1
|
Flores-Villaseñor H, Velázquez-Román J, León-Sicairos N, Angulo-Zamudio UA, Lira-Morales C, Martínez-García JJ, Acosta-Smith E, Valdés-Flores J, Tapia-Pastrana G, Canizalez-Román A. Serodiversity, antibiotic resistance, and virulence genes of Vibrio parahaemolyticus in oysters collected in coastal areas of northwestern Mexico between 2012 and 2020. Food Microbiol 2024; 123:104567. [PMID: 39038901 DOI: 10.1016/j.fm.2024.104567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 07/24/2024]
Abstract
This study aimed to determine the prevalence of V. parahaemolyticus in oysters from the northwestern coast of Mexico and to identify the serotypes, virulence factors, and antibiotic resistance of the strains. Oyster samples were collected from 2012 to 2020 from the northwest coast of Mexico; biochemical and molecular methods were used to identify V. parahaemolyticus from oysters; antiserum reaction to determine V. parahaemolyticus serotypes, and PCR assays were performed to identify pathogenic (tdh and/or trh) or pandemic (toxRS/new, and/or orf8) strains and antibiotic resistance testing. A total of 441 oyster samples were collected and tested for V. parahaemolyticus. Forty-seven percent of oyster samples were positive for V. parahaemolyticus. Ten different O serogroups and 72 serovars were identified, predominantly serotype O1:KUT with 22.2% and OUT:KUT with 17.3%. Twenty new serotypes that had not been previously reported in our region were identified. We detected 4.3% of pathogenic clones but no pandemic strains. About 73.5% of strains were resistant to at least one antibiotic, mainly ampicillin and ciprofloxacin; 25% were multi-drug resistant. In conclusion, the pathogenic strains in oysters and antibiotic resistance are of public health concern, as the potential for outbreaks throughout northwestern Mexico is well established.
Collapse
Affiliation(s)
- Hector Flores-Villaseñor
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacan, Sinaloa, Mexico; The Sinaloa State Public Health Laboratory, Secretariat of Health, 80058, Culiacan, Sinaloa, Mexico
| | - Jorge Velázquez-Román
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacan, Sinaloa, Mexico
| | - Nidia León-Sicairos
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacan, Sinaloa, Mexico; Pediatric Hospital of Sinaloa, 80200, Culiacan, Sinaloa, Mexico
| | | | - Carolina Lira-Morales
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacan, Sinaloa, Mexico
| | - Jesús J Martínez-García
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacan, Sinaloa, Mexico; Pediatric Hospital of Sinaloa, 80200, Culiacan, Sinaloa, Mexico
| | - Erika Acosta-Smith
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacan, Sinaloa, Mexico
| | - Jorge Valdés-Flores
- Programa Doctorado en Ciencias Biológicas, Facultad de Biología, Universidad Autónoma de Sinaloa, 80040, Culiacán, Sinaloa, Mexico
| | - Gabriela Tapia-Pastrana
- Laboratorio de Investigación Biomédica, Hospital Regional de Alta Especialidad de Oaxaca, IMSS-BIENESTAR, Oaxaca, 71256, Mexico
| | - Adrian Canizalez-Román
- School of Medicine, Autonomous University of Sinaloa, 80019, Culiacan, Sinaloa, Mexico; The Women's Hospital, Secretariat of Health, 80020, Culiacan, Sinaloa, Mexico.
