1
|
Pandey A, Israr J, Pandey J, Misra S. Current Approaches and Implications in Discovery of Novel Bioactive Products from Microbial Sources. Curr Microbiol 2025; 82:258. [PMID: 40263159 DOI: 10.1007/s00284-025-04237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/06/2025] [Indexed: 04/24/2025]
Abstract
Bioactive Natural Products (BNPs) are in high demand due to their disease-preventive capabilities and resistance to pathogens. However, our understanding of BNP-producing microbes is limited, because many microbial populations remain uncultivated. Various approaches have been employed to explore the potential of these hidden microbes for new bioactive therapeutic compounds. Nevertheless, the possibility of discovering BNPs from microbial communities is largely cryptic due to their unculturable nature and the absence of triggers to activate the dormant Biosynthetic Gene Clusters (BGCs). Metagenome sequencing, followed by mining and characterization, is an effective approach for discovering new therapeutic BNPs. The inactive state of BGCs can be activated through the combinatorial interaction of different microbial communities within a common niche, overcoming programmable co-evolutionary stress and producing new BNPs. The present review discusses and explores the potential of hidden, uncultivated microbes for discovering novel Bioactive Natural Products (BNPs). Moreover, it provides insights into optimizing microbial production systems and fostering sustainable drug discovery and development practices by integrating multidisciplinary strategies. This review also emphasizes the critical role of microbial sources in the ongoing search for new bioactive products that can meet the demands of modern healthcare and environmental sustainability.
Collapse
Affiliation(s)
- Ankesh Pandey
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut, 250005, Uttar Pradesh, India
| | - Juveriya Israr
- Department of Biotechnology, Era University, Lucknow, Uttar Pradesh, India
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, 225003, Uttar Pradesh, India
| | - Janmejay Pandey
- Department of Biotechnology, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Sankalp Misra
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, 225003, Uttar Pradesh, India.
| |
Collapse
|
2
|
Mavvaji M, Muhammed MT, Onem E, Aslan HG, Alhag SK, Akkoc S. Synthesis, Cytotoxic Activity, Antiquorum Sensing Effect, Docking and Md Simulation of Novel 1,3-Disubstituted 2-Mercapto-1H-Benzo[D]Imidazolium Chlorides. J Biochem Mol Toxicol 2025; 39:e70248. [PMID: 40192579 PMCID: PMC11974491 DOI: 10.1002/jbt.70248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/05/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025]
Abstract
A series of benzimidazolium chlorides (2a-c) and their corresponding 2-mercapto derivatives (3a-c) were proficiently synthesized and analyzed by NMR and LC-MS spectra. The in vitro cytotoxic assay demonstrated that some synthesized compounds were active on the cancer cell lines. The binding potential of the most active three compounds to topoisomerase II alpha (topo2α) was explored to unveil the possible mode of action for the cytotoxic activity. The binding potential was examined through molecular docking. The stability of compound-enzyme complexes from docking was investigated through molecular dynamics (MD) simulation. The docking study revealed that the three compounds (3a-c) showed the ability to bind to the enzyme. However, the binding strength of compounds was weaker than that of the standard drug, doxorubicin. The MD simulation analysis demonstrated that compounds 3a and 3b gave relatively stable complexes with the enzyme and thus they would remain inside the binding pocket during the simulation period. Furthermore, the pharmacokinetic properties of the relatively active compounds were computed in silico. The computation disclosed that all of compounds exhibited drug-like properties. It is worth mentioning that all of them were found to be nontoxic. In furtherance, the inhibitory effect of compounds (3a-c) on the quorum sensing system was inspected using the biomonitor strains Chromobacterium violaceum 026, Chromobacterium. violaceum VIR07 and Pseudomonas aeruginosa PAO1. In this regard, we focused on the appraisal of the virulence factors, including pyocyanin, elastase, and biofilm formation that are created by P. aeruginosa PAO1 as the source of infectious diseases. As a result, it was determined that all examined compounds displayed statistically significant inhibition effects, and the highest activity was observed on elastase production with an inhibition rate of 84-86%.
