1
|
Fan H, Wan Y, Huang Y, Yuan J, Fan J, Kou Y, Yu X, Pan Y, Huang D, Fu G. Breeding of lactic acid-tolerant Saccharomyces cerevisiae based on atmospheric and room temperature plasma technology and automatic high-throughput microbial microdroplet culture system. Food Microbiol 2025; 128:104717. [PMID: 39952761 DOI: 10.1016/j.fm.2024.104717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/02/2024] [Accepted: 12/22/2024] [Indexed: 02/17/2025]
Abstract
The high concentration of lactic acid produced during the solid fermentation of Chinese Baijiu inhibited the growth and metabolism of Saccharomyces cerevisiae, thus affecting the flavor and quality of Baijiu. This study employed a combination of Atmospheric and room temperature plasma (ARTP) and Automatic high-throughput microbial microdroplet culture system (MMC) to screen S. cerevisiae capable of tolerating high concentrations of lactic acid. The results demonstrated that the growth rate, cell integrity, ethanol production capacity and volatile aroma components content of the three lactic acid-tolerant strains were significantly superior to original strain S. cerevisiae NCUF309.5 under the stress of 4% lactic acid concentration. Especially, the acid tolerance of S. cerevisiae NCUF309.5-44 obtained through ARTP treatment and adaptive laboratory evolution by MMC, which exhibited a 93.65% increase in OD value and a 2.29-fold increase in ethanol content after 24 h of 4% lactic acid stress, remained stable after 10 consecutive sub-cultures. Besides, the content of volatile compounds increased 60.69%. In summary, this paper provided a novel screening strategy for lactic acid-tolerant S. cerevisiae and established a foundation for the selection and breeding of microorganisms used in solid-state Baijiu fermentation.
Collapse
Affiliation(s)
- Haowei Fan
- State Key Laboratory of Food Science and Resources & College of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; International Institute of Food Innovation, Nanchang University, Nanchang, 330000, PR China
| | - Yin Wan
- State Key Laboratory of Food Science and Resources & College of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Yixin Huang
- State Key Laboratory of Food Science and Resources & College of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Jayi Yuan
- State Key Laboratory of Food Science and Resources & College of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Jiahui Fan
- State Key Laboratory of Food Science and Resources & College of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; International Institute of Food Innovation, Nanchang University, Nanchang, 330000, PR China
| | - Yaru Kou
- State Key Laboratory of Food Science and Resources & College of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Xuefeng Yu
- State Key Laboratory of Food Science and Resources & College of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Yufeng Pan
- State Key Laboratory of Food Science and Resources & College of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China
| | - Dan Huang
- Liquor Making Biological Technology and Application Key Laboratory of Sichuan Province, Yibin, 644000, PR China
| | - Guiming Fu
- State Key Laboratory of Food Science and Resources & College of Food Science and Technology, Nanchang University, Nanchang, 330047, PR China; International Institute of Food Innovation, Nanchang University, Nanchang, 330000, PR China.
| |
Collapse
|
2
|
Ramasamy T, Tevatia R, Ali S, Muhle A, Knight-Connoni V, Chakraborty N. Proteomic approach for evaluating cryoprotectant formulations for enhanced post-cryopreservation recovery of yeast. Sci Rep 2025; 15:15474. [PMID: 40316578 PMCID: PMC12048564 DOI: 10.1038/s41598-025-00534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025] Open
Abstract
Fungi have numerous potential biotechnological applications across the life sciences. To ensure these microorganisms are available for future research, it is essential that they are properly preserved to safeguard against genetic changes, cellular instability, and loss of viability. While the use of cryoprotective agents (CPA) is critical for increasing survival of the material during preservation, the wide adoption of glycerol and DMSO as CPAs may not always be ideal as fungal diversity and functionality are ever growing. Therefore, in the following work, we focused on developing robust cryopreservation formulations that can efficiently preserve fungal strains while also maximizing recovery. Here, 10 different cryopreservation formulations consisting of individual or a combination of CPAs were evaluated for their effect on the Saccharomyces cerevisiae (ATCC 7754) proteome. Spot assays were performed to study the recovery response of each formulation. Functional proteomic and KEGG pathway analyses were used to investigate the molecular mechanism of cold-stress response in S. cerevisiae. A total of 2,299 proteins were identified; depending on the formulation used, a range of 116-1,241 proteins were found to be significantly upregulated and downregulated, indicating the influence of individual formulations. To the best of our knowledge, this is the first study that uses a proteomic-based approach to investigate how different cryopreservation formulations affect key mechanisms within a model organism.
Collapse
Affiliation(s)
| | - Rahul Tevatia
- ATCC, 10801 University Boulevard, Manassas, VA, 20110, USA
| | - Shahin Ali
- ATCC, 10801 University Boulevard, Manassas, VA, 20110, USA
| | - Anthony Muhle
- ATCC, 10801 University Boulevard, Manassas, VA, 20110, USA
| | | | | |
Collapse
|
3
|
Pleguezuelos-Manzano C, Beenker WAG, van Son GJF, Begthel H, Amatngalim GD, Beekman JM, Clevers H, den Hertog J. Dual RNA sequencing of a co-culture model of Pseudomonas aeruginosa and human 2D upper airway organoids. Sci Rep 2025; 15:2222. [PMID: 39824906 PMCID: PMC11742674 DOI: 10.1038/s41598-024-82500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 12/05/2024] [Indexed: 01/20/2025] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that is notorious for airway infections in cystic fibrosis (CF) subjects. Bacterial quorum sensing (QS) coordinates virulence factor expression and biofilm formation at population level. Better understanding of QS in the bacterium-host interaction is required. Here, we set up a new P. aeruginosa infection model, using 2D upper airway nasal organoids that were derived from 3D organoids. Using dual RNA-sequencing, we dissected the interaction between organoid epithelial cells and WT or QS-mutant P. aeruginosa strains. Since only a single healthy individual and a single CF subject were used as donors for the organoids, conclusions about CF-specific effects could not be deduced. However, P. aeruginosa induced epithelial inflammation, whereas QS signaling did not affect the epithelial airway cells. Conversely, the epithelium influenced infection-related processes of P. aeruginosa, including QS-mediated regulation. Comparison of our model with samples from the airways of CF subjects indicated that our model recapitulates important aspects of infection in vivo. Hence, the 2D airway organoid infection model is relevant and may help to reduce the future burden of P. aeruginosa infections in CF.
