1
|
Berberov K, Atanasova N, Teodosiu-Beleuţă G, Boyadzieva I. Prospecting the biotechnological potential of culturable halophilic bacteria isolated from Provadia salt deposit (Bulgaria) near the oldest salt production and urban complex in Europe. Extremophiles 2025; 29:21. [PMID: 40240543 DOI: 10.1007/s00792-025-01387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025]
Abstract
Halophilic bacteria are recognized as a promising source of novel enzymes and biopolymers with various applications in biotechnology and the industry. In comparison with their mesophilic analogues, halophilic metabolites are stable under extreme conditions typically encountered in the industrial processes. In this study, the biotechnological potential of twenty strains of halophilic bacteria isolated from the Provadia salt deposit, Bulgaria was investigated for the first time. The strains were identified based on the sequencing of the 16S rRNA gene and were assigned to 13 different species falling in the Bacillota and Pseudomonadota phyla. The majority (90%) of them showed single or combined hydrolytic enzyme activity. Half of the strains (55%) were able to produce between three and eight extracellular hydrolytic enzymes-arabinase, cellulase, gelatinase, glucanase, L-glutaminase, pectinase, and xylanase. Ten strains were able to synthesise exopolysaccharides (EPS) in concentration between 32 and 227 μg/ml. The optimal EPS production kinetics (1.6 ± 0.15 g/l) by Virgibacillus halodenitrificans PSZ-34 was systematically investigated for the first time. Three strains also exhibited antimicrobial activity. The present study involved culture-dependant isolation of halophilic bacteria from the Provadia salt deposit and shed more light on their capability to synthesise hydrolytic enzymes and EPS with potential industrial exploitation.
Collapse
Affiliation(s)
- Kaloyan Berberov
- Laboratory of Extremophilic Microorganisms, Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 26, 1113, Sofia, Bulgaria
| | - Nikolina Atanasova
- Laboratory of Extremophilic Microorganisms, Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 26, 1113, Sofia, Bulgaria
| | - Gabriela Teodosiu-Beleuţă
- Institute of Biology Bucharest of Romanian Academy, 296 Splaiul - Independenţei, P.O. Box 56-53, 060031, Bucharest, Romania
| | - Ivanka Boyadzieva
- Laboratory of Extremophilic Microorganisms, Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 26, 1113, Sofia, Bulgaria.
| |
Collapse
|
2
|
Jin L, Ding L, Zhang Y, Li T, Liu Q. Profiling heavy metals distribution in surface sediments from the perspective of coastal industrial structure and their impacts on bacterial communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118098. [PMID: 40154221 DOI: 10.1016/j.ecoenv.2025.118098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/29/2024] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Heavy metal pollution of marine sediments along the coastal industrial parks have always received extensive attention due to their persistent hazard to local marine ecosystem. Despite this, our knowledge about the influence of geography and coastal industrial structures on heavy metal distributions remains little. In this study, surface sediment samples were collected from the coastal zone of the industrial park in Ningbo. The physicochemical properties, heavy metals with ecological risk levels and bacterial structures as well as their relationships in these sediments were comprehensively analyzed. We found that: heavy metal concentrations of surface sediment revealed wide variation between this study sea area and other coastal economic areas; increasing attention should be paid to the Cu, Hg, Cd and As pollution due to their high contamination degree and environment risk; the distribution of heavy metals is closely related to the geographic location and nearshore industrial structures; the physicochemical features (e.g., TN, PHCs and pH) of sediments could better explain the occurrence characteristics of heavy metals present; individual metals (Cu and Cr) significantly affected the bacterial α-diversity; Cr inhibits multiple functional pathways associated with energy metabolism and pollutant degradation; RDA analysis and co-occurrence network confirmed that several heavy metals (especially Zn, Cr, Cu and Cd) exhibited large effects on bacterial community structure; moreover, genera Idiomarina Sulfurovum and Sulfurimonas could be used as biological indicators for specific heavy metals contamination in our study. Our findings provide a novel insight to understand the heavy metal distribution and bacterial variation associated with industrial activities.
Collapse
Affiliation(s)
- Lei Jin
- Zhejiang Marine Fisheries Research Institute, Zhoushan, Zhejiang Province 316021, China; Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan, Zhejiang Province 316021, China
| | - Lei Ding
- Zhejiang Marine Fisheries Research Institute, Zhoushan, Zhejiang Province 316021, China; Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yao Zhang
- Zhejiang Marine Fisheries Research Institute, Zhoushan, Zhejiang Province 316021, China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, Zhoushan, Zhejiang Province 316021, China
| | - Qin Liu
- Zhejiang Marine Fisheries Research Institute, Zhoushan, Zhejiang Province 316021, China.
| |
Collapse
|
3
|
Benhadj M, Menasria T, Zaatout N, Ranque S. Genomic Insights and Antimicrobial Potential of Newly Streptomyces cavourensis Isolated from a Ramsar Wetland Ecosystem. Microorganisms 2025; 13:576. [PMID: 40142469 PMCID: PMC11945845 DOI: 10.3390/microorganisms13030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 03/28/2025] Open
Abstract
The growing threat of antimicrobial resistance underscores the urgent need to identify new bioactive compounds. In this study, a Streptomyces strain, ACT158, was isolated from a Ramsar wetland ecosystem and found to exhibit broad-spectrum effects against Gram-positive and Gram-negative bacteria, as well as fungal pathogens. The active strain was characterized as S. cavourensis according to its morphology, phylogenetic analysis, average nucleotide identity (ANI), and digital DNA-DNA hybridization (dDDH). Whole-genome sequencing (WGS) and annotation revealed a genome size of 6.86 Mb with 5122 coding sequences linked to carbohydrate metabolism, secondary metabolite biosynthesis, and stress responses. Genome mining through antiSMASH revealed 32 biosynthetic gene clusters (BGCs), including those encoding polyketides, nonribosomal peptides, and terpenes, many of which showed low similarity to known clusters. Comparative genomic analysis, showing high genomic synteny with closely related strains. Unique genomic features of ACT158 included additional BGCs and distinct genes associated with biosynthesis pathways and stress adaptation. These findings highlight the strain's potential as a rich source of bioactive compounds and provide insights into its genomic basis for antimicrobial production and its ecological and biotechnological significance.
Collapse
Affiliation(s)
- Mabrouka Benhadj
- Biomolecules and Application Laboratory, Faculty of Exact Sciences and Natural and Life Sciences, Echahid Cheikh Larbi Tebessi University, 12002 Tebessa, Algeria;
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, Echahid Cheikh Larbi Tebessi University, 12002 Tebessa, Algeria
| | - Taha Menasria
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078 Batna, Algeria; (T.M.); (N.Z.)
| | - Nawel Zaatout
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078 Batna, Algeria; (T.M.); (N.Z.)
