed as a promising platform to develop methanol-based bioprocesses.
Collapse
Affiliation(s)
- Marta N Mota
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049- 001, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
| | - Margarida Palma
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049- 001, Portugal
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
| | - Isabel Sá-Correia
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal.
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049- 001, Portugal.
- i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal.
| |
Collapse
|
8
|
Lv Y, Chang J, Zhang W, Dong H, Chen S, Wang X, Zhao A, Zhang S, Alam MA, Wang S, Du C, Xu J, Wang W, Xu P. Improving Microbial Cell Factory Performance by Engineering SAM Availability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3846-3871. [PMID: 38372640 DOI: 10.1021/acs.jafc.3c09561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Methylated natural products are widely spread in nature. S-Adenosyl-l-methionine (SAM) is the secondary abundant cofactor and the primary methyl donor, which confer natural products with structural and functional diversification. The increasing demand for SAM-dependent natural products (SdNPs) has motivated the development of microbial cell factories (MCFs) for sustainable and efficient SdNP production. Insufficient and unsustainable SAM availability hinders the improvement of SdNP MCF performance. From the perspective of developing MCF, this review summarized recent understanding of de novo SAM biosynthesis and its regulatory mechanism. SAM is just the methyl mediator but not the original methyl source. Effective and sustainable methyl source supply is critical for efficient SdNP production. We compared and discussed the innate and relatively less explored alternative methyl sources and identified the one involving cheap one-carbon compound as more promising. The SAM biosynthesis is synergistically regulated on multilevels and is tightly connected with ATP and NAD(P)H pools. We also covered the recent advancement of metabolic engineering in improving intracellular SAM availability and SdNP production. Dynamic regulation is a promising strategy to achieve accurate and dynamic fine-tuning of intracellular SAM pool size. Finally, we discussed the design and engineering constraints underlying construction of SAM-responsive genetic circuits and envisioned their future applications in developing SdNP MCFs.
Collapse
Affiliation(s)
- Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Jinmian Chang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Weiping Zhang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan, Shandong 250101, China
| | - Hanyu Dong
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Song Chen
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Xian Wang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Anqi Zhao
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, China
| | - Shen Zhang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Chaojun Du
- Nanyang Research Institute of Zhengzhou University, Nanyang Institute of Technology, No. 80 Changjiang Road, Nanyang 473004, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
- National Key Laboratory of Biobased Transportation Fuel Technology, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Palo Alto, California 94305, United States
| | - Peng Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China
| |
Collapse
|
9
|
Fu X, Zuo X, Zhao X, Zhang H, Zhang C, Lu W. Characterization and designing of an SAM riboswitch to establish a high-throughput screening platform for SAM overproduction in Saccharomyces cerevisiae. Biotechnol Bioeng 2023; 120:3622-3637. [PMID: 37691180 DOI: 10.1002/bit.28551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
S-adenosyl- l-methionine (SAM) is a high-value compound widely used in the treatment of various diseases. SAM can be produced through fermentation, but further enhancing the microbial production of SAM requires novel high-throughput screening methods for rapid detection and screening of mutant libraries. In this work, an SAM-OFF riboswitch capable of responding to the SAM concentration was obtained and a high-throughput platform for screening SAM overproducers was established. SAM synthase was engineered by semirational design and directed evolution, which resulted in the SAM2S203F,W164R,T251S,Y285F,S365R mutant with almost twice higher catalytic activity than the parental enzyme. The best mutant was then introduced into Saccharomyces cerevisiae BY4741, and the resulting strain BSM8 produced a sevenfold higher SAM titer in shake-flask fermentation, reaching 1.25 g L-1 . This work provides a reference for designing biosensors to dynamically detect metabolite concentrations for high-throughput screening and the construction of effective microbial cell factories.
Collapse
Affiliation(s)
- Xiaomeng Fu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaoru Zuo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaomeng Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Huizhi Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, China
| |
Collapse
|
10
|
Nakanishi A, Mori M, Yamamoto N, Nemoto S, Kanamaru N, Yomogita M, Omino N, Matsumoto R. Evaluation of Cell Responses of Saccharomyces cerevisiae under Cultivation Using Wheat Bran as a Nutrient Resource by Analyses of Growth Activities and Comprehensive Gene Transcription Levels. Microorganisms 2023; 11:2674. [PMID: 38004686 PMCID: PMC10673363 DOI: 10.3390/microorganisms11112674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Wheat bran has high nutritional values and is also cheaper than yeast nitrogen base as an important component of a medium. Although its use in microbial cultivations is expected, research and development has hardly progressed so far. In this study, with experimental Saccharomyces cerevisiae BY4741, the cell responses to wheat bran as a nutrient were evaluated by analyses of cell growth, ethanol production, and comprehensive gene transcription levels. Comparing wheat bran and yeast nitrogen base, BY4741 showed specific growth rates of 0.277 ± 0.002 and 0.407 ± 0.035 as a significant difference. Additionally, wheat bran could be used as a restricted media component like yeast nitrogen base. However, in 24 h of cultivation with wheat bran and yeast nitrogen base, although conversion ratios of ethanol productions showed no significant difference at 63.0 ± 7.2% and 62.5 ± 8.2%, the ratio of cell production displayed a significant difference at 7.31 ± 0.04% and 4.90 ± 0.16%, indicating a different cell response. In fact, the comprehensive evaluation of transcription levels strongly suggested major changes in glucose metabolism. This study indicated that BY4741 could switch transcription levels efficiently to use wheat bran.