Collapse
Affiliation(s)
- Cayetano Pleguezuelos-Manzano
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands
| | - Wouter A G Beenker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijs J F van Son
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Harry Begthel
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands
| | - Gimano D Amatngalim
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands.
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070, Basel, Switzerland.
| | - Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
- Institute Biology Leiden, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
4
|
Guo X, Zhang S, Lei C, Jia C, Yin R, Zhang M, Liu W, Lu D. Oligotrophic state reduces the time dependence of the observed survival fraction for heavy ion beam-irradiated Saccharomyces cerevisiae and provides new insights into DNA repair. Appl Environ Microbiol 2024; 90:e0111324. [PMID: 39365040 PMCID: PMC11497803 DOI: 10.1128/aem.01113-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024] Open
Abstract
Heavy ion beam (HIB) irradiation is widely utilized in studies of cosmic rays-induced cellular effects and microbial breeding. Establishing an accurate dose-survival relationship is crucial for selecting the optimal irradiation dose. Typically, after irradiating logarithmic-phase cell suspensions with HIB, the survival fraction (SF) is determined by the ratio of clonal-forming units in irradiated versus control groups. However, our findings indicated that SF measurements were time sensitive. For the Saccharomyces cerevisiae model, the observed SF initially declined and subsequently increased in a eutrophic state; conversely, in an oligotrophic state, it remained relatively stable within 120 minutes. This time effect of SF observations in the eutrophic state can be ascribed to HIB-exposed cells experiencing cell cycle arrest, whereas the control proliferated rapidly, resulting in an over-time disproportionate change in viable cell count. Therefore, an alternative involves irradiating oligotrophic cells, determining SF thereafter, and transferring cells to the eutrophic state to facilitate DNA repair-mutation. Transcriptomic comparisons under these two trophic states yield valuable insights into the DNA damage response. Although DNA repair was postponed in an oligotrophic state, cells proactively mobilized specific repair pathways to advance this process. Effective nutritional supplementation should occur within 120 minutes, beyond this window, a decline in SF indicates an irreversible loss of repair capability. Upon transition to the eutrophic state, S. cerevisiae swiftly adapted and completed the repair. This study helps to minimize time-dependent variability in SF observations and to ensure effective damage repair and mutation in microbial breeding using HIB or other mutagens. It also promotes the understanding of microbial responses to complex environments.IMPORTANCEMutation breeding is a vital means of developing excellent microbial resources. Consequently, understanding the mechanisms through which microorganisms respond to complex environments characterized by mutagens and specific physiological-biochemical states holds significant theoretical and practical values. This study utilized Saccharomyces cerevisiae as a microbial model and highly efficient heavy ion beam (HIB) radiation as a mutagen, it revealed the time dependence of observations of survival fractions (SF) in response to HIB radiation and proposed an alternative to avoid the indeterminacy that this variable brings. Meanwhile, by incorporating an oligotrophic state into the alternative, this study constructed a dynamic map of gene expression during the fast-repair and slow-repair stages. It also highlighted the influence of trophic states on DNA repair. The findings apply to the survival-damage repair-mutation effects of single-celled microorganisms in response to various mutagens and contribute to elucidating the biological mechanisms underlying microbial survival in complex environments.
Collapse
Affiliation(s)
- Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Shengli Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chenglin Jia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Runsheng Yin
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
5
|
Arora S, Babele PK, Jha PN. Biochemical and metabolic signatures are fundamental to drought adaptation in PGPR Enterobacter bugandensis WRS7. Mol Omics 2023; 19:640-652. [PMID: 37338418 DOI: 10.1039/d3mo00051f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Drought alone causes more annual loss in crop yield than the sum of all other environmental stresses. There is growing interest in harnessing the potential of stress-resilient PGPR in conferring plant resistance and enhancing crop productivity in drought-affected agroecosystems. A detailed understanding of the complex physiological and biochemical responses will open up the avenues to stress adaptation mechanisms of PGPR communities under drought. It will pave the way for rhizosphere engineering through metabolically engineered PGPR. Therefore, to reveal the physiological and metabolic networks in response to drought-mediated osmotic stress, we performed biochemical analyses and applied untargeted metabolomics to investigate the stress adaptation mechanisms of a PGPR Enterobacter bugendensis WRS7 (Eb WRS7). Drought caused oxidative stress and resulted in slower growth rates in Eb WRS7. However, Eb WRS7 could tolerate drought stress and did not show changes in cell morphology under stress conditions. Overproduction of ROS caused lipid peroxidation (increment in MDA) and eventually activated antioxidant systems and cell signalling cascades, which led to the accumulation of ions (Na+, K+, and Ca2+), osmolytes (proline, exopolysaccharides, betaine, and trehalose), and modulated lipid dynamics of the plasma membranes for osmosensing and osmoregulation, suggesting an osmotic stress adaption mechanism in PGPR Eb WRS7. Finally, GC-MS-based metabolite profiling and deregulated metabolic responses highlighted the role of osmolytes, ions, and intracellular metabolites in regulating Eb WRS7 metabolism. Our results suggest that understanding the role of metabolites and metabolic pathways can be exploited for future metabolic engineering of PGPR and developing bio inoculants for plant growth promotion under drought-affected agroecosystems.