Collapse
Affiliation(s)
- Mohammad Mavvaji
- Faculty of Pharmacy, Department of Basic Pharmaceutical SciencesSuleyman Demirel UniversityIspartaTürkiye
| | - Muhammed Tilahun Muhammed
- Faculty of Pharmacy, Department of Pharmaceutical ChemistrySuleyman Demirel UniversityIspartaTürkiye
| | - Ebru Onem
- Faculty of Pharmacy, Department of Pharmaceutical MicrobiologySuleyman Demirel UniversityIspartaTürkiye
| | - Halime Güzin Aslan
- Faculty of Sciences, Department of ChemistryErciyes UniversityKayseriTürkiye
| | - Sadeq K. Alhag
- Health Specialties, Basic Sciences and Applications Unit, Applied College, Mohayil AsirKing Khalid UniversityAbhaSaudi Arabia
| | - Senem Akkoc
- Faculty of Pharmacy, Department of Basic Pharmaceutical SciencesSuleyman Demirel UniversityIspartaTürkiye
- Faculty of Engineering and Natural SciencesBahçeşehir UniversityIstanbulTürkiye
| |
Collapse
|
3
|
Afkhami H, Yarahmadi A, Bostani S, Yarian N, Haddad MS, Lesani SS, Aghaei SS, Zolfaghari MR. Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents-challenges and limitations. Discov Oncol 2024; 15:818. [PMID: 39707033 DOI: 10.1007/s12672-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Collapse
Affiliation(s)
- Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Shoroq Bostani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nahid Yarian
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Shima Sadat Lesani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | |
Collapse
|
4
|
Huang X, Gan L, He Z, Jiang G, He T. Bacterial Pigments as a Promising Alternative to Synthetic Colorants: From Fundamentals to Applications. J Microbiol Biotechnol 2024; 34:2153-2165. [PMID: 39344344 PMCID: PMC11637871 DOI: 10.4014/jmb.2404.04018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/31/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
Pigments find widespread application in the fields of food, medicine, textiles, and cosmetics. At present, synthetic colorants dominate the global pigment market. However, the environmental and health hazards associated with synthetic colorants have spurred extensive research on eco-friendly and safe alternatives. Natural pigments are particularly intriguing for meeting consumer demands and sustainable development, as they not only exhibit various vibrant color shades without discernible toxic side effects but also offer additional healthful features such as antibacterial, antioxidant, anticancer, and antiviral properties compared with their synthetic counterparts. Among natural sources, bacterial strains share distinct advantages for large-scale pigment production because of their intrinsic robustness of cellular metabolic systems. This review comprehensively outlines the bacterial sources, extraction and purification methods, structural characteristics, biological activities, and potential applications of typical pigments, including but not limited to violacein, indigoidine, melanin, carotenoids, prodigiosin, and rhodopsin. Additionally, it underscores the primary obstacles to the development and production of bacterial pigments for commercial applications, discussing feasible strategies for overcoming production bottlenecks. This work also provides valuable insights for the scientific and rational advancement of bacterial pigment development.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, P.R. China
| | - Longzhan Gan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, P.R. China
| | - Zhicheng He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, P.R. China
| | - Guangyang Jiang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, Sichuan Province, P.R. China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, P.R. China
| |
Collapse
|
5
|
Ishimoto CK, Lima Junior RD, Scaramussa SADL, Fill TP, Oliveira VM, Bicas JL. Improving the medium composition for the production of the natural blue-violet pigment violacein by a new Janthinobacterium sp. isolate. Lett Appl Microbiol 2024; 77:ovae091. [PMID: 39317672 DOI: 10.1093/lambio/ovae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
The interest in natural compounds has increased primarily due to their beneficial health and environmental aspects. However, natural sources of some compounds, such as bluish pigments, are limited, requiring the development of efficient processes to meet commercial demands. This study isolated a blue-violet bacterium from spoiled cooked rice and identified it as a potential new species of Janthinobacterium through 16S rDNA analysis. Ultra-high performance liquid chromatography-tandem mass spectrometry analyses confirmed that the blue-violet pigment violacein was responsible for the bluish color. In laboratory conditions, different carbon and nitrogen sources were evaluated in submerged culture media to enhance pigment production. Glycerol did not result in significant pigment production by this strain, as expected from previous reports. Instead, a culture medium composed of yeast extract and fructose yielded higher pigment production, reaching about 113.68 ± 16.68 mg l-1 after 120 h. This result provides crucial insights for future studies aiming for sustainable and commercially viable violacein production. Based on a bioeconomy concept, this approach has the potential to supply natural and economic bluish pigments for various industrial sectors, including pharmaceutical, cosmetic, and food.