| | - Stéphane Ranque
- Aix Marseille University, SSA, RITMES, 13005 Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
4
|
Kipnyargis A, Kenya E, Khamis F, Mwirichia R. Spatiotemporal structure and composition of the microbial communities in hypersaline Lake Magadi, Kenya. F1000Res 2024; 13:11. [PMID: 39534657 PMCID: PMC11555362 DOI: 10.12688/f1000research.134465.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 11/16/2024] Open
Abstract
Background Soda lakes are habitats characterized by haloalkaline conditions also known to host unique microbial communities. The water chemistry changes with seasons due to evaporative concentration or floods from the surrounding grounds. However, it is not yet clear if the change in physiochemical changes influences the spatiotemporal diversity and structure of microbial communities in these ecosystems. Methods Using 16S rRNA gene amplicon sequencing, we investigated the diversity and structure of microbial communities in water and brine samples taken from Lake Magadi between June and September 2018. Additionally, physicochemical parameters were also analyzed for every sampling site. Additionally, physicochemical parameters were also analyzed for every sampling site. Results The abundant bacterial phyla were Proteobacteria, Cyanobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Verrumicrobia, Deinococcus-Thermus, Spirochaetes, and Chloroflexi. The Archaeal diversity was represented by phyla Euryachaeota, Crenarchaeota, Euryarchaeota, and Thaumarchaeota. The dominant bacterial species were: Euhalothece sp. (10.3%), Rhodobaca sp. (9.6%), Idiomarina sp. (5.8%), Rhodothermus sp. (3.0%), Roseinatronobacter sp. (2.4%), Nocardioides sp. (2.3%), Gracilimonas sp. (2.2%), and Halomonas sp. (2%). The dominant archaeal species included Halorubrum sp. (18.3%), Salinarchaeum sp. (5.3%), and Haloterrigena sp. (1.3%). The composition of bacteria was higher than that of archaea, while their richness and diversity varied widely across the sampling seasons. The α-diversity indices showed that high diversity was recorded in August, followed by September, June, and July in that order. The findings demonstrated that temperature, pH, P+, K+, NO3 -, and total dissolved solids (TDS) contributed majorly to the diversity observed in the microbial community. Multivariate analysis revealed significant spatial and temporal effects on β-diversity and salinity and alkalinity were the major drivers of microbial composition in Lake Magadi. Conclusions We provide insights into the relationships between microbial structure and geochemistry across various sampling sites in Lake Magadi.
Collapse
Affiliation(s)
- Alex Kipnyargis
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Eucharia Kenya
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Fathiya Khamis
- Arthropod Pathology, International Centre of Insect Physiology and Ecology, Nairobi, Nairobi County, Kenya
| | - Romano Mwirichia
- Department of Biological Sciences, University of Embu, Embu, Kenya
| |
Collapse
|
5
|
Narasimman V, Ramachandran S. Purification, structural characterization, and neuroprotective effect of 3,6-diisobutyl-2,5-piperazinedione from Halomonas pacifica CARE-V15 against okadaic acid-induced neurotoxicity in zebrafish model. J Biochem Mol Toxicol 2024; 38:e23708. [PMID: 38597299 DOI: 10.1002/jbt.23708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/26/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Halomonas pacifica CARE-V15 was isolated from the southeastern coast of India to determine its genome sequence. Secondary metabolite gene clusters were identified using an anti-SMASH server. The concentrated crude ethyl acetate extract was evaluated by GC-MS. The bioactive compound from the crude ethyl acetate extract was fractionated by gel column chromatography. HPLC was used to purify the 3,6-diisobutyl-2,5-piperazinedione (DIP), and the structure was determined using FTIR and NMR spectroscopy. Purified DIP was used in an in silico molecular docking analysis. Purified DIP exhibits a stronger affinity for antioxidant genes like glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GSR). Using in silco molecular docking analysis, the protein-ligand binding affinities of GSR (-4.70 kcal/mol), GST (-5.27 kcal/mol), and GPx (-5.37 kcal/mol) were measured. The expression of antioxidant genes were investigated by qRT-PCR. The in vivo reactive oxygen species production, lipid peroxidation, and cell death levels were significantly (p ≤ 0.05) increased in OA-induced group, but all these levels were significantly (p ≤ 0.05) decreased in the purified DIP pretreated group. Purified DIP from halophilic bacteria could thus be a useful treatment for neurological disorders associated with oxidative stress.
Collapse
Affiliation(s)
- Vignesh Narasimman
- Native Medicine and Marine Pharmacology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (Deemed to be University), Chettinad Health City, Kelambakkam, Tamil Nadu, India
| | - Saravanan Ramachandran
- Native Medicine and Marine Pharmacology Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (Deemed to be University), Chettinad Health City, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
6
|
Zhu P, Niu D, Zhang S, Li C, Yin D, Zhi J, Zhang L, Jiang X, Ren J. Enhanced delignification and production of bioactive compounds in wheat straw by optimizing sterilization methods for Irpex lacteus fermentation. Food Chem 2024; 435:137570. [PMID: 37774616 DOI: 10.1016/j.foodchem.2023.137570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
This study aimed to examine the effects of sterilization methods on the degradation ability and bioactive compound production of Irpex lacteus in wheat straw. Following 28 days of fermentation, the lignin content of samples autoclaved and pasteurized at pH 4.5 was reduced by 16.0 % - 21.7 % compared to pasteurized samples without pH adjustment, accompanied by a significant increase in sugar yield ranging from 83.30 % - 96.35 %. Autoclaved samples exhibited the lowest total phenol content and antioxidant activity (P < 0.05). Bacillus occupied an absolute advantage (89.1 %) in samples pasteurized at pH 4.5, whereas 10 bacterial genera exhibited abundances above 1 % in pasteurized samples without pH adjustment. Furthermore, 45.1 % - 47.2 % of the metabolites comprised lipids and lipid-like molecules, and some of them were improved by pasteurization at pH 4.5. Overall, pasteurization at acidic conditions is an effective sterilization method for the fungal conversion of wheat straw.
Collapse
Affiliation(s)
- Peng Zhu
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Dongze Niu
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Sainan Zhang
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Chunyu Li
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Dongmin Yin
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Junqiang Zhi
- Beijing General Station of Animal Husbandry, No. 21 Chaoqian Road, Changping District, Beijing, 100101, China.
| | - Lili Zhang
- Beijing General Station of Animal Husbandry, No. 21 Chaoqian Road, Changping District, Beijing, 100101, China.
| | - Xingmei Jiang
- Bijie Institute of Animal Husbandry and Veterinary Science, Degoumajiayuan Road, Qixingguan District, Bijie, 551700, China.
| | - Jianjun Ren
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China; National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
7
|
Ben Abdallah M, Chamkha M, Karray F, Sayadi S. Microbial diversity in polyextreme salt flats and their potential applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11371-11405. [PMID: 38180652 DOI: 10.1007/s11356-023-31644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Recent geological, hydrochemical, and mineralogical studies performed on hypersaline salt flats have given insights into similar geo-morphologic features on Mars. These salt-encrusted depressions are widely spread across the Earth, where they are characterized by high salt concentrations, intense UV radiation, high evaporation, and low precipitation. Their surfaces are completely dry in summer; intermittent flooding occurs in winter turning them into transitory hypersaline lakes. Thanks to new approaches such as culture-dependent, culture-independent, and metagenomic-based methods, it is important to study microbial life under polyextreme conditions and understand what lives in these dynamic ecosystems and how they function. Regarding these particular features, new halophilic microorganisms have been isolated from some salt flats and identified as excellent producers of primary and secondary metabolites and granules such as halocins, enzymes, carotenoids, polyhydroxyalkanoates, and exopolysaccharides. Additionally, halophilic microorganisms are implemented in heavy metal bioremediation and hypersaline wastewater treatment. As a result, there is a growing interest in the distribution of halophilic microorganisms around the world that can be looked upon as good models to develop sustainable biotechnological processes for all fields. This review provides insights into diversity, ecology, metabolism, and genomics of halophiles in hypersaline salt flats worldwide as well as their potential uses in biotechnology.
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia.