Collapse
Affiliation(s)
- Saumya Arora
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| | - Piyoosh K Babele
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India
| | - Prabhat Nath Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| |
Collapse
|
6
|
Bolaños-Martínez OC, Malla A, Rosales-Mendoza S, Vimolmangkang S. Harnessing the advances of genetic engineering in microalgae for the production of cannabinoids. Crit Rev Biotechnol 2023; 43:823-834. [PMID: 35762029 DOI: 10.1080/07388551.2022.2071672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/24/2022] [Accepted: 04/16/2022] [Indexed: 11/03/2022]
Abstract
Cannabis is widely recognized as a medicinal plant owing to bioactive cannabinoids. However, it is still considered a narcotic plant, making it hard to be accessed. Since the biosynthetic pathway of cannabinoids is disclosed, biotechnological methods can be employed to produce cannabinoids in heterologous systems. This would pave the way toward biosynthesizing any cannabinoid compound of interest, especially minor substances that are less produced by a plant but have a high medicinal value. In this context, microalgae have attracted increasing scientific interest given their unique potential for biopharmaceutical production. In the present review, the current knowledge on cannabinoid production in different hosts is summarized and the biotechnological potential of microalgae as an emerging platform for synthetic production is put in perspective. A critical survey of genetic requirements and various transformation approaches are also discussed.
Collapse
Affiliation(s)
- Omayra C Bolaños-Martínez
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Ashwini Malla
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Stephan OOH. Effects of environmental stress factors on the actin cytoskeleton of fungi and plants: Ionizing radiation and ROS. Cytoskeleton (Hoboken) 2023; 80:330-355. [PMID: 37066976 DOI: 10.1002/cm.21758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
Actin is an abundant and multifaceted protein in eukaryotic cells that has been detected in the cytoplasm as well as in the nucleus. In cooperation with numerous interacting accessory-proteins, monomeric actin (G-actin) polymerizes into microfilaments (F-actin) which constitute ubiquitous subcellular higher order structures. Considering the extensive spatial dimensions and multifunctionality of actin superarrays, the present study analyses the issue if and to what extent environmental stress factors, specifically ionizing radiation (IR) and reactive oxygen species (ROS), affect the cellular actin-entity. In that context, this review particularly surveys IR-response of fungi and plants. It examines in detail which actin-related cellular constituents and molecular pathways are influenced by IR and related ROS. This comprehensive survey concludes that the general integrity of the total cellular actin cytoskeleton is a requirement for IR-tolerance. Actin's functions in genome organization and nuclear events like chromatin remodeling, DNA-repair, and transcription play a key role. Beyond that, it is highly significant that the macromolecular cytoplasmic and cortical actin-frameworks are affected by IR as well. In response to IR, actin-filament bundling proteins (fimbrins) are required to stabilize cables or patches. In addition, the actin-associated factors mediating cellular polarity are essential for IR-survivability. Moreover, it is concluded that a cellular homeostasis system comprising ROS, ROS-scavengers, NADPH-oxidases, and the actin cytoskeleton plays an essential role here. Consequently, besides the actin-fraction which controls crucial genome-integrity, also the portion which facilitates orderly cellular transport and polarized growth has to be maintained in order to survive IR.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Bavaria, 91058, Germany
| |
Collapse
|
8
|
Raie DS, Tsonas I, Canales M, Mourdikoudis S, Simeonidis K, Makridis A, Karfaridis D, Ali S, Vourlias G, Wilson P, Bozec L, Ciric L, Kim Thanh NT. Enhanced detoxification of Cr 6+ by Shewanella oneidensis via adsorption on spherical and flower-like manganese ferrite nanostructures. NANOSCALE ADVANCES 2023; 5:2897-2910. [PMID: 37260478 PMCID: PMC10228370 DOI: 10.1039/d2na00691j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/16/2023] [Accepted: 12/31/2022] [Indexed: 06/02/2023]
Abstract
Maximizing the safe removal of hexavalent chromium (Cr6+) from waste streams is an increasing demand due to the environmental, economic and health benefits. The integrated adsorption and bio-reduction method can be applied for the elimination of the highly toxic Cr6+ and its detoxification. This work describes a synthetic method for achieving the best chemical composition of spherical and flower-like manganese ferrite (MnxFe3-xO4) nanostructures (NS) for Cr6+ adsorption. We selected NS with the highest adsorption performance to study its efficiency in the extracellular reduction of Cr6+ into a trivalent state (Cr3+) by Shewanella oneidensis (S. oneidensis) MR-1. MnxFe3-xO4 NS were prepared by a polyol solvothermal synthesis process. They were characterised by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectrometry (XPS), dynamic light scattering (DLS) and Fourier transform-infrared (FTIR) spectroscopy. The elemental composition of MnxFe3-xO4 was evaluated by inductively coupled plasma atomic emission spectroscopy. Our results reveal that the oxidation state of the manganese precursor significantly affects the Cr6+ adsorption efficiency of MnxFe3-xO4 NS. The best adsorption capacity for Cr6+ is 16.8 ± 1.6 mg Cr6+/g by the spherical Mn0.22+Fe2.83+O4 nanoparticles at pH 7, which is 1.4 times higher than that of Mn0.8Fe2.2O4 nanoflowers. This was attributed to the relative excess of divalent manganese in Mn0.22+Fe2.83+O4 based on our XPS analysis. The lethal concentration of Cr6+ for S. oneidensis MR-1 was 60 mg L-1 (determined by flow cytometry). The addition of Mn0.22+Fe2.83+O4 nanoparticles to S. oneidensis MR-1 enhanced the bio-reduction of Cr6+ 2.66 times compared to the presence of the bacteria alone. This work provides a cost-effective method for the removal of Cr6+ with a minimum amount of sludge production.