Collapse
Affiliation(s)
- Caroline Kie Ishimoto
- Department of Food Science and Nutrition, Universidade Estadual de Campinas, 13083-862, Campinas, SP, Brazil
| | | | | | - Taicia Pacheco Fill
- Department of Organic Chemistry, Universidade Estadual de Campinas, 13083-970, Campinas, SP, Brazil
| | - Valéria Maia Oliveira
- Multidisciplinary Center for Chemical, Biological and Agricultural Research, Universidade Estadual de Campinas, 13148-218, Paulinia, SP, Brazil
| | - Juliano Lemos Bicas
- Department of Food Science and Nutrition, Universidade Estadual de Campinas, 13083-862, Campinas, SP, Brazil
| |
Collapse
|
6
|
Ramón A, Esteves A, Villadóniga C, Chalar C, Castro-Sowinski S. A general overview of the multifactorial adaptation to cold: biochemical mechanisms and strategies. Braz J Microbiol 2023; 54:2259-2287. [PMID: 37477802 PMCID: PMC10484896 DOI: 10.1007/s42770-023-01057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Cold environments are more frequent than people think. They include deep oceans, cold lakes, snow, permafrost, sea ice, glaciers, cold soils, cold deserts, caves, areas at elevations greater than 3000 m, and also artificial refrigeration systems. These environments are inhabited by a diversity of eukaryotic and prokaryotic organisms that must adapt to the hard conditions imposed by cold. This adaptation is multifactorial and includes (i) sensing the cold, mainly through the modification of the liquid-crystalline membrane state, leading to the activation of a two-component system that transduce the signal; (ii) adapting the composition of membranes for proper functions mainly due to the production of double bonds in lipids, changes in hopanoid composition, and the inclusion of pigments; (iii) producing cold-adapted proteins, some of which show modifications in the composition of amino acids involved in stabilizing interactions and structural adaptations, e.g., enzymes with high catalytic efficiency; and (iv) producing ice-binding proteins and anti-freeze proteins, extracellular polysaccharides and compatible solutes that protect cells from intracellular and extracellular ice. However, organisms also respond by reprogramming their metabolism and specifically inducing cold-shock and cold-adaptation genes through strategies such as DNA supercoiling, distinctive signatures in promoter regions and/or the action of CSPs on mRNAs, among others. In this review, we describe the main findings about how organisms adapt to cold, with a focus in prokaryotes and linking the information with findings in eukaryotes.
Collapse
Affiliation(s)
- Ana Ramón
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Adriana Esteves
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Carolina Villadóniga
- Laboratorio de Biocatalizadores Y Sus Aplicaciones, Facultad de Ciencias, Instituto de Química Biológica, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Cora Chalar
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay.
- Laboratorio de Biocatalizadores Y Sus Aplicaciones, Facultad de Ciencias, Instituto de Química Biológica, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
7
|
Nemer G, Louka N, Rabiller Blandin P, Maroun RG, Vorobiev E, Rossignol T, Nicaud JM, Guénin E, Koubaa M. Purification of Natural Pigments Violacein and Deoxyviolacein Produced by Fermentation Using Yarrowia lipolytica. Molecules 2023; 28:4292. [PMID: 37298767 PMCID: PMC10254742 DOI: 10.3390/molecules28114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/14/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Violacein and deoxyviolacein are bis-indole pigments synthesized by a number of microorganisms. The present study describes the biosynthesis of a mixture of violacein and deoxyviolacein using a genetically modified Y. lipolytica strain as a production chassis, the subsequent extraction of the intracellular pigments, and ultimately their purification using column chromatography. The results show that the optimal separation between the pigments occurs using an ethyl acetate/cyclohexane mixture with different ratios, first 65:35 until both pigments were clearly visible and distinguishable, then 40:60 to create a noticeable separation between them and recover the deoxyviolacein, and finally 80:20, which allows the recovery of the violacein. The purified pigments were then analyzed by thin-layer chromatography and nuclear magnetic resonance.
Collapse
Affiliation(s)
- Georgio Nemer
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne CEDEX, France; (G.N.); (P.R.B.); (E.V.); (E.G.)
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (N.L.); (R.G.M.)
| | - Nicolas Louka
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (N.L.); (R.G.M.)
| | - Paul Rabiller Blandin
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne CEDEX, France; (G.N.); (P.R.B.); (E.V.); (E.G.)
| | - Richard G. Maroun
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (N.L.); (R.G.M.)
| | - Eugène Vorobiev
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne CEDEX, France; (G.N.); (P.R.B.); (E.V.); (E.G.)
| | - Tristan Rossignol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (T.R.); (J.-M.N.)