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
8
|
Lopez MF, Martínez FL, Rajal VB, Irazusta VP. Biotechnological potential of microorganisms isolated from the salar del hombre muerto, Argentina. AN ACAD BRAS CIENC 2023; 95:e20211199. [PMID: 36790270 DOI: 10.1590/0001-3765202320211199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 06/27/2022] [Indexed: 02/12/2023] Open
Abstract
Bacterial strains were isolated from soil and aqueous solution samples from the Salar del Hombre Muerto, Argentina. A total of 141 strains were characterized and the tolerance to sodium chloride was evaluated. We performed a screening to search for molecules of biotechnological interest: carotenoids (11%), emulsifiers (95%), and exopolysaccharides (6%), and to assess the production of enzymes, including proteolytic (39%), lipolytic (26%), hemolytic (50%), and catalase activities (99%); 25 bacterial strains were selected for further studies. Some of them produced biofilms, but only Bacillus sp. HA120b showed that ability in all the conditions assayed. Although 21 strains were able to form emulsions, the emulsifying index Kocuria sp. M9 and Bacillus sp. V3a cultures were greater than 50% and, emulsions were more stable when the bacteria grew in higher salt concentrations. Only pigmented Kocuria sp. M9 showed lipolytic activity on olive oil medium and was able to produce biofilms when cultured without and with 4 M of NaCl. Yellow pigments, lipase activity, and biosurfactant production were observed for Micrococcus sp. SX120. Summarizing, we found that the selected bacteria produced highly interesting molecules with diverse industrial applications and, many of them are functional in the presence of high salt concentrations.
Collapse
Affiliation(s)
- Marta Florencia Lopez
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina.,Facultad de Ingeniería, Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina
| | - Fabiana Lilian Martínez
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina
| | - Verónica Beatriz Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina.,Facultad de Ingeniería, Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina.,Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 637551, Singapore
| | - Verónica Patricia Irazusta
- Instituto de Investigaciones para la Industria Química (INIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina.,Facultad de Ciencias Naturales, Universidad Nacional de Salta (UNSa), Salta, 4400, Argentina
| |
Collapse
|
9
|
Menasria T, Monteoliva-Sánchez M, Benhadj M, Benammar L, Boukoucha M, Aguilera M. Unraveling the enzymatic and antibacterial potential of rare halophilic actinomycetes from Algerian hypersaline wetland ecosystems. J Basic Microbiol 2022; 62:1202-1215. [PMID: 35945171 DOI: 10.1002/jobm.202200085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/18/2022] [Accepted: 07/10/2022] [Indexed: 11/07/2022]
Abstract
The study aimed to isolate rare halophilic actinomycetes from hypersaline soils of Algerian inland Wetland Ecosystems "Sebkhas-Chotts" located in arid and hot hyperarid lands with international importance under the Ramsar Convention and to explore their enzyme-producing and antibacterial abilities. The halophilic actinomycetes were selectively isolated using agar-rich media supplemented with 5, 10, and 15% (W/V) of total salts. Thirty-one isolates were obtained and 16S rRNA gene sequencing analysis revealed the presence of members affiliated to rare halophilic actinobacterial genera (Actinopolyspora and Nocardiopsis) accounting for 74.19% (23 isolates out of 31) and 25.8% (8 isolates), respectively. Both phylotypes are alkalitolerant and halophilic thermotolerant actinomycetes displaying significant hydrolytic activities relative to (amylase, asparaginase, cellulase, esterase, glutaminase, inulinase, protease, pectinase, xylanase), and over 96% of tested isolates exhibited all common enzymes, mainly active at 10% of growing salt. In addition, high antibacterial activity was observed against Bacillus cereus, Bacillus subtilis, Micrococcus luteus, and Staphylococcus aureus. The findings showed that saline wetlands ecosystems represent a rich reservoir for the isolation of significant rare halophilic actinomycetes with potential adaptive features and valuable sources for novel bioactive metabolites and biocatalysts of biotechnological interest.
Collapse
Affiliation(s)
- Taha Menasria
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, University of Larbi Tebessi, Tebessa, Algeria.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | | | - Mabrouka Benhadj
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, University of Larbi Tebessi, Tebessa, Algeria
| | - Leyla Benammar
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences University of Batna, Batna, Algeria
| | - Mourad Boukoucha
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, University of Larbi Tebessi, Tebessa, Algeria
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
10
|
Behairi S, Baha N, Barakat M, Ortet P, Achouak W, Heulin T, Kaci Y. Bacterial diversity and community structure in the rhizosphere of the halophyte Halocnemum strobilaceum in an Algerian arid saline soil. Extremophiles 2022; 26:18. [PMID: 35652980 DOI: 10.1007/s00792-022-01268-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/05/2022] [Indexed: 11/04/2022]
Abstract
Hypersaline ecosystems host a particular microbiota, which can be specifically recruited by halophytes. In order to broaden our knowledge of hypersaline ecosystems, an in natura study was conducted on the microbiota associated with the halophyte Halocnemum strobilaceum from alkaline-saline arid soil in Algeria. We collected and identified a total of 414 strains isolated from root tissues (RT), root-adhering soil (RAS), non-adhering rhizospheric soil (NARS) and bulk soil (BS) using different NaCl concentrations. Our data showed that halophilic and halotolerant bacterial isolates in BS and the rhizosphere belonged to 32 genera distributed in Proteobacteria (49%), Firmicutes (36%), Actinobacteria (14%) and Bacteroidetes (1%). Bacterial population size and species diversity were greatly increased in the rhizosphere (factor 100). The reservoir of diversity in BS was dominated by the genera Bacillus and Halomonas. Bacillus/Halomonas ratio decreased with the proximity to the roots from 2.2 in BS to 0.3 at the root surface. Salt screening of the strains showed that species belonging to nine genera were able to grow up to 5.1 M NaCl. Thus, we found that H. strobilaceum exerted a strong effect on the diversity of the recruited microbiota with an affinity strongly attributed to the genus Halomonas.
Collapse
Affiliation(s)
- Sabrina Behairi
- Team of Soil Biology, Laboratory of Organisms Biology and Physiology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), BP 32 El Alia, 16111, Bab Ezzouar, Algiers, Algeria
| | - Nassima Baha
- Team of Soil Biology, Laboratory of Organisms Biology and Physiology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), BP 32 El Alia, 16111, Bab Ezzouar, Algiers, Algeria
| | - Mohamed Barakat
- Lab of Microbial Ecology of the Rhizosphere (LEMiRE), ECCOREV FR3098, UMR7265 BIAM, AMU, CEA, CNRS, 13115, Saint-Paul-lez-Durance, France
| | - Philippe Ortet
- Lab of Microbial Ecology of the Rhizosphere (LEMiRE), ECCOREV FR3098, UMR7265 BIAM, AMU, CEA, CNRS, 13115, Saint-Paul-lez-Durance, France
| | - Wafa Achouak
- Lab of Microbial Ecology of the Rhizosphere (LEMiRE), ECCOREV FR3098, UMR7265 BIAM, AMU, CEA, CNRS, 13115, Saint-Paul-lez-Durance, France
| | - Thierry Heulin
- Lab of Microbial Ecology of the Rhizosphere (LEMiRE), ECCOREV FR3098, UMR7265 BIAM, AMU, CEA, CNRS, 13115, Saint-Paul-lez-Durance, France
| | - Yahia Kaci
- Team of Soil Biology, Laboratory of Organisms Biology and Physiology, Faculty of Biological Sciences, University of Science and Technology Houari Boumediene (USTHB), BP 32 El Alia, 16111, Bab Ezzouar, Algiers, Algeria.