| |
Collapse
|
2
|
Sivan G, V K H, Sukumaran DP, Abdulla MH. Exploring extended-spectrum beta lactamase resistance in Vibrio parahaemolyticus and Vibrio cholerae within the tropical mangrove ecosystem of southwest India. Braz J Microbiol 2024; 55:2335-2343. [PMID: 38831174 PMCID: PMC11405589 DOI: 10.1007/s42770-024-01404-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
Multidrug-resistant pathogenic vibrios are a crisis of concern as they cause multiple illnesses, including gastroenteritis in humans and acute hepatopancreatic necrosis in aquaculture. In the current study, we investigated the prevalence of the beta-lactamase gene CTX-M-group 1 in Vibrio spp. (Vibrio cholerae and Vibrio parahaemolyticus) from the water and sediment of urban tropical mangrove ecosystems of Kerala, southwest India. A total of 120 isolates of Vibrio spp. were tested for antibiotic susceptibility to 14 antibiotics. In water, ampicillin resistance was very high in isolates of V. cholerae (94.1%, n = 17) and V. parahaemolyticus (89.1%, n = 46). 26.9% of V. parahaemolyticus and 14.2% of V. cholerae harbored the CTX-M-group 1 gene in water samples. Compared to V. cholerae, the CTX-M-group 1 gene was exclusively hosted by V. parahaemolyticus (49%) in sediment samples. A significant difference in the prevalence of the CTX-M-group 1 gene was observed among Vibrio spp. in both water and sediment samples (p < 0.05). The results revealed the presence of multidrug-resistant and beta-lactamase harboring Vibrio spp. in mangrove ecosystems, which may have evolved as a consequence of the misuse and abuse of broad-spectrum antibiotics as prophylaxis in human health care and aquaculture.
Collapse
Affiliation(s)
- Gopika Sivan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi-16, Kerala, India.
| | - Hridya V K
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi-16, Kerala, India
| | - Divya P Sukumaran
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi-16, Kerala, India
| | - Mohamed Hatha Abdulla
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi-16, Kerala, India
| |
Collapse
|
3
|
Bai Y, Yang Q, Sun Y, Li F, Sun J, Yang S, Yang D, Peng Z, Yang B, Xu J, Dong Y, Yan S, Li N. Antimicrobial susceptibility and genomic characterization of Vibrio parahaemolyticus isolated from aquatic foods in 15 provinces, China, 2020. Int J Food Microbiol 2024; 418:110737. [PMID: 38749264 DOI: 10.1016/j.ijfoodmicro.2024.110737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/27/2024]
Abstract
Prevalent in marine, estuarine and coastal environments, Vibrio parahaemolyticus is one of the major foodborne pathogens which can cause acute gastroenteritis through consumption of contaminated food. This study encompassed antimicrobial resistance, molecular characteristics and phylogenetic relationships of 163 V. parahaemolyticus isolated from aquatic foods across 15 provinces in China. The isolates showed high resistance rates against ampicillin (90.80 %, 148/163) and cefazolin (72.39 %, 118/163). Only 5 isolates demonstrated multi-drug resistance (MDR) phenotypes. A total of 37 different antibiotic resistance genes (ARGs) in correlation with seven antimicrobial categories were identified. tet(34) and tet(35) were present in all 163 isolates. Other most prevalent ARGs were those conferring resistance to β-lactams, with prevalence rate around 18.40 % (30/163). The virulence genes tdh and trh were found in 17 (10.43 %) and 9 (5.52 %) isolates, respectively. Totally 121 sequence types (STs) were identified through whole genome analysis, among which 60 were novel. The most prevalent sequence type was ST3 (9.20 %, 15/163), which shared the same genotype profile of trh_, tdh+ and blaCARB-22+. Most of the tdh+V. parahaemolyticus isolates was clustered into a distinctive clade by the phylogenetic analysis. Our study showed that the antimicrobial resistance of V. parahaemolyticus in aquatic foods in China was moderate. However, the emerging of MDR isolates implicate strengthened monitoring is needed for the better treatment of human V. parahaemolyticus infections. High genetic diversity and virulence potential of the isolates analyzed in this study help better understanding and evaluating the risk of V. parahaemolyticus posed to public health.
Collapse
Affiliation(s)
- Yao Bai
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Qiuping Yang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi 712100, China
| | - Yanan Sun
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China; School of Public Health, Shandong University, Shandong 250012, China
| | - Fengqin Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Jiali Sun
- College of Food Science and Engineering, Northwest A&F University, Shaanxi 712100, China
| | - Shuran Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Dajin Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Zixin Peng
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Shaanxi 712100, China
| | - Jin Xu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Yinping Dong
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China
| | - Shaofei Yan
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China.
| | - Ning Li
- NHC Key Laboratory of Food Safety Risk Assessment, China National Centre for Food Safety Risk Assessment, Beijing 100022, China.
