1
|
Tanwar SN, Parauha YR, There Y, Ameen F, Dhoble SJ. Inorganic nanoparticles: An effective antibiofilm strategy. LUMINESCENCE 2024; 39:e4878. [PMID: 39223925 DOI: 10.1002/bio.4878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/08/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Biofilm is a common problem associated with human health. Pathogenicity and increase in resistance of bacteria require urgent development of effective ways for the treatment of bacterial diseases. Different strategies have been developed for the treatment of bacterial infections among which nanoparticles have shown greater prospects in battling with infections. Biofilms are resistant microbial colonies that possess resistance and, hence, cannot be killed by conventional drugs. Nanoparticles offer new avenues for treating biofilm-related infections involving multi-drug resistant organisms. They possess great antibiofilm properties, disrupting cell architecture and preventing colony formation. Green-synthesised nanoparticles are more effective and less toxic to human cells than commercially available or chemically synthesised antibiofilm nanoparticles. This review summarises the antibiofilm efficiency of plant-mediated nanoparticles and knowledge about biofilm inhibition.
Collapse
Affiliation(s)
- Shruti Nandkishor Tanwar
- Department of Microbiology, Taywade College, Mahadula-Koradi, Nagpur, India
- Department of Physics, R.T.M., Nagpur University, Nagpur, India
| | - Yatish Ratn Parauha
- Department of Physics, Shri Ramdeobaba College of Engineering and Management, Nagpur, India
- Ramdeobaba University, Nagpur, India
| | - Yogesh There
- Department of Microbiology, Taywade College, Mahadula-Koradi, Nagpur, India
| | - Faud Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arbia
| | | |
Collapse
|
2
|
Tungare K, Gupta J, Bhori M, Garse S, Kadam A, Jha P, Jobby R, Amanullah M, Vijayakumar S. Nanomaterial in controlling biofilms and virulence of microbial pathogens. Microb Pathog 2024; 192:106722. [PMID: 38815775 DOI: 10.1016/j.micpath.2024.106722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The escalating threat of antimicrobial resistance (AMR) poses a grave concern to global public health, exacerbated by the alarming shortage of effective antibiotics in the pipeline. Biofilms, intricate populations of bacteria encased in self-produced matrices, pose a significant challenge to treatment, as they enhance resistance to antibiotics and contribute to the persistence of organisms. Amid these challenges, nanotechnology emerges as a promising domain in the fight against biofilms. Nanomaterials, with their unique properties at the nanoscale, offer innovative antibacterial modalities not present in traditional defensive mechanisms. This comprehensive review focuses on the potential of nanotechnology in combating biofilms, focusing on green-synthesized nanoparticles and their associated anti-biofilm potential. The review encompasses various aspects of nanoparticle-mediated biofilm inhibition, including mechanisms of action. The diverse mechanisms of action of green-synthesized nanoparticles offer valuable insights into their potential applications in addressing AMR and improving treatment outcomes, highlighting novel strategies in the ongoing battle against infectious diseases.
Collapse
Affiliation(s)
- Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India.
| | - Juhi Gupta
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India
| | - Mustansir Bhori
- Inveniolife Technology PVT LTD, Office No.118, Grow More Tower, Plot No.5, Sector 2, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Samiksha Garse
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India
| | - Aayushi Kadam
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; Anatek Services PVT LTD, 10, Sai Chamber, Near Santacruz Railway Bridge, Sen Nagar, Santacruz East, Mumbai, Maharashtra, 400055, India
| | - Pamela Jha
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, Maharashtra, India
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University, Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India; Amity Centre of Excellence in Astrobiology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India
| | - Mohammed Amanullah
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia, 61421
| | - Sekar Vijayakumar
- Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India; Marine College, Shandong University, Weihai, 264209, PR China
| |
Collapse
|
3
|
Summer M, Ali S, Tahir HM, Abaidullah R, Fiaz U, Mumtaz S, Fiaz H, Hassan A, Mughal TA, Farooq MA. Mode of Action of Biogenic Silver, Zinc, Copper, Titanium and Cobalt Nanoparticles Against Antibiotics Resistant Pathogens. J Inorg Organomet Polym Mater 2024; 34:1417-1451. [DOI: 10.1007/s10904-023-02935-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 08/04/2024]
|
4
|
Roese KHC, Torlone C, Cooper LA, Esposito L, Deveau AM, Röse USR, Burkholder KM. Pyrogallol impairs staphylococcal biofilm formation via induction of bacterial oxidative stress. J Appl Microbiol 2023; 134:lxad270. [PMID: 37974055 DOI: 10.1093/jambio/lxad270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/13/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
AIMS To examine the effect of the phenolic compound pyrogallol on staphylococcal biofilm formation. METHODS AND RESULTS In crystal violet biofilm assays, pyrogallol-reduced biofilm formation in Staphylococcus epidermidis ATCC 35984, Staph. epidermidis NRRL-B41021, Staphylococcus aureus USA300, and Staph. aureus Newman, without significantly impairing bacterial viability. Pyrogallol-mediated impairment of biofilm formation was likely due to induction of bacterial oxidative stress, as its effect was greater in catalase-deficient versus WT Staph. aureus, and biofilm production was rescued by exogenous catalase. The effect of pyrogallol on staphylococcal biofilm formation mirrored that of the known oxidant hydrogen peroxide, which also reduced biofilm formation in a dose-dependent manner. CONCLUSIONS Pyrogallol reduces biofilm formation in S. aureus and Staph. epidermidis in a mechanism involving induction of bacterial oxidative stress.