| |
Collapse
|
11
|
Ruginescu R, Enache M, Popescu O, Gomoiu I, Cojoc R, Batrinescu-Moteau C, Maria G, Dumbravician M, Neagu S. Characterization of Some Salt-Tolerant Bacterial Hydrolases with Potential Utility in Cultural Heritage Bio-Cleaning. Microorganisms 2022; 10:microorganisms10030644. [PMID: 35336219 PMCID: PMC8949325 DOI: 10.3390/microorganisms10030644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Salt-tolerant enzymes produced by halophilic and halotolerant microorganisms have been proposed to be used in various applications that involve high saline conditions. Considering their biotechnological significance and the current need for more efficient producers of such catalysts, the present study aimed to evaluate the extracellular proteolytic, esterolytic, cellulolytic and xylanolytic activities of some halotolerant strains, and to characterize their functional parameters. A total of 21 bacterial and fungal strains belonging to the genera Bacillus, Virgibacillus, Salinivibrio, Salinicoccus, Psychrobacter, Nocardiopsis, Penicillium, Aspergillus, and Emericellopsis were assayed by quantitative methods. Among them, the members of the Bacillus genus exhibited the highest catalytic activities. The exoenzymes produced by three selected Bacillus strains were active over wide ranges of salinity, temperature and pH. Proteases were active at 20–80 °C, pH 6–10, and 0–1 M NaCl, while esterases showed good catalytic activities at 20–80 °C, pH 7.5–10, and 0–4 M NaCl. Cellulases and xylanases were active at 20–80 °C, pH 5–10, and 0–5 M NaCl. Due to such properties, these hydrolases could be used in a newly proposed application, namely to clean aged consolidants and organic deposits accumulated over time from the surfaces of salt-loaded wall paintings.
Collapse
Affiliation(s)
- Robert Ruginescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 60031 Bucharest, Romania; (M.E.); (O.P.); (I.G.); (R.C.); (C.B.-M.); (G.M.); (S.N.)
- Correspondence:
| | - Madalin Enache
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 60031 Bucharest, Romania; (M.E.); (O.P.); (I.G.); (R.C.); (C.B.-M.); (G.M.); (S.N.)
| | - Octavian Popescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 60031 Bucharest, Romania; (M.E.); (O.P.); (I.G.); (R.C.); (C.B.-M.); (G.M.); (S.N.)
- Molecular Biology Center, Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai-University, 42 Treboniu Laurian Str., 400271 Cluj-Napoca, Romania
| | - Ioana Gomoiu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 60031 Bucharest, Romania; (M.E.); (O.P.); (I.G.); (R.C.); (C.B.-M.); (G.M.); (S.N.)
| | - Roxana Cojoc
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 60031 Bucharest, Romania; (M.E.); (O.P.); (I.G.); (R.C.); (C.B.-M.); (G.M.); (S.N.)
| | - Costin Batrinescu-Moteau
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 60031 Bucharest, Romania; (M.E.); (O.P.); (I.G.); (R.C.); (C.B.-M.); (G.M.); (S.N.)
| | - Gabriel Maria
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 60031 Bucharest, Romania; (M.E.); (O.P.); (I.G.); (R.C.); (C.B.-M.); (G.M.); (S.N.)
| | - Maria Dumbravician
- Department of Conservation and Restoration, Faculty of Art History, Bucharest National University of Arts, 19 General Constantin Budișteanu, 010773 Bucharest, Romania;
| | - Simona Neagu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 60031 Bucharest, Romania; (M.E.); (O.P.); (I.G.); (R.C.); (C.B.-M.); (G.M.); (S.N.)
| |
Collapse
|
12
|
Recent Antimicrobial Responses of Halophilic Microbes in Clinical Pathogens. Microorganisms 2022; 10:microorganisms10020417. [PMID: 35208871 PMCID: PMC8874722 DOI: 10.3390/microorganisms10020417] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Microbial pathogens that cause severe infections and are resistant to drugs are simultaneously becoming more active. This urgently calls for novel effective antibiotics. Organisms from extreme environments are known to synthesize novel bioprospecting molecules for biomedical applications due to their peculiar characteristics of growth and physiological conditions. Antimicrobial developments from hypersaline environments, such as lagoons, estuaries, and salterns, accommodate several halophilic microbes. Salinity is a distinctive environmental factor that continuously promotes the metabolic adaptation and flexibility of halophilic microbes for their survival at minimum nutritional requirements. A genetic adaptation to extreme solar radiation, ionic strength, and desiccation makes them promising candidates for drug discovery. More microbiota identified via sequencing and ‘omics’ approaches signify the hypersaline environments where compounds are produced. Microbial genera such as Bacillus, Actinobacteria, Halorubrum and Aspergillus are producing a substantial number of antimicrobial compounds. Several strategies were applied for producing novel antimicrobials from halophiles including a consortia approach. Promising results indicate that halophilic microbes can be utilised as prolific sources of bioactive metabolites with pharmaceutical potentialto expand natural product research towards diverse phylogenetic microbial groups which inhabit salterns. The present study reviews interesting antimicrobial compounds retrieved from microbial sources of various saltern environments, with a discussion of their potency in providing novel drugs against clinically drug-resistant microbes.
Collapse
|
13
|
Mahmood MZ, Bibi S, Shahzad M, Fakhar A, Rafique M, Qayyum A. Mechanisms of microbes to combat salinity in soil by producing secondary metabolites. ARABIAN JOURNAL OF GEOSCIENCES 2022; 15:45. [DOI: 10.1007/s12517-021-09371-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/15/2021] [Indexed: 01/14/2023]
|
14
|
Singh P, Jain KR, Shah V, Madamwar D. White Rann of Kachchh harbours distinct microbial diversity reflecting its unique biogeography. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147094. [PMID: 34088141 DOI: 10.1016/j.scitotenv.2021.147094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
The understanding of sub-surface soil microbial diversity is limited at both saline and hypersaline ecosystems, even though salinity is found to affect the microbial community in aqueous and terrestrial environment. In this study, a phylo-taxonomy analysis as well as the functional characteristics of microbial community of flat salt basin of White Rann of Kachchh (WR), Gujarat, India was performed along the natural salinity gradient. The high throughput sequencing approach has revealed the numerical abundance of bacteria relative to the archaea. Salinity, TOC, EC and sulphate concentration might be the primary driver of the community distribution along the transect at WR. The much anticipated effect of salinity gradient on the microbial composition surprisingly turned out to be more speculative, with little variance in the community composition along the spatial distance of WR. The metabolic pathways involved in energy metabolism (like carbon, nitrogen, sulphur) along with environmental adaptive genes (like osmotic and oxidative stress response, heat and cold shock genes clusters) were abundantly annotated from shot-gun metagenomic study. The carbonic anhydrase harbouring bacteria Bacillus sp. DM4CA1 was isolated from WR, having a catalytic ability for converting the gaseous carbon dioxide in presence of calcium carbonate into calcite at 25 % higher rate as compared to non-harbouring strains. The enzyme has a role in multiple alternative pathways in microbial metabolism. With the array of results obtained, the study could become the new reference for understanding the diversity structure and functional characteristics of the microbial community of terrestrial saline environment.