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France; (T.R.); (J.-M.N.)
| | - Erwann Guénin
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne CEDEX, France; (G.N.); (P.R.B.); (E.V.); (E.G.)
| | - Mohamed Koubaa
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu—CS 60319, 60203 Compiègne CEDEX, France; (G.N.); (P.R.B.); (E.V.); (E.G.)
| |
Collapse
|
8
|
Cagide C, Marizcurrena JJ, Vallés D, Alvarez B, Castro-Sowinski S. A bacterial cold-active dye-decolorizing peroxidase from an Antarctic Pseudomonas strain. Appl Microbiol Biotechnol 2023; 107:1707-1724. [PMID: 36773063 DOI: 10.1007/s00253-023-12405-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 02/12/2023]
Abstract
DyP (dye-decolorizing peroxidase) enzymes are hemeproteins that catalyze the H2O2-dependent oxidation of various molecules and also carry out lignin degradation, albeit with low activity. We identified a dyp gene in the genome of an Antarctic cold-tolerant microbe (Pseudomonas sp. AU10) that codes for a class B DyP. The recombinant protein (rDyP-AU10) was produced using Escherichia coli as a host and purified. We found that rDyP-AU10 is mainly produced as a dimer and has characteristics that resemble psychrophilic enzymes, such as high activity at low temperatures (20 °C) when using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and H2O2 as substrates, thermo-instability, low content of arginine, and a catalytic pocket surface larger than the DyPs from some mesophilic and thermophilic microbes. We also report the steady-state kinetic parameters of rDyP-AU10 for ABTS, hydroquinone, and ascorbate. Stopped-flow kinetics revealed that Compound I is formed with a rate constant of (2.07 ± 0.09) × 106 M-1 s-1 at pH 5 and that this is the predominant species during turnover. The enzyme decolors dyes and modifies kraft lignin, suggesting that this enzyme may have potential use in bioremediation and in the cellulose and biofuel industries. KEY POINTS: • An Antarctic Pseudomonas strain produces a dye-decolorizing peroxidase. • The recombinant enzyme (rDyP-AU10) was produced in E. coli and purified. • rDyP-AU10 showed high activity at low temperatures. • rDyP-AU10 is potentially useful for biotechnological applications.
Collapse
Affiliation(s)
- Célica Cagide
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Juan José Marizcurrena
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Diego Vallés
- Laboratorio de Biocatalizadores y sus Aplicaciones, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, and Centro de Investigaciones Biomédicas, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
- Laboratorio de Biocatalizadores y sus Aplicaciones, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
9
|
Muñoz-Miranda LA, Iñiguez-Moreno M. An extensive review of marine pigments: sources, biotechnological applications, and sustainability. AQUATIC SCIENCES 2023; 85:68. [PMID: 37096011 PMCID: PMC10112328 DOI: 10.1007/s00027-023-00966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The global demand for food and healthcare products based on natural compounds means that the industrial and scientific sectors are on a continuous search for natural colored compounds that can contribute to the replacement of synthetic colors. Natural pigments are a heterogeneous group of chemical molecules, widely distributed in nature. Recently, the interest in marine organisms has increased as they represent the most varied environment in the world and provide a wide range of colored compounds with bioactive properties and biotechnological applications in areas such as the food, pharmaceutical, cosmetic, and textile industries. The use of marine-derived pigments has increased during the last two decades because they are environmentally safe and healthy compounds. This article provides a comprehensive review of the current knowledge of sources, applications, and sustainability of the most important marine pigments. In addition, alternatives to protect these compounds from environmental conditions and their applications in the industrial sector are reviewed.