Collapse
Affiliation(s)
- Diana S Raie
- Biophysics Group, Department of Physics and Astronomy, University College London Gower Street London WC1E 6BT UK http://www.ntk-thanh.co.uk
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories 21 Albemarle Street London W1S 4BS UK
| | - Ioannis Tsonas
- UCL Electronic and Electrical Engineering, UCL Gower Street London WC1E 7JE UK
| | - Melisa Canales
- Healthy Infrastructure Research Group, Department of Civil, Environmental & Geomatic Engineering, UCL Gower Street London WC1E 6BT UK
| | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London Gower Street London WC1E 6BT UK http://www.ntk-thanh.co.uk
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories 21 Albemarle Street London W1S 4BS UK
| | | | - Antonis Makridis
- Department of Physics, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Dimitrios Karfaridis
- Department of Physics, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Shanom Ali
- Environmental Research Laboratory, ClinicalMicrobiology and Virology, University College London Hospitals NHS Foundation Trust London UK
| | - Georgios Vourlias
- Department of Physics, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Peter Wilson
- Environmental Research Laboratory, ClinicalMicrobiology and Virology, University College London Hospitals NHS Foundation Trust London UK
| | - Laurent Bozec
- Faculty of Dentistry, University of Toronto Toronto Ontario Canada
| | - Lena Ciric
- Healthy Infrastructure Research Group, Department of Civil, Environmental & Geomatic Engineering, UCL Gower Street London WC1E 6BT UK
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London Gower Street London WC1E 6BT UK http://www.ntk-thanh.co.uk
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories 21 Albemarle Street London W1S 4BS UK
| |
Collapse
|
9
|
McAnally BE, Smith MS, Wiegert JG, Palanisamy V, Chitlapilly Dass S, Poole RK. Characterization of boar semen microbiome and association with sperm quality parameters. J Anim Sci 2023; 101:skad243. [PMID: 37464945 PMCID: PMC10393202 DOI: 10.1093/jas/skad243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
Elevated levels of bacteria within fresh extended boar semen are associated with decreased sperm longevity, therefore reducing the fertility of a semen dose. The objective of this study was to characterize the bacterial communities using 16S rRNA sequencing in freshly extended boar semen samples and relate the prevalence and diversity of the microbial population to sperm quality parameters 1) between studs, 2) between pooled and single-sire doses, and 3) over a 5-day period. Eight single-sire (n = 4 per stud) and eight pooled (n = 4 per stud) non-frozen extended semen doses were obtained from two boar studs (A and B). Pooled doses were the composite of the boar's ejaculates used in single-sire doses. Doses were subsampled for 5 d post-collection. Ten negative controls of each pooled dose (n = 2) and single-sire dose (n = 8) remained sealed until the last day. Microbiome analysis was achieved by examining the V4 hypervariable region of the 16S rRNA gene of flash-frozen samples. Two evaluators determined the average sperm motility and agglutination (0: no adhesion to 3: >50% adhesion) by averaging their estimates together at 10 random locations per slide. Stud A had greater sperm agglutination (1.6 vs. 1.0 ± 0.1; P < 0.01) than stud B. Sperm motility decreased over the 5-day period (P < 0.01) and tended (P = 0.09) to be greater in stud B than A (67.4% vs. 61.5% ± 0.02%). Compared with stud A, stud B had a greater relative abundance of Proteobacteria (60.0% vs. 47.2% ± 1.5%; P < 0.01) and a lower relative abundance of Firmicutes (22.5% vs. 31.9% ± 1.4%; P < 0.01). Moreover, stud A had a greater relative abundance of Bacteroidetes (6.3% vs. 5.3% ± 0.4%; P < 0.01) and Actinobacteria (11.5% vs. 10.1% ± 0.5%; P = 0.05) than stud B. Differences were found in alpha diversity for both Chao1 (P < 0.01) and Shannon (P < 0.01) diversity indexes among days 2, 3, 4, and 5 post-collection to day 1. For beta diversity, unweighted UniFrac metric on days 2, 3, 4, and 5 post-collection differed from those on day 1 (P < 0.01). There were significant correlations between sperm motility and relative abundance of Prevotella (r = -0.29), Ruminococcus (r = -0.24), and Bacteroides (r = -0.32). Additionally, there were significant correlations between sperm motility and Chao1 (r = -0.50) and Shannon's index (r = -0.36). These results demonstrate that differences in bacterial communities over time and between boar studs can be associated with variation in sperm quality.
Collapse
Affiliation(s)
- Brooke E McAnally
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Molly S Smith
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Jeffrey G Wiegert
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Vignesh Palanisamy
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | | | - Rebecca K Poole
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| |
Collapse
|
10
|
Starodubtseva MN, Chelnokova IA, Shkliarava NM, Villalba MI, Tapalski DV, Kasas S, Willaert RG. Modulation of the nanoscale motion rate of Candida albicans by X-rays. Front Microbiol 2023; 14:1133027. [PMID: 37025638 PMCID: PMC10070863 DOI: 10.3389/fmicb.2023.1133027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Patients undergoing cancer treatment by radiation therapy commonly develop Candida albicans infections (candidiasis). Such infections are generally treated by antifungals that unfortunately also induce numerous secondary effects in the patient. Additional to the effect on the immune system, ionizing radiation influences the vital activity of C. albicans cells themselves; however, the reaction of C. albicans to ionizing radiation acting simultaneously with antifungals is much less well documented. In this study, we explored the effects of ionizing radiation and an antifungal drug and their combined effect on C. albicans. Methods The study essentially relied on a novel technique, referred to as optical nanomotion detection (ONMD) that monitors the viability and metabolic activity of the yeast cells in a label and attachment-free manner. Results and discussion Our findings demonstrate that after exposure to X-ray radiation alone or in combination with fluconazole, low-frequency nanoscale oscillations of whole cells are suppressed and the nanomotion rate depends on the phase of the cell cycle, absorbed dose, fluconazole concentration, and post-irradiation period. In a further development, the ONMD method can help in rapidly determining the sensitivity of C. albicans to antifungals and the individual concentration of antifungals in cancer patients undergoing radiation therapy.