Collapse
Affiliation(s)
- Akihito Nakanishi
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan; (M.M.); (N.K.); (N.O.)
- Graduate School of Bionics, Tokyo University of Technology, Tokyo 192-0982, Japan; (N.Y.); (S.N.); (M.Y.)
| | - Minori Mori
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan; (M.M.); (N.K.); (N.O.)
| | - Naotaka Yamamoto
- Graduate School of Bionics, Tokyo University of Technology, Tokyo 192-0982, Japan; (N.Y.); (S.N.); (M.Y.)
| | - Shintaro Nemoto
- Graduate School of Bionics, Tokyo University of Technology, Tokyo 192-0982, Japan; (N.Y.); (S.N.); (M.Y.)
| | - Nono Kanamaru
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan; (M.M.); (N.K.); (N.O.)
| | - Misaki Yomogita
- Graduate School of Bionics, Tokyo University of Technology, Tokyo 192-0982, Japan; (N.Y.); (S.N.); (M.Y.)
| | - Natsumi Omino
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan; (M.M.); (N.K.); (N.O.)
| | - Riri Matsumoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo 192-0982, Japan; (M.M.); (N.K.); (N.O.)
| |
Collapse
|
11
|
Liu S, Dong H, Hong K, Meng J, Lin L, Wu X. Improving Methanol Utilization by Reducing Alcohol Oxidase Activity and Adding Co-Substrate of Sodium Citrate in Pichia pastoris. J Fungi (Basel) 2023; 9:422. [PMID: 37108877 PMCID: PMC10142128 DOI: 10.3390/jof9040422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Methanol, which produced in large quantities from low-quality coal and the hydrogenation of CO2, is a potentially renewable one-carbon (C1) feedstock for biomanufacturing. The methylotrophic yeast Pichia pastoris is an ideal host for methanol biotransformation given its natural capacity as a methanol assimilation system. However, the utilization efficiency of methanol for biochemical production is limited by the toxicity of formaldehyde. Therefore, reducing the toxicity of formaldehyde to cells remains a challenge to the engineering design of a methanol metabolism. Based on genome-scale metabolic models (GSMM) calculations, we speculated that reducing alcohol oxidase (AOX) activity would re-construct the carbon metabolic flow and promote balance between the assimilation and dissimilation of formaldehyde metabolism processes, thereby increasing the biomass formation of P. pastoris. According to experimental verification, we proved that the accumulation of intracellular formaldehyde can be decreased by reducing AOX activity. The reduced formaldehyde formation upregulated methanol dissimilation and assimilation and the central carbon metabolism, which provided more energy for the cells to grow, ultimately leading to an increased conversion of methanol to biomass, as evidenced by phenotypic and transcriptome analysis. Significantly, the methanol conversion rate of AOX-attenuated strain PC110-AOX1-464 reached 0.364 g DCW/g, representing a 14% increase compared to the control strain PC110. In addition, we also proved that adding a co-substrate of sodium citrate could further improve the conversion of methanol to biomass in the AOX-attenuated strain. It was found that the methanol conversion rate of the PC110-AOX1-464 strain with the addition of 6 g/L sodium citrate reached 0.442 g DCW/g, representing 20% and 39% increases compared to AOX-attenuated strain PC110-AOX1-464 and control strain PC110 without sodium citrate addition, respectively. The study described here provides insight into the molecular mechanism of efficient methanol utilization by regulating AOX. Reducing AOX activity and adding sodium citrate as a co-substrate are potential engineering strategies to regulate the production of chemicals from methanol in P. pastoris.
Collapse
Affiliation(s)
- Shufan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haofan Dong
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Kai Hong
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jiao Meng
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Liangcai Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xin Wu
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
12
|
Hu ZC, Zheng CM, Tao YC, Wang SN, Wang YS, Liu ZQ, Zheng YG. Improving ATP availability by sod1 deletion with a strategy of precursor feeding enhanced S-adenosyl-L-methionine accumulation in Saccharomyces cerevisiae. Enzyme Microb Technol 2023; 164:110189. [PMID: 36586225 DOI: 10.1016/j.enzmictec.2022.110189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
S-adenosyl-L-methionine (SAM), used in diverse pharmaceutical applications, was biosynthesized from L-methionine (L-met) and adenosine triphosphate (ATP). This study aims to increase the accumulation of SAM in Saccharomyces cerevisiae by promoting ATP availability. Strain ΔSOD1 was obtained from the parent strain WT15-33 (CCTCC M 2021915) by deleting gene sod1, which improved the supply of ATP. The SAM content in strain ΔSOD1 exhibited a 22.3% improvement compared to the parent strain, which reached 93.6 mg g-1. The transformation of NADH (reduced nicotinamide adenine dinucleotide) and the relative expression of ATPase essential genes were investigated, respectively. The results showed that the lack of gene sod1 benefited the generation of ATP, which positively regulated the synthesis of SAM. Besides that, the production of SAM was further enhanced by improving substrate assimilation. With the infusion of 1.44 g L-1L-met and 0.60 g L-1 adenosine at 24 h (h) and 0 h following fermentation, the optimum medium could produce 1.54 g L-1 SAM. Based on the regulations mentioned above, the SAM concentration of strain ΔSOD1 enhanced from 7.3 g L-1 to 10.1 g L-1 in a 5-L fermenter in 118 h. This work introduces a novel idea for the biosynthesis of ATP and SAM, and the strain ΔSOD1 has the potential for industrial production.