| |
Collapse
|
4
|
Kumar S, Lekshmi M, Stephen J, Ortiz-Alegria A, Ayitah M, Varela MF. Dynamics of efflux pumps in antimicrobial resistance, persistence, and community living of Vibrionaceae. Arch Microbiol 2023; 206:7. [PMID: 38017151 DOI: 10.1007/s00203-023-03731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023]
Abstract
The marine bacteria of the Vibrionaceae family are significant from the point of view of their role in the marine geochemical cycle, as well as symbionts and opportunistic pathogens of aquatic animals and humans. The well-known pathogens of this group, Vibrio cholerae, V. parahaemolyticus, and V. vulnificus, are responsible for significant morbidity and mortality associated with a range of infections from gastroenteritis to bacteremia acquired through the consumption of raw or undercooked seafood and exposure to seawater containing these pathogens. Although generally regarded as susceptible to commonly employed antibiotics, the antimicrobial resistance of Vibrio spp. has been on the rise in the last two decades, which has raised concern about future infections by these bacteria becoming increasingly challenging to treat. Diverse mechanisms of antimicrobial resistance have been discovered in pathogenic vibrios, the most important being the membrane efflux pumps, which contribute to antimicrobial resistance and their virulence, environmental fitness, and persistence through biofilm formation and quorum sensing. In this review, we discuss the evolution of antimicrobial resistance in pathogenic vibrios and some of the well-characterized efflux pumps' contributions to the physiology of antimicrobial resistance, host and environment survival, and their pathogenicity.
Collapse
Affiliation(s)
- Sanath Kumar
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Manjusha Lekshmi
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Jerusha Stephen
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Anely Ortiz-Alegria
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Matthew Ayitah
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA.
| |
Collapse
|
5
|
Bhaskaran R, Ramachandra KSS, Peter R, Gopakumar ST, Gopalan MK, Mozhikulangara RR. Antimicrobial resistance and antagonistic features of bivalve-associated Vibrio parahaemolyticus from the south-west coast of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107681-107692. [PMID: 37740157 DOI: 10.1007/s11356-023-29924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Vibrio parahaemolyticus, a potent human and aquatic pathogen, is usually found in estuaries and oceans. Human illness is associated with consuming uncooked/partially cooked contaminated seafood. The study on bivalve-associated V. parahaemolyticus revealed that the post-monsoon season had the highest bacterial abundance (9 ± 1.5 log cfu) compared to the monsoon season (8.03 ± 0.56 log cfu). Antimicrobial resistance (AMR) profiling was performed on 114 V. parahaemolyticus isolates obtained from bivalves. The highest AMR was observed against ampicillin (78%). Chloramphenicol was found to be effective against all the isolates. Multiple antibiotic resistance index values of 0.2 or higher were detected in 18% of the isolates. Molecular analysis of antimicrobial resistant genes (ARGs) revealed the high prevalence (100%) of the TEM-1 gene in the aquatic environment. After plasmid profiling and curing, 41.6% and 100% of the resistant isolates were found to be sensitive to ampicillin and cephalosporins, respectively, indicating the prevalence of plasmid-associated ARGs in the aquatic environment. A study to evaluate the antagonistic properties of Bacillus subtilis, Pseudomonas aeruginosa, and Bacillus amyloliquefaciens against V. parahaemolyticus isolates identified the potential of these bacteria to resist the growth of V. parahaemolyticus.
Collapse
Affiliation(s)
- Remya Bhaskaran
- Marine Biotechnology, Fish Nutrition and Health Division (MBFNHD), ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi, Ernakulam North (P.O.), 682 018, India
- Department of Biosciences, Mangalore University, Mangalagangotri - 574 199, Karnataka State, India
| | - Krupesha Sharma Sulumane Ramachandra
- Marine Biotechnology, Fish Nutrition and Health Division (MBFNHD), ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi, Ernakulam North (P.O.), 682 018, India.