Collapse
Affiliation(s)
- Luis Alfonso Muñoz-Miranda
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44340 Jalisco Mexico
| | - Maricarmen Iñiguez-Moreno
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Monterrey, 64849 Mexico
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, 64849 Mexico
- Universidad Politécnica del Estado de Nayarit, Tepic, 63506 Nayarit Mexico
| |
Collapse
|
10
|
Fermentation in Minimal Media and Fungal Elicitation Enhance Violacein and Deoxyviolacein Production in Two Janthinobacterium Strains. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Violacein and its biosynthesis by-product deoxyviolacein are valuable natural pigments with different biological activities. Various efforts have been made to enhance violacein and deoxyviolacein production in microbes. However, the effect of different culture media, agitation, and fungal elicitation on biosynthesis in Janthinobacterium has not been evaluated. In this study, the effect of eight different culture media, agitation, and fungal elicitation by Agaricus bisporus on violacein and deoxviolacein production in Janthinobacterium agaricidamnosum DSM 9628 and Janthinobacterium lividum DSM 1552 were examined. The results showed that violacein and deoxviolacein are produced at high-levels when Janthinobacterium is cultivated in minimal media such as Davis minimal broth with glycerol (DMBgly), shipworm basal medium (SBM), and MM9 media. A 50-fold increase was observed in violacein production when Janthinobacterium was cultivated in these media compared to cultivation in Luria–Bertani (LB), nutrient broth (NB), and King’s B (KB). Agitation reduces violacein and deoxyviolacein production, while fungal elicitation decreases violacein but increases deoxyviolacein when Janthinobacterium is cultured in KB media, SBM, and modified SBM (MSBM). An antibacterial assay using various pathogenic bacteria showed that violacein and deoxyviolacein extracted from Janthinobacterium are effective against both Gram-positive and Gram-negative pathogens, confirming their functionality as antibacterial agents. The findings suggest that cultivation in minimal media and fungal elicitation might invoke a stress response, enhancing the production of violacein and deoxviolacein in Janthinobacterium.
Collapse
|
11
|
Maithani D, Sharma A, Gangola S, Choudhary P, Bhatt P. Insights into applications and strategies for discovery of microbial bioactive metabolites. Microbiol Res 2022; 261:127053. [DOI: 10.1016/j.micres.2022.127053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/12/2022] [Accepted: 04/26/2022] [Indexed: 10/25/2022]
|
12
|
Olivera-Bravo S, Bolatto C, Otero Damianovich G, Stancov M, Cerri S, Rodríguez P, Boragno D, Hernández Mir K, Cuitiño MN, Larrambembere F, Isasi E, Alem D, Canclini L, Marco M, Davyt D, Díaz-Amarilla P. Neuroprotective effects of violacein in a model of inherited amyotrophic lateral sclerosis. Sci Rep 2022; 12:4439. [PMID: 35292673 PMCID: PMC8924276 DOI: 10.1038/s41598-022-06470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive death of motor neurons and muscle atrophy, with defective neuron-glia interplay and emergence of aberrant glial phenotypes having a role in disease pathology. Here, we have studied if the pigment violacein with several reported protective/antiproliferative properties may control highly neurotoxic astrocytes (AbAs) obtained from spinal cord cultures of symptomatic hSOD1G93A rats, and if it could be neuroprotective in this ALS experimental model. At concentrations lower than those reported as protective, violacein selectively killed aberrant astrocytes. Treatment of hSOD1G93A rats with doses equivalent to the concentrations that killed AbAs caused a marginally significant delay in survival, partially preserved the body weight and soleus muscle mass and improved the integrity of the neuromuscular junction. Reduced motor neuron death and glial reactivity was also found and likely related to decreased inflammation and matrix metalloproteinase-2 and -9. Thus, in spite that new experimental designs aimed at extending the lifespan of hSOD1G93A rats are needed, improvements observed upon violacein treatment suggest a significant therapeutic potential that deserves further studies.
Collapse
Affiliation(s)
- Silvia Olivera-Bravo
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay.
| | - Carmen Bolatto
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - Gabriel Otero Damianovich
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Matías Stancov
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Sofía Cerri
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - Paola Rodríguez
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Daniela Boragno
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Karina Hernández Mir
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - María Noel Cuitiño
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Fernanda Larrambembere
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Eugenia Isasi
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - Diego Alem
- Genetic Department, IIBCE, Montevideo, Uruguay
| | | | - Marta Marco
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Tumoral Biol Area, Clin Biochem Department, Faculty of Chemistry, UdelaR, Montevideo, Uruguay
| | - Danilo Davyt
- Pharm Chem Lab, Organic Chemistry Department, Faculty of Chemistry, UdelaR, Montevideo, Uruguay
| | - Pablo Díaz-Amarilla
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
13
|
Development of Methylorubrum extorquens AM1 as a promising platform strain for enhanced violacein production from co-utilization of methanol and acetate. Metab Eng 2022; 72:150-160. [PMID: 35301124 DOI: 10.1016/j.ymben.2022.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
Violacein, a blue-violet compound with a wide range of beneficial bioactivities, is an attractive product for microbial production. Currently, violacein production has been demonstrated in several sugar heterotrophs through metabolic engineering; however, the cost of production remains an obstacle for business ventures. To address this issue, the development of host strains that can utilize inexpensive alternative substrates to reduce production costs would enable the commercialization of violacein. In this study, we engineered a facultative methylotroph, Methylorubrum extorquens AM1, to develop a methanol-based platform for violacein production. By optimizing expression vectors as well as inducer concentrations, 11.7 mg/L violacein production was first demonstrated using methanol as the sole substrate. Considering that unidentified bottlenecks for violacein biosynthesis in the shikimate pathway of M. extorquens AM1 would be difficult to address using generic metabolic engineering approaches, random mutagenesis and site-directed mutagenesis were implemented, and a 2-fold improvement in violacein production was achieved. Finally, by co-utilization of methanol and acetate, a remarkable enhancement of violacein production to 118 mg/L was achieved. Our results establish a platform strain for violacein production from non-sugar feedstocks, which may contribute to the development of an economically efficient large-scale fermentation system for violacein production.