Collapse
Affiliation(s)
- Prachi Singh
- Post-Graduate Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, 388 315 Anand, Gujarat, India.
| | - Kunal R Jain
- Post-Graduate Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, 388 315 Anand, Gujarat, India
| | - Varun Shah
- School of Life Sciences, Faculty of Science, Atmiya University, Yogidham Gurukul, Kalawad Road, Rajkot 360 005, Gujarat, India; Aanvik LifeSciences Pvt. Ltd., Ahmedabad 380 013, Gujarat, India
| | - Datta Madamwar
- Post-Graduate Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, 388 315 Anand, Gujarat, India; P.D. Patel Institute of Applied Sciences, Charotar University of Sciences and Technology (CHARUSAT), Changa 388 421, Gujarat, India.
| |
Collapse
|
15
|
Thalassobacillus, a genus of extreme to moderate environmental halophiles with biotechnological potential. World J Microbiol Biotechnol 2021; 37:147. [PMID: 34363544 DOI: 10.1007/s11274-021-03116-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/29/2021] [Indexed: 01/09/2023]
Abstract
Thalassobacillus is a moderately halophilic genus that has been isolated from several sites worldwide, such as hypersaline lakes, saline soils, salt flats, and volcanic mud. Halophilic bacteria have provided functional stable biomolecules in harsh conditions for industrial purposes. Despite its potential biotechnological applications, Thalassobacillus has not been fully characterized yet. This review describes the Thalassobacillus genus, with the few species reported, pointing out its possible applications in enzymes (amylases, cellulases, xylanases, and others), biosurfactants, bioactive compounds, biofuels production, bioremediation, and plant growth promotion. The Thalassobacillus genus represents a little-explored biological resource but with a high potential.
Collapse
|
16
|
Nas F, Aissaoui N, Mahjoubi M, Mosbah A, Arab M, Abdelwahed S, Khrouf R, Masmoudi AS, Cherif A, Klouche-Khelil N. A comparative GC-MS analysis of bioactive secondary metabolites produced by halotolerant Bacillus spp. isolated from the Great Sebkha of Oran. Int Microbiol 2021; 24:455-470. [PMID: 34100180 DOI: 10.1007/s10123-021-00185-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
The reemergence of infectious diseases and resistant pathogens represents a serious problem for human life. Hence, the screening for new or alternative antimicrobial compounds is still urgent. Unusual ecosystems such as saline habitats are considered promising environments for the purposes of isolating bacterial strains able to produce potent natural products. The aim of this study is the identification of bioactive compounds biosynthesized by three halotolerant strains isolated from the Sebkha of Oran (Algeria) using gas chromatography coupled to mass spectrometry. Primary screening investigation of antimicrobial activities were performed against reference bacterial and fungal strains and revealed a broad-spectrum activity. Secondary metabolite extraction was carried out using ethyl acetate and chloroform. Crude extracts were tested for bioactivity using the disc diffusion method and subjected to GC-MS analysis. The extracts showed an important inhibitory effect against all tested strains. Fifty-six compounds were identified; they include tert-butyl phenol compounds, fatty acid methyl esters due to the methylation procedure, hydrocarbons, aldehydes, benzoquinones, pyrrols, and terpenes. Literature reports such compounds to have wide biological and pharmaceutical applications. The molecular identification of the three isolates was achieved using the 16S-23S rRNA gene intergenic spacer region (ITS) and 16S rRNA sequencing. Partial 16S rRNA gene sequencing showed very high similarity with many species of Bacillus. This study provided insights on the potential of halotolerant Bacillus as drug research target for bioactive metabolites. The findings suggest that the Great Sebkha of Oran is a valuable source of strains exhibiting variety of beneficial attributes that can be utilized in the development of biological antibiotics.
Collapse
Affiliation(s)
- Fatima Nas
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE), Faculty of Nature and Life, Earth and Universe Sciences, Department of Biology, Aboubekr Belkaïd University of Tlemcen, Tlemcen, Algeria
| | - Nadia Aissaoui
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE), Faculty of Nature and Life, Earth and Universe Sciences, Department of Biology, Aboubekr Belkaïd University of Tlemcen, Tlemcen, Algeria
| | - Mouna Mahjoubi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabe, 2020, Ariana, Tunisia
| | - Amor Mosbah
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabe, 2020, Ariana, Tunisia
| | - Mounia Arab
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE), Faculty of Nature and Life, Earth and Universe Sciences, Department of Biology, Aboubekr Belkaïd University of Tlemcen, Tlemcen, Algeria
| | - Soukaina Abdelwahed
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabe, 2020, Ariana, Tunisia
| | - Rim Khrouf
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabe, 2020, Ariana, Tunisia
| | | | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabe, 2020, Ariana, Tunisia
| | - Nihel Klouche-Khelil
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE), Faculty of Nature and Life, Earth and Universe Sciences, Department of Biology, Aboubekr Belkaïd University of Tlemcen, Tlemcen, Algeria. .,Laboratory of Experimental Surgery, Medical Faculty, Dental Surgery Department, Aboubekr Belkaïd University of Tlemcen, Tlemcen, Algeria.
| |
Collapse
|
17
|
Representative Bacillus sp. AM1 from Gut Microbiota Harbor Versatile Molecular Pathways for Bisphenol A Biodegradation. Int J Mol Sci 2021; 22:ijms22094952. [PMID: 34066922 PMCID: PMC8125285 DOI: 10.3390/ijms22094952] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022] Open
Abstract
Human gut microbiota harbors numerous microbial species with molecular enzymatic potential that impact on the eubiosis/dysbiosis and health/disease balances. Microbiota species isolation and description of their specific molecular features remain largely unexplored. In the present study, we focused on the cultivation and selection of species able to tolerate or biodegrade the endocrine disruptor bisphenol A (BPA), a xenobiotic extensively found in food plastic containers. Chemical xenobiotic addition methods for the directed isolation, culturing, Whole Genome Sequencing (WGS), phylogenomic identification, and specific gene-encoding searches have been applied to isolate microorganisms, assess their BPA metabolization potential, and describe encoded catabolic pathways. BPA-tolerant strains were isolated from 30% of infant fecal microbial culture libraries analyzed. Most isolated strains were phylogenetically related to the operational taxonomic group Bacillus amyloliquefaciens spp. Importantly, WGS analysis of microbial representative strain, Bacillus sp. AM1 identified the four complete molecular pathways involved on BPA degradation indicating its versatility and high potential to degrade BPA. Pathways for Exopolysaccharide (EPS) and Polyhydroxyalkanates (PHA) biopolymer synthesis were also identified and phenotypically confirmed by transmission electronic microscopy (TEM). These microbial biopolymers could generally contribute to capture and/or deposit xenobiotics.