Collapse
Affiliation(s)
- Zhong-Ce Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chui-Mu Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yun-Chao Tao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shu-Nan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuan-Shan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
13
|
Guo Y, Wang H, Wei X, Wang Z, Wang H, Chen J, Li J, Liu J. Utilization of high-K+-cane molasses for enhanced S-Adenosylmethionine production by manipulation of a K+ transport channel in Saccharomyces cerevisiae. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
14
|
Untargeted Metabolomics Combined with Metabolic Flux Analysis Reveals the Mechanism of Sodium Citrate for High S-Adenosyl-Methionine Production by Pichia pastoris. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
S-adenosyl-methionine (SAM) is crucial for organisms to maintain some physiological functions. However, the inconsistency between high L-methionine feeding rate and yield during SAM production at an industrial scale and its metabolic mechanism have not been elucidated. Here, the cellular metabolic mechanism of feeding sodium citrate to the Pichia pastoris (P. pastoris) G12’/AOX-acs2 strain to enhance SAM production was investigated using untargeted metabolomics and metabolic flux analysis. The results indicated that the addition of sodium citrate has a facilitative effect on SAM production. In addition, 25 metabolites, such as citrate, cis-aconitate, and L-glutamine, were significantly up-regulated, and 16 metabolites, such as glutathione, were significantly down-regulated. Furthermore, these significantly differential metabolites were mainly distributed in 13 metabolic pathways, such as the tricarboxylic acid (TCA) cycle. In addition, the metabolic fluxes of the glycolysis pathway, pentose phosphate pathway, TCA cycle, and glyoxylate pathway were increased by 20.45–29.32%, respectively, under the condition of feeding sodium citrate compared with the control. Finally, it was speculated that the upregulation of dihydroxyacetone level might increase the activity of alcohol oxidase AOX1 to promote methanol metabolism by combining metabolomics and fluxomics. Meanwhile, acetyl coenzyme A might enhance the activity of citrate synthase through allosteric activation to promote the flux of the TCA cycle and increase the level of intracellular oxidative phosphorylation, thus contributing to SAM production. These new insights into the L-methionine utilization for SAM biosynthesis by systematic biology in P. pastoris provides a novel vision for increasing its industrial production.
Collapse
|
15
|
Weng C, Mi Z, Li M, Qin H, Hu Z, Liu Z, Zheng Y, Wang Y. Improvement of S-adenosyl-L-methionine production in S accharomyces cerevisiae by atmospheric and room temperature plasma-ultraviolet compound mutagenesis and droplet microfluidic adaptive evolution. 3 Biotech 2022; 12:223. [PMID: 35975026 PMCID: PMC9375785 DOI: 10.1007/s13205-022-03297-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/02/2022] [Indexed: 11/01/2022] Open
Abstract
To improve S-Adenosyl-L-methionine (a compound with important physiological functions, SAM) production, atmospheric and room temperature plasma and ultraviolet-LiCl mutagenesis were carried out with Saccharomyces cerevisiae strain ZY 1-5. The mutants were screened with ethionine, L-methionine, nystatin and cordycepin as screening agents. Adaptive evolution of a positive mutant UV6-69 was further performed by droplet microfluidics cultivation with ethionine as screening pressure. After adaptation, mutant T11-1 was obtained. Its SAM titer in shake flask fermentation reached 1.31 g/L, which was 191% higher than that of strain ZY 1-5. Under optimal conditions, the SAM titer and biomass of mutant T11-1 in 5 L bioreactor reached 10.72 g/L and 105.9 g dcw/L (142.86% and 34.22% higher than those of strain ZY 1-5), respectively. Comparative transcriptome analysis between strain ZY 1-5 and mutant T11-1 revealed the enhancements in TCA cycle and gluconeogenesis/glycolysis pathways as well as the inhibitions in serine and ergosterol synthesis of mutant T11-1. The elevated SAM synthesis of mutant T11-1 may attribute to the above changes. Taken together, this study is helpful for industrial production of SAM.