Collapse
|
14
|
Ahmed A, Ahmad A, Li R, AL-Ansi W, Fatima M, Mushtaq BS, Basharat S, Li Y, Bai Z. Recent Advances in Synthetic, Industrial and Biological Applications of Violacein and Its Heterologous Production. J Microbiol Biotechnol 2021; 31:1465-1480. [PMID: 34584039 PMCID: PMC9705886 DOI: 10.4014/jmb.2107.07045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Violacein, a purple pigment first isolated from a gram-negative coccobacillus Chromobacterium violaceum, has gained extensive research interest in recent years due to its huge potential in the pharmaceutic area and industry. In this review, we summarize the latest research advances concerning this pigment, which include (1) fundamental studies of its biosynthetic pathway, (2) production of violacein by native producers, apart from C. violaceum, (3) metabolic engineering for improved production in heterologous hosts such as Escherichia coli, Citrobacter freundii, Corynebacterium glutamicum, and Yarrowia lipolytica, (4) biological/pharmaceutical and industrial properties, (5) and applications in synthetic biology. Due to the intrinsic properties of violacein and the intermediates during its biosynthesis, the prospective research has huge potential to move this pigment into real clinical and industrial applications.
Collapse
Affiliation(s)
- Aqsa Ahmed
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Abdullah Ahmad
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad 44000, Pakistan
| | - Renhan Li
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Waleed AL-Ansi
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China,Department of Food Science and Technology, Faculty of Agriculture, Sana’a University, Sana’a, 725, Yemen
| | - Momal Fatima
- Department of Industrial Biotechnology, National Institute of Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Bilal Sajid Mushtaq
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Samra Basharat
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China
| | - Ye Li
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P.R. China,Corresponding authors Y. Li E-mail:
| | - Zhonghu Bai
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P.R. China,
Z. Bai Phone: +86510-85197983 Fax: +86510-85197983 E-mail:
| |
Collapse
|
15
|
Durán N, Nakazato G, Durán M, Berti IR, Castro GR, Stanisic D, Brocchi M, Fávaro WJ, Ferreira-Halder CV, Justo GZ, Tasic L. Multi-target drug with potential applications: violacein in the spotlight. World J Microbiol Biotechnol 2021; 37:151. [PMID: 34398340 DOI: 10.1007/s11274-021-03120-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
The aim of the current review is to address updated research on a natural pigment called violacein, with emphasis on its production, biological activity and applications. New information about violacein's action mechanisms as antitumor agent and about its synergistic action in drug delivery systems has brought new alternatives for anticancer therapy. Thus, violacein is introduced as reliable drug capable of overcoming at least three cancer hallmarks, namely: proliferative signaling, cell death resistance and metastasis. In addition, antimicrobial effects on several microorganisms affecting humans and other animals turn violacein into an attractive drug to combat resistant pathogens. Emphasis is given to effects of violacein combined with different agents, such as antibiotics, anticancer agents and nanoparticles. Although violacein is well-known for many decades, it remains an attractive compound. Thus, research groups have been making continuous effort to help improving its production in recent years, which can surely enable its pharmaceutical and chemical application as multi-task compound, even in the cosmetics and food industries.