Collapse
|
18
|
Serra CR, Oliva-Teles A, Enes P, Tavares F. Gut microbiota dynamics in carnivorous European seabass (Dicentrarchus labrax) fed plant-based diets. Sci Rep 2021; 11:447. [PMID: 33432059 PMCID: PMC7801451 DOI: 10.1038/s41598-020-80138-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
A healthy gastrointestinal microbiota is essential for host fitness, and strongly modulated by host diet. In aquaculture, a current challenge is to feed carnivorous fish with plant-feedstuffs in substitution of fish meal, an unsustainable commodity. Plants have a limited nutritive value due to the presence of non-starch polysaccharides (NSP) which are not metabolized by fish. In this work we assessed the effects of NSP-enriched diets on European seabass gut microbiota and evaluate the selective pressure of plant feedstuffs towards gut microbes with NSP-hydrolytic potential, i.e. capable to convert indigestible dietary constituents in fish metabolites. Triplicate groups of European seabass juveniles were fed a fish meal-based diet (control) or three plant-based diets (SBM, soybean meal; RSM, rapeseed meal; SFM, sunflower meal) for 6 weeks, before recovering intestinal samples for microbiota analysis, using the Illumina's MiSeq platform. Plant-based diets impacted differently digesta and mucosal microbiota. A decrease (p = 0.020) on species richness, accompanied by a decline on the relative abundance of specific phyla such as Acidobacteria (p = 0.030), was observed in digesta samples of SBM and RSM experimental fish, but no effects were seen in mucosa-associated microbiota. Plant-based diets favored the Firmicutes (p = 0.01), in particular the Bacillaceae (p = 0.017) and Clostridiaceae (p = 0.007), two bacterial families known to harbor carbohydrate active enzymes and thus putatively more prone to grow in high NSP environments. Overall, bacterial gut communities of European seabass respond to plant-feedstuffs with adjustments in the presence of transient microorganisms (allochthonous) with carbohydrolytic potential, while maintaining a balanced core (autochthonous) microbiota.
Collapse
Affiliation(s)
- Cláudia R Serra
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Aires Oliva-Teles
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, Ed. FC4, 4169-007, Porto, Portugal
| | - Paula Enes
- CIMAR/CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, Ed. FC4, 4169-007, Porto, Portugal
| | - Fernando Tavares
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, Ed. FC4, 4169-007, Porto, Portugal
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| |
Collapse
|
19
|
Fatholahpoor Kami K, Ghane M, Babaeekhou L. Hydrolase-Producing Moderately Halophilic Bacteria from Eshtehard Desert (Iran). Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720060041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Ruginescu R, Gomoiu I, Popescu O, Cojoc R, Neagu S, Lucaci I, Batrinescu-Moteau C, Enache M. Bioprospecting for Novel Halophilic and Halotolerant Sources of Hydrolytic Enzymes in Brackish, Saline and Hypersaline Lakes of Romania. Microorganisms 2020; 8:microorganisms8121903. [PMID: 33266166 PMCID: PMC7760675 DOI: 10.3390/microorganisms8121903] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022] Open
Abstract
Halophilic and halotolerant microorganisms represent promising sources of salt-tolerant enzymes that could be used in various biotechnological processes where high salt concentrations would otherwise inhibit enzymatic transformations. Considering the current need for more efficient biocatalysts, the present study aimed to explore the microbial diversity of five under- or uninvestigated salty lakes in Romania for novel sources of hydrolytic enzymes. Bacteria, archaea and fungi were obtained by culture-based approaches and screened for the production of six hydrolases (protease, lipase, amylase, cellulase, xylanase and pectinase) using agar plate-based assays. Moreover, the phylogeny of bacterial and archaeal isolates was studied through molecular methods. From a total of 244 microbial isolates, 182 (74.6%) were represented by bacteria, 22 (9%) by archaea, and 40 (16.4%) by fungi. While most bacteria synthesized protease and lipase, the most frequent hydrolase produced by fungi was pectinase. The archaeal isolates had limited hydrolytic activity, being able to produce only amylase and cellulase. Among the taxonomically identified isolates, the best hydrolytic activities were observed in halotolerant bacteria belonging to the genus Bacillus and in extremely halophilic archaea of the genera Haloterrigena and Halostagnicola. Therefore, the present study highlights that the investigated lakes harbor various promising species of microorganisms able to produce industrially valuable enzymes.
Collapse
Affiliation(s)
- Robert Ruginescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
- Correspondence:
| | - Ioana Gomoiu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
| | - Octavian Popescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
- Molecular Biology Center, Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai-University, 42 Treboniu Laurian St., 400271 Cluj-Napoca, Romania
| | - Roxana Cojoc
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
| | - Simona Neagu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
| | - Ioana Lucaci
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
| | - Costin Batrinescu-Moteau
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
| | - Madalin Enache
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania; (I.G.); (O.P.); (R.C.); (S.N.); (I.L.); (C.B.-M.); (M.E.)
| |
Collapse
|
21
|
Massaoudi Y, Anissi J, Lefter R, Lobiuc A, Sendide K, Ciobica A, Hassouni ME. Protective Effects of Two Halophilic Crude Extracts from Pseudomonas zhaodongensis and Bacillus stratosphericus against Memory Deficits and Anxiety- and Depression-Like Behaviors in Methionine-Induced Schizophrenia in Mice Focusing on Oxidative Stress Status. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8852418. [PMID: 33299461 PMCID: PMC7707988 DOI: 10.1155/2020/8852418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/03/2020] [Accepted: 11/13/2020] [Indexed: 12/04/2022]
Abstract
Recently, the implication of oxidative stress in behavioral-like disorders has received a lot of attention. Many studies were interested in searching for new natural compounds with protective effects on behavioral-like disorders by focusing on oxidative stress as the main causal factor. Here, we assess the potential effect of cell-free extracts from halophilic bacteria on memory, anxiety, and depression-related behaviors in mice, as well as on cognitive deficits, negative symptoms, and some oxidative stress biomarkers in methionine-induced mice models of schizophrenia. Firstly, crude extracts of bacteria isolated from the Dead Sea were screened for their effects on memory and anxiety- and depression-like behaviors through Y-maze, elevated plus maze, and forced swimming test, respectively, using two doses 60 mg/kg and 120 mg/kg. Then, 120 mg/kg of two bacterial crude extracts, from two strains designated SL22 and BM20 and identified as Bacillus stratosphericus and Pseudomonas zhaodongensis, respectively, with significant contents of phenolic and flavonoid-like compounds, were selected for the assessment of cognitive and negative symptom improvement, as well as for their effects on oxidative stress status in methionine-induced mice models of schizophrenia using six groups (controls, methionine, crude extracts solely, and combinations of crude extracts and methionine). Results showed that the administration of the crude extracts caused a significant increase in the spontaneous alternations in the Y-maze task, the time spent in open arms of the elevated plus maze, and a decrease in immobility time in the forced swimming test in comparison with the control group. Furthermore, the administration of bacterial extracts seemed to diminish disorders related to cognitive and negative symptoms of schizophrenia and to improve the oxidative state in the temporal lobes, in comparison with the methionine group. Our findings suggest substantial antioxidant and anti-neuropsychiatric effects of the crude extracts prepared from Pseudomonas zhaodongensis strain BM20 and Bacillus stratosphericus strain SL22 and that further studies are needed to purify and to determine the active fraction from the extracts.