| | - Reynold Peter
- Marine Biotechnology, Fish Nutrition and Health Division (MBFNHD), ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi, Ernakulam North (P.O.), 682 018, India
| | - Sumithra Thangalazhy Gopakumar
- Marine Biotechnology, Fish Nutrition and Health Division (MBFNHD), ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi, Ernakulam North (P.O.), 682 018, India
| | - Mini Kalappurakkal Gopalan
- Fishery Resources Assessment, Economics and Extension Division (FRAEED), ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi, Ernakulam North (P.O.), 682 018, India
| | - Rithin Raj Mozhikulangara
- School of Industrial Fisheries, Cochin University of Science and Technology (CUSAT), Lakeside Campus, Kochi, 682 016, India
| |
Collapse
|
6
|
Beshiru A, Igbinosa EO. Surveillance of Vibrio parahaemolyticus pathogens recovered from ready-to-eat foods. Sci Rep 2023; 13:4186. [PMID: 36918655 PMCID: PMC10011769 DOI: 10.1038/s41598-023-31359-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
This study examined the occurrence of V. parahaemolyticus from ready-to-eat (RTE) food in Delta State, Nigeria. It also characterized antibiotic resistance and virulence gene profile patterns to determine the associated health risk hazard. Food samples total of 380 were collected randomly and assessed for V. parahaemolyticus. V. parahaemolyticus isolates were characterized for their virulence and antibiogram potentials using a phenotypic and polymerase chain reaction (PCR) approach. A total of 42 (11.1%) samples were contaminated with V. parahaemolyticus. In 17/42 (40.5%) of the V. parahaemolyticus-positive samples, the densities were < 10 MPN/g. However, 19/42 (45.2%) and 6/42 (14.3%) of the samples had densities of 10 - 102 and > 102 MPN/g, respectively. A total of 67 V. parahaemolyticus isolates were identified using PCR; 54(80.6%) isolates were multidrug resistant. A total of 22 (32.8%), 39 (58.2%), and 67 (100%) of the V. parahaemolyticus harbored the tdh, trh, and tlh toxin genes, respectively. The T3SS1 gene (vcrD1) was detected in 67 (100%) of the isolates. The T3SS2α genes which were vcrD2, vopB2, and vopT were detected in 21 (31.3%), 11 (16.4%) and 30 (44.8%) of the isolates respectively. Some of the V. parahaemolytics strains harbored the orf8 gene 20 (29.9%), and a combination of orf8 + tdh genes 12 (17.9%), categorized as pandemic strains. The antibiotic resistance genes detected in this study include blaTEM 33 (49.3), tetM 19 (28.4), cmlA 32(47.8) and sul1 14 (20.9). The concentration levels and prevalence of V. parahaemolyticus in RTE foods indicate contamination of ready-to-eat foods, particularly street foods consumed in the Delta State of Nigeria, threatening public health and consumer safety.
Collapse
Affiliation(s)
- Abeni Beshiru
- Applied Microbial Processes and Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Private Mail Bag 1154, Benin City, 300283, Edo State, Nigeria
- Department of Microbiology, College of Natural and Applied Sciences, Western Delta University, Oghara, Delta State, Nigeria
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Etinosa O Igbinosa
- Applied Microbial Processes and Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Private Mail Bag 1154, Benin City, 300283, Edo State, Nigeria.
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
7
|
Albini E, Orso M, Cozzolino F, Sacchini L, Leoni F, Magistrali CF. A systematic review and meta-analysis on antimicrobial resistance in marine bivalves. Front Microbiol 2022; 13:1040568. [PMID: 36532500 PMCID: PMC9751792 DOI: 10.3389/fmicb.2022.1040568] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/03/2022] [Indexed: 10/09/2023] Open
Abstract
Bivalves are filter-feeding animals able to accumulate contaminants and microorganisms, either of marine or terrestrial origin. The aim of this study was to describe the prevalence of antimicrobial resistance (AMR) in bacterial isolates from bivalves using a systematic review of the literature. Comprehensive searches of MEDLINE, EMBASE, and Web of Science were carried out, based upon a registered protocol (PROSPERO), and following the preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines. The methodological quality of the included studies was assessed using a modified Hoy checklist. Meta-analyses of prevalence were carried out using random-effects models. In total, 103 articles were selected from 1,280 records and were included in the final analysis. The studies were from Asia (n = 54), Europe (n = 27), South and North America (n = 10 and n = 6, respectively), Africa (n = 2), Oceania (n = 1), and multicentre and intercontinental (n = 3). The meta-analysis of multiple antibiotic resistance (MAR) index revealed Aeromonas spp. as the genus with the highest prevalence of AMR (37%), followed by Vibrio spp. (34%), Salmonella spp. (18%), and Escherichia coli (15%). Resistance to third/fourth/fifth generation cephalosporins and fluoroquinolones, two highest priority, critically important antimicrobials (HPCIA), was recorded in approximately 10% of E. coli isolates. Resistance to carbapenems was very low (<2%) in Salmonella spp. and in E. coli, but was found in 5% of Vibrio spp. and in more than a third of Aeromonas spp. isolates. In aquatic bacteria, resistance to carbapenems was higher in Asian than in European isolates. Our study shows the presence of antibiotic resistant bacteria (ARB), including bacteria resistant to HPCIA, in marine bivalves, posing a risk for consumers.