Collapse
Affiliation(s)
- Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil. .,Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biology Sciences Center, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Marcela Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.,Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Ignasio R Berti
- Nanobiomaterials Laboratory, Department of Chemistry, School of Sciences, Institute of Applied Biotechnology CINDEFI (UNLPCONICET, CCT La Plata),, Universidad Nacional de La Plata, La Plata, Argentina
| | - Guillermo R Castro
- Nanobiomaterials Laboratory, Department of Chemistry, School of Sciences, Institute of Applied Biotechnology CINDEFI (UNLPCONICET, CCT La Plata),, Universidad Nacional de La Plata, La Plata, Argentina
| | - Danijela Stanisic
- Biological Chemistry Laboratory, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo Brocchi
- Laboratory of Tropical Diseases, Department of Genetic, Evolution and Bioagents , Biology Institute, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Wagner J Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carmen V Ferreira-Halder
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Giselle Z Justo
- Departamento de Ciências Farmacêuticas (Campus Diadema) e Departamento de Bioquímica (Campus São Paulo), Universidade Federal de São Paulo (UNIFESP), 3 de Maio, 100, São Paulo, SP, 04044-020, Brazil.
| | - Ljubica Tasic
- Biological Chemistry Laboratory, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
16
|
Aman Mohammadi M, Ahangari H, Mousazadeh S, Hosseini SM, Dufossé L. Microbial pigments as an alternative to synthetic dyes and food additives: a brief review of recent studies. Bioprocess Biosyst Eng 2021; 45:1-12. [PMID: 34373951 DOI: 10.1007/s00449-021-02621-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Synthetic coloring agents have been broadly utilized in several industries such as food, pharmaceuticals, cosmetic and textile. Recent surveys on the potential of teratogenicity and carcinogenicity of synthetic dyes have expressed concerns regarding their use in foods. Worldwide, food industries have need for safe, natural and new colorings to add variety to foods and make them appealing to consumers. Natural colorings not only expand the marketability of the food product, but also add further healthful features such as antibacterial, antioxidant, anticancer and antiviral properties. Novel microbial strains should be explored to meet the increasing global search of natural pigments and suitable techniques must be developed for the marketable production of new pigments, using microbial cultures, viz., fungi, and bacteria. To address the issue of the natural coloring agents, this review presents the recent trends in several studies of microbial pigments, their biological properties and industrial applications.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Mousazadeh
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyede Marzieh Hosseini
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Laurent Dufossé
- CHEMBIOPRO Lab, Ecole Supérieure d'Ingénieurs Réunion Océan Indien (ESIROI), Université de La Réunion, Département Agroalimentaire, 97744, Saint-Denis, France.
| |
Collapse
|
17
|
Padhan B, Poddar K, Sarkar D, Sarkar A. Production, purification, and process optimization of intracellular pigment from novel psychrotolerant Paenibacillus sp. BPW19. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 29:e00592. [PMID: 33537212 PMCID: PMC7840853 DOI: 10.1016/j.btre.2021.e00592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/16/2020] [Accepted: 01/10/2021] [Indexed: 01/01/2023]
Abstract
A pink pigment-producing bacterial strain was isolated from wastewater and identified as Paenibacillus sp. BPW19. The motile bacterial strain was Gram-positive, acid fermenting, glucose, sucrose utilizing and rod-shaped with an average cell length of 1.55 μm as studied under the Environmental Scanning Electron Microscope. Even though being psychrotolerant, the cell growth condition of BPW19 was optimized as 25 ºC along with pH 8, and 2.25% inoculum concentration considering the operational ease of the production. Sonication assisted solvent extraction produced 5.41% crude pigment which showed zones of exclusion against gram-negative strains Escherichia coli DH5α, Enterobacter sp. EtK3, and Klebsiella sp. SHC1. Gas Chromatography-Mass Spectrometry analysis of the crude pigment exhibited the dominant presence of major compounds as dotriacontane; 3,7 dimethyl 7 octanal; 1-eicosene and erucic acid. While column chromatography (ethanol:chloroform in 1:4 (v/v) ratio) purified pigment was identified as erucic acid using Nuclear Magnetic Resonance with a net yield of 3.06%.
Collapse
Affiliation(s)
- Bhagyashree Padhan
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Kasturi Poddar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Debapriya Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| |
Collapse
|
18
|
Silva TRE, Silva LCF, de Queiroz AC, Alexandre Moreira MS, de Carvalho Fraga CA, de Menezes GCA, Rosa LH, Bicas J, de Oliveira VM, Duarte AWF. Pigments from Antarctic bacteria and their biotechnological applications. Crit Rev Biotechnol 2021; 41:809-826. [PMID: 33622142 DOI: 10.1080/07388551.2021.1888068] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pigments from microorganisms have triggered great interest in the market, mostly by their "natural" appeal, their favorable production conditions, in addition to the potential new chemical structures or naturally overproducing strains. They have been used in: food, feed, dairy, textile, pharmaceutical, and cosmetic industries. The high rate of pigment production in microorganisms recovered from Antarctica in response to selective pressures such as: high UV radiation, low temperatures, and freezing and thawing cycles makes this a unique biome which means that much of its biological heritage cannot be found elsewhere on the planet. This vast arsenal of pigmented molecules has different functions in bacteria and may exhibit different biotechnological activities, such as: extracellular sunscreens, photoprotective function, antimicrobial activity, biodegradability, etc. However, many challenges for the commercial use of these compounds have yet to be overcome, such as: the low stability of natural pigments in cosmetic formulations, the change in color when subjected to pH variations, the low yield and the high costs in their production. This review surveys the different types of natural pigments found in Antarctic bacteria, classifying them according to their chemical structure. Finally, we give an overview of the main pigments that are used commercially today.