Collapse
Affiliation(s)
- Chunyue Weng
- The National and LocalJoint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Zheyan Mi
- The National and LocalJoint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Meijing Li
- The National and LocalJoint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Haibin Qin
- The National and LocalJoint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Zhongce Hu
- The National and LocalJoint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Zhiqiang Liu
- The National and LocalJoint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Yuguo Zheng
- The National and LocalJoint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014 People’s Republic of China
| | - Yuanshan Wang
- The National and LocalJoint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014 People’s Republic of China
| |
Collapse
|
16
|
Zou D, Zhao Z, Li L, Min Y, Zhang D, Ji A, Jiang C, Wei X, Wu X. A comprehensive review of spermidine: Safety, health effects, absorption and metabolism, food materials evaluation, physical and chemical processing, and bioprocessing. Compr Rev Food Sci Food Saf 2022; 21:2820-2842. [PMID: 35478379 DOI: 10.1111/1541-4337.12963] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
Spermidine, a natural autophagy inducer, has a variety of health effects, such as antitumor, antiaging, anti-inflammation, cardiovascular protection, and neuromodulation. It has been a hot topic in the field of food processing, and current research findings suggest that spermidine-rich foods may be used in intervention and prevention of age-related diseases. In this article, recent findings on the safety, health effects, absorption and metabolism of spermidine were reviewed, and advances in food processing, including the raw materials evaluation, physical and chemical processing, and biological processing of spermidine, were highlighted. In particular, the core metabolic pathways, key gene targets, and efficient metabolic engineering strategies involved in the biosynthesis of spermidine and its precursors were discussed. Moreover, limitations and future perspectives of spermidine research were proposed. The purpose of this review is to provide new insights on spermidine from its safety to its food processing, which will advance the commercial production and applications of spermidine-rich foods and nutraceuticals.
Collapse
Affiliation(s)
- Dian Zou
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ziyue Zhao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lu Li
- Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yu Min
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Daiyuan Zhang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Anying Ji
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cong Jiang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuetuan Wei
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio, USA
| |
Collapse
|
17
|
Gao Y, Liu N, Zhu Y, Yu S, Liu Q, Shi X, Xu J, Xu G, Zhang X, Shi J, Xu Z. Improving glutathione production by engineered Pichia pastoris: strain construction and optimal precursor feeding. Appl Microbiol Biotechnol 2022; 106:1905-1917. [PMID: 35218387 DOI: 10.1007/s00253-022-11827-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022]
Abstract
Glutathione (GSH) is a metabolite that plays an important role in the fields of pharmacy, food, and cosmetics. Thus, it is necessary to increase its production to meet the demands. In this study, ScGSH1, ScGSH2, and StGshF were heterologously expressed in Pichia pastoris GS115 to realize the dual-path synthesis of GSH in yeast. To explore the effects of ATP metabolism on the synthesis of GSH, enzymes (ScADK1, PpADK1, VsVHB) of the ATP-related metabolic pathway and the energy co-substrate sodium citrate were taken into account. We found that both ScADK1 and sodium citrate had a positive influence on the synthesis of GSH. Then, a fermentation experiment in Erlenmeyer flasks was performed using the G3-SF strain (containing ScGSH1, ScGSH2, StGshF, and ScADK1), with the highest GSH titer and yield of 999.33 ± 47.26 mg/L and 91.53 ± 4.70 mg/g, respectively. Finally, the fermentation was scaled up in a 5-L fermentor, and the highest titer and yield were improved to 5680 mg/L and 45.13 mg/g, respectively, by optimizing the addition conditions of amino acids (40 mM added after 40 h). Our work provides an alternative strategy by combining dual-path synthesis with energy metabolism regulation and precursor feeding to improve GSH production. Key Points • ScGSH1, ScGSH2, and StGshF were overexpressed to achieve dual-path synthesis of GSH in yeast. • ScADK1 was overexpressed, and sodium citrate was added to increase the energy supply for GSH synthesis. • The addition conditions of amino acids were optimized to realize the efficient synthesis of GSH.
Collapse
Affiliation(s)
- Yuhao Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, China
| | - Na Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, China
| | - Yaxin Zhu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, China
| | - Shiyu Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, China
| | - Qiulin Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, China
| | - Xiangliu Shi
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, China
| | - Jianguo Xu
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
- Wuxi Fortune Pharmaceutical Co., Ltd, Wuxi, 214041, China
| | - Guoqiang Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, China.