Collapse
Affiliation(s)
- Elisa Albini
- Istituto Zooprofilattico Sperimentale dell’Umbria e Delle Marche ‘Togo Rosati’, Perugia, Italy
| | - Massimiliano Orso
- Istituto Zooprofilattico Sperimentale dell’Umbria e Delle Marche ‘Togo Rosati’, Perugia, Italy
| | - Francesco Cozzolino
- Health Planning Service, Regional Health Authority of Umbria, Perugia, Italy
| | - Luca Sacchini
- Istituto Zooprofilattico Sperimentale dell’Umbria e Delle Marche ‘Togo Rosati’, Perugia, Italy
| | - Francesca Leoni
- Istituto Zooprofilattico Sperimentale dell’Umbria e Delle Marche ‘Togo Rosati’, Perugia, Italy
| | | |
Collapse
|
8
|
Li A, Shi C, Qian S, Wang Z, Zhao S, Liu Y, Xue Z. Evaluation of antibiotic combination of Litsea cubeba essential oil on Vibrio parahaemolyticus inhibition mechanism and anti-biofilm ability. Microb Pathog 2022; 168:105574. [PMID: 35561981 DOI: 10.1016/j.micpath.2022.105574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a common pathogen in seafood. The use of antibiotics is a primary tool to prevent and control V. parahaemolyticus in the aquaculture industry. However, V. parahaemolyticus combats the damage caused by antibiotics by forming biofilms under certain conditions. In this study, we analyzed the antibacterial effect and the characteristics of V. parahaemolyticus by experimentally determining the minimum inhibitory concentration (MIC) and the fractional inhibitory concentration index (FICI) values of a combination of the Litsea cubeba essential oil (LCEO) and several commonly used V. parahaemolyticus antibiotics. The bactericidal effect of the essential oil alone and essential oil in combination with the antibiotics were evaluated with time-kill curves. The damage to cell membranes and cell walls were assessed by measuring the content of macromolecules and alkaline phosphatase (AKP) released into the supernatant using V. parahaemolyticus ATCC17802 as the experimental strain. The membrane structure was observed by transmission electron microscopy. The results showed that the MIC value of the LCEO was 1,024 μg/mL, and the LCEO FICI values in combination with tetracycline or oxytetracycline hydrochloride was 0.3125 and 0.75, respectively, indicating synergistic and additive effects. Moreover, LCEO inhibited the growth and promoted the removal of biofilms by reducing the content of hydrophobic and extracellular polysaccharides on the cell surface. This study provides a reference for studying the antibacterial activity of LCEO and the combination of antibiotics to prevent and control the formation of biofilms by V. parahaemolyticus.
Collapse
Affiliation(s)
- Anqi Li
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, PR China
| | - Chenglong Shi
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, PR China
| | - Senhe Qian
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, PR China
| | - Zhou Wang
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, PR China.
| | - Shiguang Zhao
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, PR China; Xuancheng Industrial Technology, Research Institute of Anhui Polytechnic University, Anhui, Xuancheng, 242000, PR China
| | - Yan Liu
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, PR China
| | - Zhenglian Xue
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Wuhu, 241000, PR China
| |
Collapse
|