Collapse
Affiliation(s)
- Tiago Rodrigues E Silva
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrárias, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | | | | | | | | | | | - Luiz Henrique Rosa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliano Bicas
- Departamento de Ciência de Alimentos, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | - Valéria Maia de Oliveira
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrárias, Universidade Estadual de Campinas, UNICAMP, Campinas, Brazil
| | | |
Collapse
|
19
|
Therapeutic applications and biological activities of bacterial bioactive extracts. Arch Microbiol 2021; 203:4755-4776. [PMID: 34370077 PMCID: PMC8349711 DOI: 10.1007/s00203-021-02505-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
Bacteria are rich in a wide variety of secondary metabolites, such as pigments, alkaloids, antibiotics, and others. These bioactive microbial products serve a great application in human and animal health. Their molecular diversity allows these natural products to possess several therapeutic attributes and biological functions. That's why the current natural drug industry focuses on uncovering all the possible ailments and diseases that could be combated by bacterial extracts and their secondary metabolites. In this paper, we review the major utilizations of bacterial natural products for the treatment of cancer, inflammatory diseases, allergies, autoimmune diseases, infections and other diseases that threaten public health. We also elaborate on the identified biological activities of bacterial secondary metabolites including antibacterial, antifungal, antiviral and antioxidant activities all of which are essential nowadays with the emergence of drug-resistant microbial pathogens. Throughout this review, we discuss the possible mechanisms of actions in which bacterial-derived biologically active molecular entities could possess healing properties to inspire the development of new therapeutic agents in academia and industry.
Collapse
|
20
|
Nawaz A, Chaudhary R, Shah Z, Dufossé L, Fouillaud M, Mukhtar H, ul Haq I. An Overview on Industrial and Medical Applications of Bio-Pigments Synthesized by Marine Bacteria. Microorganisms 2020; 9:microorganisms9010011. [PMID: 33375136 PMCID: PMC7822155 DOI: 10.3390/microorganisms9010011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Marine bacterial species contribute to a significant part of the oceanic population, which substantially produces biologically effectual moieties having various medical and industrial applications. The use of marine-derived bacterial pigments displays a snowballing effect in recent times, being natural, environmentally safe, and health beneficial compounds. Although isolating marine bacteria is a strenuous task, these are still a compelling subject for researchers, due to their promising avenues for numerous applications. Marine-derived bacterial pigments serve as valuable products in the food, pharmaceutical, textile, and cosmetic industries due to their beneficial attributes, including anticancer, antimicrobial, antioxidant, and cytotoxic activities. Biodegradability and higher environmental compatibility further strengthen the use of marine bio-pigments over artificially acquired colored molecules. Besides that, hazardous effects associated with the consumption of synthetic colors further substantiated the use of marine dyes as color additives in industries as well. This review sheds light on marine bacterial sources of pigmented compounds along with their industrial applicability and therapeutic insights based on the data available in the literature. It also encompasses the need for introducing bacterial bio-pigments in global pigment industry, highlighting their future potential, aiming to contribute to the worldwide economy.
Collapse
Affiliation(s)
- Ali Nawaz
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| | - Rida Chaudhary
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| | - Zinnia Shah
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| | - Laurent Dufossé
- CHEMBIOPRO Lab, ESIROI Agroalimentaire, University of Réunion Island, 97400 Saint-Denis, France;
- Correspondence: ; Tel.: +33-668-731-906
| | - Mireille Fouillaud
- CHEMBIOPRO Lab, ESIROI Agroalimentaire, University of Réunion Island, 97400 Saint-Denis, France;
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| | - Ikram ul Haq
- Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan; (A.N.); (R.C.); (Z.S.); (H.M.); (I.u.H.)
| |
Collapse
|