Collapse
Affiliation(s)
- Maria N. Starodubtseva
- Department of Medical and Biological Physics, Gomel State Medical University, Gomel, Belarus
- Laboratory of Bionanoscopy, Institute of Radiobiology of NAS of Belarus, Gomel, Belarus
- *Correspondence: Maria N. Starodubtseva,
| | - Irina A. Chelnokova
- Laboratory of Bionanoscopy, Institute of Radiobiology of NAS of Belarus, Gomel, Belarus
| | | | - María Inés Villalba
- Laboratory of Biological Electron Microscopy, École Polytechnique Fédérale de Lausanne (EPFL), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Dmitry V. Tapalski
- Department of Microbiology, Gomel State Medical University, Gomel, Belarus
| | - Sandor Kasas
- Laboratory of Biological Electron Microscopy, École Polytechnique Fédérale de Lausanne (EPFL), University of Lausanne (UNIL), Lausanne, Switzerland
- Centre Universitaire Romand de Médecine Légale, Unité Facultaire d’Anatomie et de Morphologie (UFAM), University of Lausanne (UNIL), Lausanne, Switzerland
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel and École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ronnie G. Willaert
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel and École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), Research Group Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
11
|
Andon JS, Lee B, Wang T. Enzyme directed evolution using genetically encodable biosensors. Org Biomol Chem 2022; 20:5891-5906. [PMID: 35437559 DOI: 10.1039/d2ob00443g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Directed evolution has been remarkably successful in identifying enzyme variants with new or improved properties, such as altered substrate scope or novel reactivity. Genetically encodable biosensors (GEBs), which convert the concentration of a small molecule ligand into an easily detectable output signal, have seen increasing application to enzyme directed evolution in the last decade. GEBs enable the use of high-throughput methods to assess enzyme activity of very large libraries, which can accelerate the search for variants with desirable activity. Here, we review different classes of GEBs and their properties in the context of enzyme evolution, how GEBs have been integrated into directed evolution workflows, and recent examples of enzyme evolution efforts utilizing GEBs. Finally, we discuss the advantages, challenges, and opportunities for using GEBs in the directed evolution of enzymes.
Collapse
Affiliation(s)
- James S Andon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - ByungUk Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | - Tina Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
12
|
Ramzan R, Virk MS, Chen F. The ABCT31 Transporter Regulates the Export System of Phenylacetic Acid as a Side-Chain Precursor of Penicillin G in Monascus ruber M7. Front Microbiol 2022; 13:915721. [PMID: 35966689 PMCID: PMC9370074 DOI: 10.3389/fmicb.2022.915721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The biosynthesis of penicillin G (PG) is compartmentalized, and the transportation of the end and intermediate products, and substrates (precursors) such as L-cysteine (L-Cys), L-valine (L-Val) and phenylacetic acid (PAA) requires traversing membrane barriers. However, the transportation system of PAA as a side chain of PG are unclear yet. To discover ABC transporters (ABCTs) involved in the transportation of PAA, the expression levels of 38 ABCT genes in the genome of Monascus ruber M7, culturing with and without PAA, were examined, and found that one abct gene, namely abct31, was considerably up-regulated with PAA, indicating that abct31 may be relative with PAA transportation. Furthermore the disruption of abct31 was carried out, and the effects of two PG substrate's amino acids (L-Cys and L-Val), PAA and some other weak acids on the morphologies and production of secondary metabolites (SMs) of Δabct31 and M. ruber M7, were performed through feeding experiments. The results revealed that L-Cys, L-Val and PAA substantially impacted the morphologies and SMs production of Δabct31 and M. ruber M7. The UPLC-MS/MS analysis findings demonstrated that Δabct31 did not interrupt the synthesis of PG in M. ruber M7. According to the results, it suggests that abct31 is involved in the resistance and detoxification of the weak acids, including the PAA in M. ruber M7.
Collapse
Affiliation(s)
- Rabia Ramzan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Muhammad Safiullah Virk
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Fusheng Chen
| |
Collapse
|
13
|
Yadav R, Chakraborty S, Ramakrishna W. Wheat grain proteomic and protein-metabolite interactions analyses provide insights into plant growth promoting bacteria-arbuscular mycorrhizal fungi-wheat interactions. PLANT CELL REPORTS 2022; 41:1417-1437. [PMID: 35396966 DOI: 10.1007/s00299-022-02866-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Proteomic, protein-protein and protein-metabolite interaction analyses in wheat inoculated with PGPB and AMF identified key proteins and metabolites that may have a role in enhancing yield and biofortification. Plant growth-promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) have an impact on grain yield and nutrition. This dynamic yet complex interaction implies a broad reprogramming of the plant's metabolic and proteomic activities. However, little information is available regarding the role of native PGPB and AMF and how they affect the plant proteome, especially under field conditions. Here, proteomic, protein-protein and protein-metabolite interaction studies in wheat triggered by PGPB, Bacillus subtilis CP4 either alone or together with AMF under field conditions was carried out. The dual inoculation with native PGPB (CP4) and AMF promoted the differential abundance of many proteins, such as histones, glutenin, avenin and ATP synthase compared to the control and single inoculation. Interaction study of these differentially expressed proteins using STRING revealed that they interact with other proteins involved in seed development and abiotic stress tolerance. Furthermore, these interacting proteins are involved in carbon fixation, sugar metabolism and biosynthesis of amino acids. Molecular docking predicted that wheat seed storage proteins, avenin and glutenin interact with secondary metabolites, such as trehalose, and sugars, such as xylitol. Mapping of differentially expressed proteins to KEGG pathways showed their involvement in sugar metabolism, biosynthesis of secondary metabolites and modulation of histones. These proteins and metabolites can serve as markers for improving wheat-PGPB-AMF interactions leading to higher yield and biofortification.