Collapse
Affiliation(s)
- Yousra Massaoudi
- Biotechnology, Environment, Agri-Food and Health Laboratory, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, BP: 1796, Atlas, Fez, Morocco
| | - Jaouad Anissi
- Biotechnology, Environment, Agri-Food and Health Laboratory, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, BP: 1796, Atlas, Fez, Morocco
- School of Engineering BIOMEDTECH, Euro-Mediterranean University of Fez, Rond-point Bensouda, Route de Meknès BP 51, Fez, Morocco
| | - Radu Lefter
- Romanian Academy, Iasi Branch, Center of Biomedical Research, B dul Carol I, 8, 700506 Iasi, Romania
| | - Andrei Lobiuc
- CERNESIM Research Centre, L2, Alexandru Ioan Cuza University, 700505 Carol I Bd., Iasi, Romania
- Human Health and Development Department, Stefan Cel Mare University, 720229 Universitatii Str., Suceava, Romania
| | - Khalid Sendide
- Laboratory of Biotechnology, School of Science and Engineering, Al Akhawayn University in Ifrane, P.O. Box 104, Ifrane, Morocco
| | - Alin Ciobica
- Department of Research, Alexandru Ioan Cuza University of Iasi, Faculty of Biology, Bd. Carol I, 20A, 700505 Iasi, Romania
| | - Mohammed El Hassouni
- Biotechnology, Environment, Agri-Food and Health Laboratory, Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz, BP: 1796, Atlas, Fez, Morocco
| |
Collapse
|
22
|
Diversity and characterization of culturable haloalkaliphilic bacteria from two distinct hypersaline lakes in northern Egypt. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00609-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Benammar L, İnan Bektaş K, Menasria T, Beldüz AO, Güler HI, Bedaida IK, Gonzalez JM, Ayachi A. Diversity and enzymatic potential of thermophilic bacteria associated with terrestrial hot springs in Algeria. Braz J Microbiol 2020; 51:1987-2007. [PMID: 32959204 DOI: 10.1007/s42770-020-00376-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022] Open
Abstract
This study aims to determine the diversity of culturable thermophilic bacteria isolated from eight terrestrial hot springs in Northeastern of Algeria using the conventional methods, SDS-PAGE fingerprinting of whole-cell proteins and 16S rRNA gene sequencing. In addition, their hydrolytic enzyme activities were also investigated. A total of 293 strains were isolated from the hot springs' water and sediment using different culture media. Overall, five distinct bacterial groups were characterized by whole-cell protein pattern analysis. Based on the 16S rRNA gene sequencing of 100 selected strains, the isolates were assigned to the following three major phyla: Firmicutes (93%), Deinococcus-Thermus (5%), and Actinobacteria (2%), which included 27 distinct species belonging to 12 different phylotypes, Aeribacillus, Aneurinibacillus, Anoxybacillus, Bacillus, Brevibacillus, Geobacillus, Laceyella, Meiothermus, Saccharomonospora, Thermoactinomyces, Thermobifida, and Thermus. The screening for nine extracellular enzymes showed that 65.87% of the isolates presented at least five types of enzyme activities, and 6.48% of strains combined all tested enzymes (amylase, cellulase, pectinase, esculinase, protease, gelatinase, lipase, lecithinase, and nuclease). It was found that Bacillus, Anoxybacillus, Aeribacillus, and Aneurinibacillus were the genera showing the highest activities. Likewise, the study showed an abundant and diverse thermophilic community with novel taxa presenting a promising source of thermozymes with important biotechnological applications. This study showed that a combined identification method using SDS-PAGE profiles of whole-cell proteins and subsequent 16S rRNA gene sequence analysis could successfully differentiate thermophilic bacteria from Algerian hot springs.
Collapse
Affiliation(s)
- L Benammar
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078, Batna, Algeria.
- Molecular Biology Research Laboratory, Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey.
- Bacteriology Laboratory, Veterinary and Agricultural Sciences Institute, Department of Veterinary Sciences, University of Batna 1, 05000, Batna, Algeria.
| | - K İnan Bektaş
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - T Menasria
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, University of Larbi Tebessi, 12002, Tebessa, Algeria.
| | - A O Beldüz
- Molecular Biology Research Laboratory, Department of Biology, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - H I Güler
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - I K Bedaida
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, 05078, Batna, Algeria
| | - J M Gonzalez
- Spanish National Research Council Seville (CSIC), Institute of Natural Resources and Agrobiology of Seville (IRNAS), Seville, Spain
| | - A Ayachi
- Bacteriology Laboratory, Veterinary and Agricultural Sciences Institute, Department of Veterinary Sciences, University of Batna 1, 05000, Batna, Algeria
| |
Collapse
|
24
|
Mehainaoui A, Menasria T, Benouagueni S, Benhadj M, Lalaoui R, Gacemi-Kirane D. Rapid screening and characterization of bacteria associated with hospital cockroaches (Blattella germanica L.) using MALDI-TOF mass spectrometry. J Appl Microbiol 2020; 130:960-970. [PMID: 32737936 DOI: 10.1111/jam.14803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 11/29/2022]
Abstract
AIMS The study aimed to explore the diversity of culturable microbiota colonizing the alimentary tract and outer surfaces of German cockroaches (Blattella germanica) captured in a health care facility. METHODS AND RESULTS Microbial identification was conducted using Matrix Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) Biotyper and 16S rRNA sequencing. A total of 181 bacteria strains were isolated from 25 cockroach specimens and the MALDI-TOF MS-based assay yielded direct identification of 96·5% (175 out of 181) of the strains at the species level. The proteomic fingerprinting mainly revealed strains belonged to Gram-negative Enterobacteria (103) with six different genera that were characterized including Citrobacter, Klebsiella, Kluyevera, Leclercia, Morganella and Serratia. In addition, Pseudomonas sp. strains ranked in second with 29·8% (54 strains) followed by Staphylococcus sp. (6·62%) and Enterococcus sp. (1·65%). A large number of these bacteria (n = 90, 49·72%) was found in cockroaches captured in the maternity ward, whereas 45 strains (24·8%) were recovered in the paediatric ward. Altogether, 24 bacterial species were identified from both the external surface and digestive tract of the insect, of which Serratia marcescens presented the major group (n = 80, 44·19%) followed by Pseudomonas aeruginosa (n = 53, 29·28%) and Klebsiella oxytoca (n = 9, 4·94%). CONCLUSION The findings showed a high prevalence of bacterial pathogens harboured in the body and alimentary tract of B. germanica captured in a health care facility. SIGNIFICANCE AND IMPACT OF THE STUDY This investigation shows the possible role of German cockroaches as a source for bacterial pathogens, increasing the likelihood of direct transmission of healthcare associated infections, and thereby representing a public health risk. In addition, the present study revealed a high discriminatory power of the mass spectra investigation and a competent bacterial typing tool that extends phenotypic and genotypic approaches, which allows new possibilities for fast and accurate diagnosis in medical entomology.
Collapse
Affiliation(s)
- A Mehainaoui
- Department of Biochemistry, Faculty of Science, University Badji Mokhtar Annaba, Annaba, Algeria.,Laboratory of Genetic Improvement of Plants and Adaptation, Team of Water, Soil, and Microorganisms, Department of Biology, University Badji Mokhtar Annaba, Annaba, Algeria.,Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, Marseille, France
| | - T Menasria
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, University of Tebessa, Tebessa, Algeria
| | - S Benouagueni
- Department of Biochemistry, Faculty of Science, University Badji Mokhtar Annaba, Annaba, Algeria
| | - M Benhadj
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, University of Tebessa, Tebessa, Algeria
| | - R Lalaoui
- Faculté de Médecine et de Pharmacie, IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix-Marseille University, Marseille, France
| | - D Gacemi-Kirane
- Department of Biochemistry, Faculty of Science, University Badji Mokhtar Annaba, Annaba, Algeria.,Laboratory of Genetic Improvement of Plants and Adaptation, Team of Water, Soil, and Microorganisms, Department of Biology, University Badji Mokhtar Annaba, Annaba, Algeria
| |
Collapse
|
25
|
Sahli K, Gomri MA, Esclapez J, Gómez-Villegas P, Ghennai O, Bonete MJ, León R, Kharroub K. Bioprospecting and characterization of pigmented halophilic archaeal strains from Algerian hypersaline environments with analysis of carotenoids produced by Halorubrum sp. BS2. J Basic Microbiol 2020; 60:624-638. [PMID: 32338407 DOI: 10.1002/jobm.202000083] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 11/07/2022]
Abstract
A set of 110 extremely halophilic archaeal strains were isolated from seven distinct saline habitats located in different regions of Algeria. The physicochemical characterization of the samples showed that these habitats were thalassohaline. The carotenoid production from isolated strains varied from 0.1 to 3.68 µg/ml. Based on their physiological characteristics and pigment production, 43 strains were selected and identified by means of phenotypic tests and 16S ribosomal RNA gene sequencing. Phylogenetic analysis indicated that the isolates corresponded to the class Halobacteria and were closely related to genera Halorubrum, Haloarcula, Haloferax, Natrinema, Halogeometricum, Haloterrigena, and Halopiger. Carotenoids of the highest producer, strain Halorubrum sp. BS2 were identified using high-performance liquid chromatography-diode array detector and liquid chromatography-mass spectrometry. Bacterioruberin and bisanhydrobacterioruberin were the predominant carotenoids. The scavenging activity of these carotenoids reached 99% at a concentration of 18 μg/ml, which was much higher than that of ascorbic acid used as a reference compound. These carotenoids also exhibited significant antibacterial activities against four human-pathogenic strains and four fish-pathogenic strains. Variations in salinity, agitation rate, temperature, and light intensity were found to influence growth and carotenoid production of Halorubrum sp. BS2. Our results suggest that halophilic archaea represent a potential source for carotenoids, which are characterized by high antioxidant and antibacterial activities.