| | - Xiaomei Zhang
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jinsong Shi
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhenghong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
18
|
Liu Q, Lin B, Tao Y. Improved methylation in E. coli via an efficient methyl supply system driven by betaine. Metab Eng 2022; 72:46-55. [DOI: 10.1016/j.ymben.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 12/21/2022]
|
19
|
Chen H, Zhu N, Wang Y, Gao X, Song Y, Zheng J, Peng J, Zhang X. Increasing glycolysis by deletion of kcs1 and arg82 improved S-adenosyl-L-methionine production in Saccharomyces cerevisiae. AMB Express 2021; 11:20. [PMID: 33464427 PMCID: PMC7815874 DOI: 10.1186/s13568-021-01179-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 11/10/2022] Open
Abstract
Reprogramming glycolysis for directing glycolytic metabolites to a specific metabolic pathway is expected to be useful for increasing microbial production of certain metabolites, such as amino acids, lipids or considerable secondary metabolites. In this report, a strategy of increasing glycolysis by altering the metabolism of inositol pyrophosphates (IPs) for improving the production of S-adenosyl-L-methionine (SAM) for diverse pharmaceutical applications in yeast is presented. The genes associated with the metabolism of IPs, arg82, ipk1 and kcs1, were deleted, respectively, in the yeast strain Saccharomyces cerevisiae CGMCC 2842. It was observed that the deletions of kcs1 and arg82 increased SAM by 83.3 % and 31.8 %, respectively, compared to that of the control. In addition to the improved transcription levels of various glycolytic genes and activities of the relative enzymes, the levels of glycolytic intermediates and ATP were also enhanced. To further confirm the feasibility, the kcs1 was deleted in the high SAM-producing strain Ymls1ΔGAPmK which was deleted malate synthase gene mls1 and co-expressed the Acetyl-CoA synthase gene acs2 and the SAM synthase gene metK1 from Leishmania infantum, to obtain the recombinant strain Ymls1Δkcs1ΔGAPmK. The level of SAM in Ymls1Δkcs1ΔGAPmK reached 2.89 g L-1 in a 250-mL flask and 8.86 g L-1 in a 10-L fermentation tank, increasing 30.2 % and 46.2 %, respectively, compared to those levels in Ymls1ΔGAPmK. The strategy of increasing glycolysis by deletion of kcs1 and arg82 improved SAM production in yeast.
Collapse
|
20
|
Chen H, Cao X, Zhu N, Jiang L, Zhang X, He Q, Wei P. A stepwise control strategy for glutathione synthesis in Saccharomyces cerevisiae based on oxidative stress and energy metabolism. World J Microbiol Biotechnol 2020; 36:117. [PMID: 32676694 DOI: 10.1007/s11274-020-02895-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 07/12/2020] [Indexed: 11/30/2022]
Abstract
A stepwise control strategy for enhancing glutathione (GSH) synthesis in yeast based on oxidative stress and energy metabolism was investigated. First, molasses and corn steep liquor were selected and fed as carbon source mixture at a flow rate of 1.5 g/L/h and 0.4 g/L/h, respectively, for increasing cell density in a 10 L fermenter. When the biomass reached 90 g/L, the KMnO4 sustained-release particles, composed of 1.5% KMnO4, 3% stearic acid, 2% polyethylene glycol and 3% agar powder, were prepared and added to the fermentation broth for maintaining the oxidative stress. The results showed that the maximum GSH accumulation of the group fed KMnO4 sustained-release particles was 39.0% higher than that of KMnO4-fed group. In addition to the improved average GSH productivity and average specific production rate, the activities of GSH peroxidase, γ-glutamylcysteine synthetase and GSH reductase, enzymes taking part in GSH metabolism, were also significantly enhanced by KMnO4 sustained-release particles feeding. Finally, 6 g/L sodium citrate fed as an energy adjuvant elevated the intracellular ATP level for further enhancing GSH production. Through the above stepwise strategy, the GSH accumulation reached 5.76 g/L, which was 2.84-fold higher than that of the control group. The stepwise control strategy based on oxidative stress and energy metabolism significantly improved GSH accumulation in yeast.
Collapse
Affiliation(s)
- Hailong Chen
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 Ji Chuan Road, Taizhou, 225300, People's Republic of China.
| | - Xitao Cao
- College of Biotechnology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang, 212018, People's Republic of China
| | - Nianqing Zhu
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 Ji Chuan Road, Taizhou, 225300, People's Republic of China
| | - Lihua Jiang
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 Ji Chuan Road, Taizhou, 225300, People's Republic of China
| | - Xiaoge Zhang
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 Ji Chuan Road, Taizhou, 225300, People's Republic of China
| | - Qingming He
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 Ji Chuan Road, Taizhou, 225300, People's Republic of China
| | - Pinghe Wei
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, 93 Ji Chuan Road, Taizhou, 225300, People's Republic of China
| |
Collapse
|
21
|
Qin X, Lu J, Zhang Y, Wu X, Qiao X, Wang Z, Chu J, Qian J. Engineering
Pichia pastoris
to improve S‐adenosyl‐
l
‐methionine production using systems metabolic strategies. Biotechnol Bioeng 2020; 117:1436-1445. [DOI: 10.1002/bit.27300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/15/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Xiulin Qin
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Junjie Lu
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Yin Zhang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Xiaole Wu
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Xuefeng Qiao
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Zhipeng Wang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Ju Chu
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| | - Jiangchao Qian
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and Technology Shanghai China
| |
Collapse
|
22
|
Li G, Li H, Tan Y, Hao N, Yang X, Chen K, Ouyang P. Improved S-adenosyl-l-methionine production in Saccharomyces cerevisiae using tofu yellow serofluid. J Biotechnol 2020; 309:100-106. [PMID: 31926980 DOI: 10.1016/j.jbiotec.2020.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/26/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023]
Abstract
S-adenosyl-l-methionine (SAM) has been attracting increasing attention because of its significance in the pharmaceutical industry; however, the high cost of this compound limits its application. Tofu yellow serofluid exhibits high nutritional value and is not costly; therefore, it can be utilized as a substrate in the fermentation industry. In the current study, Saccharomyces cerevisiae was cultured in the tofu yellow serofluid fermentation medium for the SAM biosynthesis. The optimum tofu yellow serofluid fermentation medium contained 70 g/L of glucose, 30 % of yellow serofluid, 20 g/L of l-methionine, and 2.5 g/L of ammonium citrate. Under these conditions, the optimum feeding strategy was established. The results revealed that the dry cell weight (DCW) reached 123.1 g/L, the maximum production of SAM was 16.14 g/L, the highest SAM productivity reached 1.048 g/L/h, and SAM content was determined at 131.1 mg/g DCW. Furthermore, addition of tofu yellow serofluid reduced the average cost of SAM by 31.9 % to compare with the culture process without addition of tofu yellow serofluid. Thus, the tofu yellow serofluid fermentation medium improved the production of SAM and significantly reduced the production costs.