Collapse
Affiliation(s)
- Radheshyam Yadav
- Department of Biochemistry, Central University of Punjab, VPO Ghudda, Punjab, India
| | - Sudip Chakraborty
- Department of Computational Sciences, Central University of Punjab, VPO Ghudda, Punjab, India
| | - Wusirika Ramakrishna
- Department of Biochemistry, Central University of Punjab, VPO Ghudda, Punjab, India.
| |
Collapse
|
14
|
Vanderwaeren L, Dok R, Voordeckers K, Vandemaele L, Verstrepen KJ, Nuyts S. An Integrated Approach Reveals DNA Damage and Proteotoxic Stress as Main Effects of Proton Radiation in S. cerevisiae. Int J Mol Sci 2022; 23:ijms23105493. [PMID: 35628303 PMCID: PMC9145671 DOI: 10.3390/ijms23105493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Proton radiotherapy (PRT) has the potential to reduce the normal tissue toxicity associated with conventional photon-based radiotherapy (X-ray therapy, XRT) because the active dose can be more directly targeted to a tumor. Although this dosimetric advantage of PRT is well known, the molecular mechanisms affected by PRT remain largely elusive. Here, we combined the molecular toolbox of the eukaryotic model Saccharomyces cerevisiae with a systems biology approach to investigate the physiological effects of PRT compared to XRT. Our data show that the DNA damage response and protein stress response are the major molecular mechanisms activated after both PRT and XRT. However, RNA-Seq revealed that PRT treatment evoked a stronger activation of genes involved in the response to proteotoxic stress, highlighting the molecular differences between PRT and XRT. Moreover, inhibition of the proteasome resulted in decreased survival in combination with PRT compared to XRT, not only further confirming that protons induced a stronger proteotoxic stress response, but also hinting at the potential of using proteasome inhibitors in combination with proton radiotherapy in clinical settings.
Collapse
Affiliation(s)
- Laura Vanderwaeren
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (L.V.); (R.D.); (L.V.)
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium;
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (L.V.); (R.D.); (L.V.)
| | - Karin Voordeckers
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium;
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
| | - Laura Vandemaele
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (L.V.); (R.D.); (L.V.)
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium;
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium;
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
- Correspondence: (K.J.V.); (S.N.); Tel.: +32-(0)16-75-1393 (K.J.V.); +32-1634-7600 (S.N.); Fax: +32-1634-7623 (S.N.)
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (L.V.); (R.D.); (L.V.)
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence: (K.J.V.); (S.N.); Tel.: +32-(0)16-75-1393 (K.J.V.); +32-1634-7600 (S.N.); Fax: +32-1634-7623 (S.N.)
| |
Collapse
|
15
|
Macromolecular protein crystallisation with biotemplate of live cells. Sci Rep 2022; 12:3005. [PMID: 35194113 PMCID: PMC8864025 DOI: 10.1038/s41598-022-06999-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
Macromolecular protein crystallisation was one of the potential tools to accelerate the biomanufacturing of biopharmaceuticals. In this work, it was the first time to investigate the roles of biotemplates, Saccharomyces cerevisiae live cells, in the crystallisation processes of lysozyme, with different concentrations from 20 to 2.5 mg/mL lysozyme and different concentrations from 0 to 5.0 × 107 (cfu/mL) Saccharomyces cerevisiae cells, during a period of 96 h. During the crystallisation period, the nucleation possibility in droplets, crystal numbers, and cell growth and cell density were observed and analysed. The results indicated the strong interaction between the lysozyme molecules and the cell wall of the S. cerevisiae, proved by the crystallization of lysozyme with fluorescent labels. The biotemplates demonstrated positive influence or negative influence on the nucleation, i.e. shorter or longer induction time, dependent on the concentrations of the lysozyme and the S. cerevisiae cells, and ratios between them. In the biomanufacturing process, target proteins were various cells were commonly mixed with various cells, and this work provides novel insights of new design and application of live cells as biotemplates for purification of macromolecules.
Collapse
|
16
|
Mohanty SS, Koul Y, Varjani S, Pandey A, Ngo HH, Chang JS, Wong JWC, Bui XT. A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production. Microb Cell Fact 2021; 20:120. [PMID: 34174898 PMCID: PMC8236176 DOI: 10.1186/s12934-021-01613-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
The quest for a chemical surfactant substitute has been fuelled by increased environmental awareness. The benefits that biosurfactants present like biodegradability, and biocompatibility over their chemical and synthetic counterparts has contributed immensely to their popularity and use in various industries such as petrochemicals, mining, metallurgy, agrochemicals, fertilizers, beverages, cosmetics, etc. With the growing demand for biosurfactants, researchers are looking for low-cost waste materials to use them as substrates, which will lower the manufacturing costs while providing waste management services as an add-on benefit. The use of low-cost substrates will significantly reduce the cost of producing biosurfactants. This paper discusses the use of various feedstocks in the production of biosurfactants, which not only reduces the cost of waste treatment but also provides an opportunity to profit from the sale of the biosurfactant. Furthermore, it includes state-of-the-art information about employing municipal solid waste as a sustainable feedstock for biosurfactant production, which has not been simultaneously covered in many published literatures on biosurfactant production from different feedstocks. It also addresses the myriad of other issues associated with the processing of biosurfactants, as well as the methods used to address these issues and perspectives, which will move society towards cleaner production.
Collapse
Affiliation(s)
- Swayansu Sabyasachi Mohanty
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India
- Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Yamini Koul
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India
- Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382 010, India.