Collapse
Affiliation(s)
- Kaouther Sahli
- Laboratoire de Recherche Biotechnologie et Qualité des Aliments (BIOQUAL), Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Constantine, Algeria
| | - Mohamed A Gomri
- Laboratoire de Recherche Biotechnologie et Qualité des Aliments (BIOQUAL), Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Constantine, Algeria
| | - Julia Esclapez
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Division, Faculty of Science, University of Alicante, Alicante, Spain
| | - Patricia Gómez-Villegas
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, Huelva, Spain
| | - Oulaya Ghennai
- Laboratoire de Recherche Biotechnologie et Qualité des Aliments (BIOQUAL), Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Constantine, Algeria
| | - María-José Bonete
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Division, Faculty of Science, University of Alicante, Alicante, Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence (CEIMAR), University of Huelva, Huelva, Spain
| | - Karima Kharroub
- Laboratoire de Recherche Biotechnologie et Qualité des Aliments (BIOQUAL), Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires (INATAA), Université Frères Mentouri Constantine 1 (UFMC1), Constantine, Algeria
| |
Collapse
|
26
|
Benhadj M, Metrouh R, Menasria T, Gacemi-Kirane D, Slim FZ, Ranque S. Broad-spectrum antimicrobial activity of wetland-derived Streptomyces sp. ActiF450. EXCLI JOURNAL 2020; 19:360-371. [PMID: 32327957 PMCID: PMC7174574 DOI: 10.17179/excli2020-1124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/07/2020] [Indexed: 12/30/2022]
Abstract
The increased incidence of invasive infections and the emerging problem of drug resistance particularly for commonly used molecules have prompted investigations for new, safe and more effective microbial agents. Actinomycetes from unexplored habitats appear as a promising source for novel bioactive compounds with a broad range of biological activities. Thus, the present study aimed to isolate effective wetland-derived actinomycetes against major pathogenic fungi and bacteria. Water samples were collected from various locations of Fetzara Lake, Algeria. Thereafter, an actinomycete designated ActiF450 was isolated using starch-casein-agar medium. The antimicrobial potential of the newly isolated actinomycete was screened using the conventional agar cylinders method on Potato Dextrose Agar (PDA) against various fungal and bacterial pathogens. A wetland-derived Streptomyces sp. Actif450 was identified as Streptomycesmalaysiensis based on its physiological properties, morphological characteristics, and 16S rDNA gene sequence analysis. The antimicrobial activity of Streptomyces sp. ActiF450 showed a potent and broad spectrum activity against a range of human fungal pathogens including moulds and yeasts, such as Arthroderma vanbreuseghemii, Aspergillus fumigatus, A. niger, Candida albicans, C. glabarta, C. krusei, C. parapsilosis, Fusarium oxysporum, F. solani, Microsporum canis, Rhodotorula mucilaginous and Scodapulariopsis candida. In addition, high antibacterial activity was recorded against pathogenic staphylococci. The novel Streptomyces sp. ActiF450 may present a promising candidate for the production of new bioactive compounds with broad-spectrum antimicrobial activity.
Collapse
Affiliation(s)
- Mabrouka Benhadj
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, Larbi Tebessi University, 12002 Tebessa, Algeria.,Biomolecules and Application Laboratory, Faculty of Exact Sciences and Natural and Life Sciences, Larbi Tebessi University, 12002 Tebessa, Algeria
| | - Roumaisa Metrouh
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, Larbi Tebessi University, 12002 Tebessa, Algeria
| | - Taha Menasria
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, Larbi Tebessi University, 12002 Tebessa, Algeria
| | - Djamila Gacemi-Kirane
- Department of Biochemistry, Faculty of Science, University Badji Mokhtar Annaba, Annaba, 23000, Algeria
| | - Fatma Zohra Slim
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, Larbi Tebessi University, 12002 Tebessa, Algeria
| | - Stephane Ranque
- Aix Marseille University, IRD, APHM, SSA, VITROME, IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
27
|
Ruginescu R, Purcărea C, Dorador C, Lavin P, Cojoc R, Neagu S, Lucaci I, Enache M. Exploring the hydrolytic potential of cultured halophilic bacteria isolated from the Atacama Desert. FEMS Microbiol Lett 2019; 366:5613365. [DOI: 10.1093/femsle/fnz224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/31/2019] [Indexed: 01/23/2023] Open
Abstract
ABSTRACTConsidering that most industrial processes are carried out under harsh physicochemical conditions, which would inactivate enzymes from commonly isolated mesophilic organisms, current studies are geared toward the identification of extremophilic microorganisms producing enzymes resistant to extreme salt concentrations, temperature and pH. Among the extremophiles, halophilic microorganisms are an important source of salt-tolerant enzymes that can be used in varying biotechnological applications. In this context, the aim of the present work was to isolate and identify halophiles producing hydrolases from the Atacama Desert, one of the harshest environments on Earth. Isolates were recovered from halite samples and screened for the presence of seven different hydrolase activities (amylase, caseinase, gelatinase, lipase, pectinase, cellulase and inulinase) using agar plate-based assays. From a total of 23 halophilic bacterial isolates, most showed lipolytic (19 strains) and pectinolytic (11 strains) activities. The molecular identification of eight selected isolates showed a strong similarity to members of the Halomonas and Idiomarina genera. Therefore, the present study represents a preliminary, but essential, step to identify novel biological sources of extremozymes in an environment once thought to be devoid of life.
Collapse
Affiliation(s)
- Robert Ruginescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, Bucharest, 060031, Romania
| | - Cristina Purcărea
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, Bucharest, 060031, Romania
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, 601 Angamos Av., Antofagasta, 1240000, Chile
| | - Paris Lavin
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, 601 Angamos Av., Antofagasta, 1240000, Chile
| | - Roxana Cojoc
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, Bucharest, 060031, Romania
| | - Simona Neagu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, Bucharest, 060031, Romania
| | - Ioana Lucaci
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, Bucharest, 060031, Romania
| | - Mădălin Enache
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, Bucharest, 060031, Romania
| |
Collapse
|