Collapse
Affiliation(s)
- Ganlu Li
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| | - Hui Li
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| | - Yuyan Tan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| | - Ning Hao
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China.
| | - Xuelian Yang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
23
|
Ren Y, Liu Q, Liu H, Zhou X, Zhang Y, Cai M. Engineering substrate and energy metabolism for living cell production of cytidine-5'-diphosphocholine. Biotechnol Bioeng 2020; 117:1426-1435. [PMID: 31997310 DOI: 10.1002/bit.27291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/26/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
Cytidine-5'-diphosphocholine (CDP-choline) is a widely used neuroprotective drug for multiple indications. In industry, CDP-choline is synthesized by a two-step cell culture/permeabilized cell biotransformation method because substrates often do not enter cells in an efficient manner. This study develops a novel one-step living cell fermentation method for CDP-choline production. For this purpose, the feasibility of Pichia pastoris as a chassis was demonstrated by substrate feeding and CDP-choline production. Overexpression of choline phosphate cytidylyltransferase and choline kinase enhanced the choline transformation pathway and improved the biosynthesis of CDP-choline. Furthermore, co-overexpression of ScHnm1, which is a heterologous choline transporter, highly improved the utilization of choline substrates, despite its easy degradation in cells. This strategy increased CDP-choline titer by 55-folds comparing with the wild-type (WT). Overexpression of cytidine-5'-monophosphate (CMP) kinase and CDP kinase in the CMP transformation pathway showed no positive effects. An increase in the ATP production by citrate stimulation or metabolic pathway modification further improved CDP-choline biosynthesis by 120%. Finally, the orthogonal optimization of key substrates and pH was carried out, and the resulting CDP-choline titer (6.0 g/L) at optimum conditions increased 88 times the original titer in the WT. This study provides a new paradigm for CDP-choline bioproduction by living cells.
Collapse
Affiliation(s)
- Yanna Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haifeng Liu
- China Resources Angde Biotech Pharmaceutical Co, Ltd, Liaocheng, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,China Resources Angde Biotech Pharmaceutical Co, Ltd, Liaocheng, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
24
|
Liu W, Tang D, Shi R, Lian J, Huang L, Cai J, Xu Z. Efficient production ofS‐adenosyl‐l‐methionine fromdl‐methionine in metabolic engineeredSaccharomyces cerevisiae. Biotechnol Bioeng 2019; 116:3312-3323. [DOI: 10.1002/bit.27157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Wei Liu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological EngineeringZhejiang University Hangzhou China
| | - Dandan Tang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological EngineeringZhejiang University Hangzhou China
- State Key Laboratory of Clean Energy Utilization, College of Energy EngineeringZhejiang University Hangzhou China
| | - Rui Shi
- Department of Food Science and TechnologyCollege of Light Industry and Food Engineering, Nanjing Forestry University Nanjing China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological EngineeringZhejiang University Hangzhou China
- Center for Synthetic Biology, College of Chemical and Biological EngineeringZhejiang University Hangzhou China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological EngineeringZhejiang University Hangzhou China
| | - Jin Cai
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological EngineeringZhejiang University Hangzhou China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological EngineeringZhejiang University Hangzhou China
- Center for Synthetic Biology, College of Chemical and Biological EngineeringZhejiang University Hangzhou China
| |
Collapse
|
25
|
Semi-rationally engineered variants of S-adenosylmethionine synthetase from Escherichia coli with reduced product inhibition and improved catalytic activity. Enzyme Microb Technol 2019; 129:109355. [PMID: 31307578 DOI: 10.1016/j.enzmictec.2019.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/29/2019] [Accepted: 05/26/2019] [Indexed: 11/20/2022]
Abstract
S-adenosylmethionine synthetase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM) from ATP and L-methionine. SAM is the major methyl donor for more than 100 transmethylation reactions. It is also a common cosubstrate involved in transsulfuration and aminopropylation. However, product inhibition largely restrains the activity of MAT and limits the enzymatic synthesis of SAM. In this research, the product inhibition of MAT from Escherichia coli was reduced via semi-rational modification. A triple variant (Variant III, I303 V/I65 V/L186 V) showed a 42-fold increase in Ki,ATP and a 2.08-fold increase in specific activity when compared to wild-type MAT. Its Ki,ATP was 0.42 mM and specific acitivity was 3.78 ±0.19 U/mg. Increased Ki,ATP means reduced product inhibition which enhances SAM accumulation. The SAM produced by Variant III could reach to 3.27 mM while SAM produced by wild-type MAT was 1.62 mM in the presence of 10 mM substrates. When the residue in 104th of Variant III was further optimized by site-saturated mutagenesis, the specific activity of Variant IV (I303 V/I65 V/L186 V/N104 K) reached to 6.02 ±0.22 U/mg at 37 °C, though the SAM concentration decreased to 2.68 mM with 10 mM substrates. Analysis of protein 3D structure suggests that changes in hydrogen bonds or other ligand interactions around active site may account for the variety of product inhibition and enzyme activity. The Variant III and Variant IV with reduced inhibition and improved enzyme activity in the study would be more suitable candidates for SAM production in the future.