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Xuan-Thanh Bui
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, 700000, Vietnam
- Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
17
|
Lim S, Rajagopal S, Jeong YR, Nzegwu D, Wright ML. Group B Streptococcus and the vaginal microbiome among pregnant women: a systematic review. PeerJ 2021; 9:e11437. [PMID: 34046261 PMCID: PMC8136278 DOI: 10.7717/peerj.11437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/20/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Vaginal microbiome studies frequently report diversity metrics and communities of microbiomes associated with reproductive health outcomes. Reports of Streptococcus agalactiae (also known as Group B Streptococcus or GBS), the leading cause of neonatal infectious morbidity and mortality, are notably lacking from the studies of the vaginal microbiome, despite being a known contributor to preterm birth and other complications. Therefore, the purpose of this systematic review was to explore the frequency of GBS reporting in vaginal microbiome literature pertaining to pregnancy and to examine methodological bias that contributes to differences in species and genus-level microbiome reporting. Lack of identification of GBS via sequencing-based approaches due to methodologic or reporting bias may result incomplete understanding of bacterial composition during pregnancy and subsequent birth outcomes. METHODOLOGY A systematic review was conducted following the PRISMA guideline. Three databases (PubMed, CINAHL, and Web of Science) were used to identify papers for review based on the search terms "vaginal microbiome", "pregnancy", and "16S rRNA sequencing". Articles were evaluated for methods of DNA extraction and sequencing, 16S region, taxonomy classification database, number of participants or vaginal specimens, and pregnancy trimester. RESULTS Forty-five research articles reported employing a metagenomic approach or 16S approach for vaginal microbiome analysis during pregnancy that explicitly reported taxonomic composition and were included in this review. Less than 30% of articles reported the presence of GBS (N = 13). No significant differences in methodology were identified between articles that reported versus did not report GBS. However, there was large variability across research methods used for vaginal microbiome analysis and species-level bacterial community reporting. CONCLUSION Considerable differences in study design and data formatting methods may contribute to underrepresentation of GBS, and other known pathogens, in existing vaginal microbiome literature. Previous studies have identified considerable variation in methodology across vaginal microbiome studies. This study adds to this body of work because in addition to laboratory or statistical methods, how results and data are shared (e.g., only analyzing genus level data or 20 most abundant microbes), may hinder reproducibility and limit our understanding of the influence of less abundant microbes. Sharing detailed methods, analysis code, and raw data may improve reproducibility and ability to more accurately compare microbial communities across studies.
Collapse
Affiliation(s)
- Sungju Lim
- School of Nursing, The University of Texas at Austin, Austin, TX, United States of America
| | - Shilpa Rajagopal
- College of Natural Sciences, Biology Instructional Office, The University of Texas at Austin, Austin, TX, United States of America
| | - Ye Ryn Jeong
- School of Nursing, The University of Texas at Austin, Austin, TX, United States of America
| | - Dumebi Nzegwu
- College of Liberal Arts, Department of Health and Society, The University of Texas at Austin, Austin, TX, United States of America
| | - Michelle L. Wright
- School of Nursing, The University of Texas at Austin, Austin, TX, United States of America
- Dell Medical School, Department of Women’s Health, University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
18
|
Singh Y, Kaushal S, Sodhi RS. Biogenic synthesis of silver nanoparticles using cyanobacterium Leptolyngbya sp. WUC 59 cell-free extract and their effects on bacterial growth and seed germination. NANOSCALE ADVANCES 2020; 2:3972-3982. [PMID: 36132754 PMCID: PMC9417164 DOI: 10.1039/d0na00357c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/29/2020] [Indexed: 05/06/2023]
Abstract
The biogenic synthesis of metal nanoparticles (NPs) is of great significance, as it renders clean, biocompatible, innocuous and worthwhile production. Here, we present a clean and sustainable route for the synthesis of silver nanoparticles (Ag NPs) using the cell-free aqueous extract of the cyanobacterium Leptolyngbya sp. WUC 59, isolated from polluted water and identified using a polyphasic approach. The conformation and characterisation of the as-synthesized biogenic Ag NPs was carried out using various sophisticated techniques like UV-visible (UV-Vis), X-ray diffraction (XRD), Fourier transform infrared (FTIR), energy dispersive X-ray spectroscopy (EDS) and high-resolution transmission electron microscopy (HRTEM). The sharp colour change and emergence of a characteristic peak at 430 nm in the UV-Vis spectrum confirm the formation of the Ag NPs. The morphological and physical appearance indicated that the synthesized Ag NPs are crystalline with a typical size of 20-35 nm. Furthermore, the bio-reduced nanoparticles were explored for their antibacterial activity against Bacillus subtilis and Escherichia coli bacteria, seed germination effects and early seedling growth of wheat (Triticum aestivum L.). The Ag NPs significantly suppressed the growth of both Bacillus subtilis and Escherichia coli bacteria with the treatment of 10 mg L-1 concentration within the initial 3 hours. The lower concentration (25 mg L-1) of the synthesized Ag NPs significantly enhanced the seed germination and early seedling growth of wheat in comparison to the control on the 4th and 8th day. The present investigations show that the use of the cyanobacterium Leptolyngbya sp. WUC 59 provides a simple, cost-effective and eco-friendly tool for the synthesis of Ag NPs. Moreover, it could have great potential for use as an alternative to chemical-based bactericides not only in pharmaceutical industries, but also to control bacterial diseases in agricultural crops.
Collapse
Affiliation(s)
- Yadvinder Singh
- Department of Botany and Environmental Science, Sri Guru Granth Sahib World University Fatehgarh Sahib-140406 Punjab India
| | - Sandeep Kaushal
- Department of Chemistry, Sri Guru Granth Sahib World University Fatehgarh Sahib-140406 Punjab India
| | - Ramandeep Singh Sodhi
- Department of Chemistry, Patel Memorial National College (affiliated to Punjabi University, Patiala) Rajpura-140401 Punjab India
| |
Collapse
|
19
|
Repair characteristics and time-dependent effects in response to heavy-ion beam irradiation in Saccharomyces cerevisiae: a comparison with X-ray irradiation. Appl Microbiol Biotechnol 2020; 104:4043-4057. [PMID: 32144474 DOI: 10.1007/s00253-020-10464-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
Heavy-ion beam (HIB) irradiation has been widely used in microbial mutation breeding. However, a global cellular response to such radiation remains mostly uncharacterised. In this study, we used transcriptomics to analyse the damage repair response in Saccharomyces cerevisiae following a semi-lethal HIB irradiation (80 Gy), which induced a significant number of DNA double-strand breaks. Our analysis of differentially expressed genes (DEGs) from 50 to 150 min post-irradiation revealed that upregulated genes were significantly enriched for gene ontology and Kyoto encyclopaedia of genes and genomes terms related to damage repair response. Based on the number of DEGs, their annotation, and their relative expression, we established that the peak of the damage repair response occurred 75 min post-irradiation. Moreover, we exploited the data from our recent study on X-ray irradiation-induced repair to compare the transcriptional patterns induced by semi-lethal HIB and X-ray irradiations. Although these two radiations have different properties, we found a significant overlap (> 50%) for the DEGs associated with five typical DNA repair pathways and, in both cases, identified homologous recombination repair (HRR) as the predominant repair pathway. Nevertheless, when we compared the relative enrichment of the five DNA repair pathways at the key time point of the repair process, we found that the relative enrichment of HRR was higher after HIB irradiation than after X-ray irradiation. Additionally, the peak stage of HRR following HIB irradiation was ahead of that following X-ray irradiation. Since mutations occur during the DNA repair process, uncovering detailed repair characteristics should further the understanding of the associated mutagenesis features.
Collapse
|
20
|
Quantitative multi-omics analysis of the effects of mitochondrial dysfunction on lipid metabolism in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2019; 104:1211-1226. [PMID: 31832712 DOI: 10.1007/s00253-019-10260-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
Abstract
In this study, combined genome, transcriptome, and metabolome analysis was performed for eight Saccharomyces cerevisiae mitochondrial respiration-deficient mutants. Each mutant exhibited a unique nuclear genome mutation pattern; the nuclear genome mutations, and thus potentially affected genes and metabolic pathways, showed a co-occurrence frequency of ≤ 3 among the eight mutants. For example, only a lipid metabolism-related pathway was likely to be affected by the nuclear genome mutations in one of the mutants. However, large deletions in the mitochondrial genome were the shared characteristic among the eight mutants. At the transcriptomic level, lipid metabolism was the most significantly enriched Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway for differentially expressed genes (DEGs) co-occurring in both ≥ 4 and ≥ 5 mutants. Any identified DEG enriched in lipid metabolism showed the same up-/down-regulated pattern among nearly all eight mutants. Further, 126 differentially expressed lipid species (DELS) were identified, which also showed the same up-/down-regulated pattern among nearly all investigated mutants. It was conservatively demonstrated that the similar change pattern of lipid metabolism in the entire investigated mutant population was attributed to mitochondrial dysfunction. The change spectrum of lipid species was presented, suggesting that the number and change degree of up-regulated lipid species were higher than those of down-regulated lipid species. Additionally, energy storage lipids increased in content and plasma-membrane phospholipid compositions varied in the relative proposition. The results for the genome, transcriptome, and lipidome were mutually validated, which provides quantitative data revealing the roles of mitochondria from a global cellular perspective.
Collapse
|
21
|
Kumawat KC, Sharma P, Singh I, Sirari A, Gill BS. Co-existence of Leclercia adecarboxylata (LSE-1) and Bradyrhizobium sp. (LSBR-3) in nodule niche for multifaceted effects and profitability in soybean production. World J Microbiol Biotechnol 2019; 35:172. [PMID: 31673798 DOI: 10.1007/s11274-019-2752-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/18/2019] [Indexed: 01/06/2023]
Abstract
The present study was designed with the objective of improving growth and nodulation of soybean [Glycine max (L.) Merill] with co-inoculation of native Bradyrhizobium sp. (LSBR-3) (KF906140) and non-rhizobial nodule endophytic diazotroph Leclercia adecarboxylata (LSE-1) (KX925974) with multifunctional plant growth promoting (PGP) traits in cereal based cropping system (Rice-Wheat). A total of 40 endophytic bacteria from cultivated and wild sp. of soybean were screened for multifarious PGP traits and pathogenicity test. Based on PGP traits, antagonistic activities and bio-safety test; L. adecarboxylata (LSE-1) was identified with 16 S rRNA gene sequencing along with the presence of nifH (nitrogen fixation) and ipdc (IAA production) genes. Dual inoculant LSE-1 and LSBR-3 increased indole acetic acid (IAA), P & Zn-solubilization, 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity, siderophore, biofilm formation and exo-polysaccharides in contrast to single inoculation treatment. Further, assessment of dual inoculant LSBR-3 + LSE-1 improved growth parameters, nodulation, soil enzymes activities, nutrient accumulation and yield as compared to single as well as un-inoculated control treatment under field conditions. Single inoculant LSBR-3 improved yield by 8.84% over control. Further, enhancement of 4.15% grain yield was noticed with LSBR-3 + LSE-1 over LSBR-3 alone treatment. Application of LSBR-3 + LSE-1 gave superior B:C ratio (1.29) and additional income approximately 116 USD ha-1 in contrast to control treatment. The present results thus, is the first report of novel endophytic diazotroph L. adecarboxylata (LSE-1) as PGPR from Indian conditions particularly in Punjab region for exploiting as potential PGPR along with Bradyrhizobium sp. (LSBR-3) in soybean.
Collapse
Affiliation(s)
- K C Kumawat
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Poonam Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Inderjeet Singh
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Asmita Sirari
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - B S Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|