Collapse
|
26
|
Hayakawa K, Matsuda F, Shimizu H. 13C-metabolic flux analysis of ethanol-assimilating Saccharomyces cerevisiae for S-adenosyl-L-methionine production. Microb Cell Fact 2018; 17:82. [PMID: 29855316 PMCID: PMC5977476 DOI: 10.1186/s12934-018-0935-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Saccharomyces cerevisiae is a host for the industrial production of S-adenosyl-L-methionine (SAM), which has been widely used in pharmaceutical and nutritional supplement industries. It has been reported that the intracellular SAM content in S. cerevisiae can be improved by the addition of ethanol during cultivation. However, the metabolic state in ethanol-assimilating S. cerevisiae remains unclear. In this study, 13C-metabolic flux analysis (13C-MFA) was conducted to investigate the metabolic regulation responsible for the high SAM production from ethanol. RESULTS The comparison between the metabolic flux distributions of central carbon metabolism showed that the metabolic flux levels of the tricarboxylic acid cycle and glyoxylate shunt in the ethanol culture were significantly higher than that of glucose. Estimates of the ATP balance from the 13C-MFA data suggested that larger amounts of excess ATP was produced from ethanol via increased oxidative phosphorylation. The finding was confirmed by the intracellular ATP level under ethanol-assimilating condition being similarly higher than glucose. CONCLUSIONS These results suggest that the enhanced ATP regeneration due to ethanol assimilation was critical for the high SAM accumulation.
Collapse
Affiliation(s)
- Kenshi Hayakawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.,KANEKA Fundamental Technology Research Alliance Laboratories, Graduate School of Engineering, Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Biotechnology Development Laboratories, Health Care Solutions Research Institute, Kaneka Corporation, 1-8 Miyamae-cho, Takasago-cho, Takasago, Hyogo, 676-8688, Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
27
|
Chen Y, Tan T. Enhanced S-Adenosylmethionine Production by Increasing ATP Levels in Baker's Yeast ( Saccharomyces cerevisiae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5200-5209. [PMID: 29722539 DOI: 10.1021/acs.jafc.8b00819] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the biosynthesis of S-adenosylmethionine (SAM) in baker's yeast ( Saccharomyces cerevisiae), ATP functions as both a precursor and a driving force. However, few published reports have dealt with the control of ATP concentration using genetic design. In this study we have adopted a new ATP regulation strategy in yeast for enhancing SAM biosynthesis, including altering NADH availability and regulating the oxygen supply. Different ATP regulation systems were designed based on the introduction of water-forming NADH oxidase, Vitreoscilla hemoglobin, and phosphite dehydrogenase in combination with overexpression of the gene SAM2. Via application of this strategy, after 28 h cultivation, the SAM titer in the yeast strain ABYSM-2 reached a maximum level close to 55 mg/L, an increase of 67% compared to the control strain. The results show that the ATP regulation strategy is a valuable tool for SAM production and might further enhance the synthesis of other ATP-driven metabolites in yeast.
Collapse
Affiliation(s)
- Yawei Chen
- College of Chemical and Pharmaceutical Engineering , Henan University of Science and Technology , Luoyang 471023 , P. R. China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| |
Collapse
|
28
|
Zhang R, Shao M, Han X, Wang C, Li Y, Hu B, Pang D, Xie Z. ATP synthesis in the energy metabolism pathway: a new perspective for manipulating CdSe quantum dots biosynthesized in Saccharomyces cerevisiae. Int J Nanomedicine 2017; 12:3865-3879. [PMID: 28579774 PMCID: PMC5446969 DOI: 10.2147/ijn.s132719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Due to a growing trend in their biomedical application, biosynthesized nanomaterials are of great interest to researchers nowadays with their biocompatible, low-energy consumption, economic, and tunable characteristics. It is important to understand the mechanism of biosynthesis in order to achieve more efficient applications. Since there are only rare studies on the influences of cellular energy levels on biosynthesis, the influence of energy is often overlooked. Through determination of the intracellular ATP concentrations during the biosynthesis process, significant changes were observed. In addition, ATP synthesis deficiency caused great decreases in quantum dots (QDs) biosynthesis in the Δatp1, Δatp2, Δatp14, and Δatp17 strains. With inductively coupled plasma-atomic emission spectrometry and atomic absorption spectroscopy analyses, it was found that ATP affected the accumulation of the seleno-precursor and helped with the uptake of Cd and the formation of QDs. We successfully enhanced the fluorescence intensity 1.5 or 2 times through genetic modification to increase ATP or SeAM (the seleno analog of S-adenosylmethionine, the product that would accumulate when ATP is accrued). This work explains the mechanism for the correlation of the cellular energy level and QDs biosynthesis in living cells, demonstrates control of the biosynthesis using this mechanism, and thus provides a new manipulation strategy for the biosynthesis of other nanomaterials to widen their applications.
Collapse
Affiliation(s)
- Rong Zhang
- Hubei Key Laboratory of Cell Homeostasis
- College of Life Sciences, Wuhan University
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
| | - Ming Shao
- Hubei Key Laboratory of Cell Homeostasis
- College of Life Sciences, Wuhan University
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
| | - Xu Han
- Hubei Key Laboratory of Cell Homeostasis
- College of Life Sciences, Wuhan University
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
| | - Chuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Science, Wuhan University, Wuhan, People’s Republic of China
| | - Yong Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Science, Wuhan University, Wuhan, People’s Republic of China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Science, Wuhan University, Wuhan, People’s Republic of China
| | - Daiwen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
- College of Chemistry and Molecular Science, Wuhan University, Wuhan, People’s Republic of China
| | - Zhixiong Xie
- Hubei Key Laboratory of Cell Homeostasis
- College of Life Sciences, Wuhan University
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
| |
Collapse
|
29
|
A genetic method to enhance the accumulation of S-adenosylmethionine in yeast. Appl Microbiol Biotechnol 2017; 101:1351-1357. [DOI: 10.1007/s00253-017-8098-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/25/2016] [Accepted: 12/26/2016] [Indexed: 10/20/2022]
|
30
|
Hayakawa K, Matsuda F, Shimizu H. Metabolome analysis of Saccharomyces cerevisiae and optimization of culture medium for S-adenosyl-L-methionine production. AMB Express 2016; 6:38. [PMID: 27277079 PMCID: PMC4899347 DOI: 10.1186/s13568-016-0210-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/30/2016] [Indexed: 11/10/2022] Open
Abstract
S-Adenosyl-l-methionine (SAM) is a fine chemical used as a nutritional supplement and a prescription drug. It is industrially produced using Saccharomyces cerevisiae owing to its high SAM content. To investigate the optimization of culture medium components for higher SAM production, metabolome analysis was conducted to compare the intracellular metabolite concentrations between Kyokai no. 6 (high SAM-producing) and laboratory yeast S288C (control) under different SAM production conditions. Metabolome analysis and the result of principal component analysis showed that the rate-limiting step for SAM production was ATP supply and the levels of degradation products of adenosine nucleotides were higher in Kyokai 6 strain than in the S288C strain under the l-methionine supplemented condition. Analysis of ATP accumulation showed that the levels of intracellular ATP in the Kyokai 6 strain were also higher compared to those in the S288C strain. Furthermore, as expected from metabolome analysis, the SAM content of Kyokai 6 strain cultivated in the medium without yeast extract increased by 2.5-fold compared to that in the additional condition, by increasing intracellular ATP level with inhibited cell growth. These results suggest that high SAM production is attributed to the enhanced ATP supply with l-methionine condition and high efficiency of intracellular ATP consumption.
Collapse
|
31
|
Chen H, Wang Z, Cai H, Zhou C. Progress in the microbial production of S-adenosyl-L-methionine. World J Microbiol Biotechnol 2016; 32:153. [PMID: 27465853 DOI: 10.1007/s11274-016-2102-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/26/2016] [Indexed: 10/21/2022]
Abstract
S-Adenosyl-L-methionine (SAM), which exists in all living organisms, serves as an activated group donor in a range of metabolic reactions, including trans-methylation, trans-sulfuration and trans-propylamine. Compared with its chemical synthesis and enzyme catalysis production, the microbial production of SAM is feasible for industrial applications. The current clinical demand for SAM is constantly increasing. Therefore, vast interest exists in engineering the SAM metabolism in cells for increasing product titers. Here, we provided an overview of updates on SAM microbial productivity improvements with an emphasis on various strategies that have been used to enhance SAM production based on increasing the precursor and co-factor availabilities in microbes. These strategies included the sections of SAM-producing microbes and their mutant screening, optimization of the fermentation process, and the metabolic engineering. The SAM-producing strains that were used extensively were Saccharomyces cerevisiae, Pichia pastoris, Candida utilis, Scheffersomyces stipitis, Kluyveromyces lactis, Kluyveromyces marxianus, Corynebacterium glutamicum, and Escherichia coli, in addition to others. The optimization of the fermentation process mainly focused on the enhancement of the methionine, ATP, and other co-factor levels through pulsed feeding as well as the optimization of nitrogen and carbon sources. Various metabolic engineering strategies using precise control of gene expression in engineered strains were also highlighted in the present review. In addition, some prospects on SAM microbial production were discussed.
Collapse
Affiliation(s)
- Hailong Chen
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Zhilai Wang
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Changlin Zhou
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|