Collapse
Affiliation(s)
- Katharina H C Roese
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA
| | - Christina Torlone
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA
| | - Lauren A Cooper
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA
| | - Lee Esposito
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA
| | - Amy M Deveau
- School of Mathematical and Physical Sciences, University of New England, Biddeford, ME 04005, USA
| | - Ursula S R Röse
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA
| | - Kristin M Burkholder
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA
| |
Collapse
|
5
|
Vishakha K, Das S, Ganguli A. The Facile Synthesis of Eco-Friendly Zinc Magnesium Bimetal Nanoparticles and its Application in the Eradication of Xanthomonas oryzae pv. oryzae that Causes Leaf Blight Disease of Rice. Curr Microbiol 2023; 80:340. [PMID: 37712946 DOI: 10.1007/s00284-023-03455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
In this research work, we formulated and successfully assessed the antibacterial capability of zinc magnesium bimetal nanoparticles (ZnMgNPs) against Xanthomonas oryzae pv. oryzae (Xoo), the pathogenic microorganism responsible for causing the destructive leaf blight disease in rice. Successful preparation of ZnMgNPs were determined by UV-vis spectroscopy, EDX (Energy dispersive X-ray), FTIR (Fourier transform infrared) and SEM (Scanning Electron Microscopy). ZnMgNPs had antibacterial efficacy towards Xoo at MIC (minimum inhibitory concentration) 50 µg/ml. ZnMgNPs impeded the formation of biofilm of Xoo by drastically reducing the amount of EPS (extracellular polymeric substances) production and number of sessile cells. The ZnMgNPs also reduced several pathogenic traits of Xoo like motility, xanthomonadin and exoenzymes production. ZnMgNPs target cell membrane of Xoo and also induced oxidative damage as mechanisms of its antibacterial activity. As revealed by an ex-vivo study, ZnMgNPs diminished BLB (bacterial leaf blight) disease symptoms in rice leaves, ZnMgNPs had no effect on rice seed germination, and that following foliar application, the length and biomass of roots and shoots of rice seedling were unaffected, low cytotoxic to A549 cell line showing that ZnMgNPs are non-toxic. However, with ZnMgNPs treatment, the chlorophyll content index (CCI) increased significantly, indicating a good impact on rice physiology. All of these findings suggest that ZnMgNPs could be applied in agriculture to combat the Xoo-caused BLB disease.
Collapse
Affiliation(s)
- Kumari Vishakha
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Shatabdi Das
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Arnab Ganguli
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
6
|
Hetta HF, Ramadan YN, Al-Harbi AI, A. Ahmed E, Battah B, Abd Ellah NH, Zanetti S, Donadu MG. Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives. Biomedicines 2023; 11:biomedicines11020413. [PMID: 36830949 PMCID: PMC9953167 DOI: 10.3390/biomedicines11020413] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths all over the world. The wide spread of resistance and sharing resistance genes between different types of bacteria led to emergence of multidrug resistant (MDR) microorganisms. This problem is exacerbated when microorganisms create biofilms, which can boost bacterial resistance by up to 1000-fold and increase the emergence of MDR infections. The absence of novel and potent antimicrobial compounds is linked to the rise of multidrug resistance. This has sparked international efforts to develop new and improved antimicrobial agents as well as innovative and efficient techniques for antibiotic administration and targeting. There is an evolution in nanotechnology in recent years in treatment and prevention of the biofilm formation and MDR infection. The development of nanomaterial-based therapeutics, which could overcome current pathways linked to acquired drug resistance, is a hopeful strategy for treating difficult-to-treat bacterial infections. Additionally, nanoparticles' distinct size and physical characteristics enable them to target biofilms and treat resistant pathogens. This review highlights the current advances in nanotechnology to combat MDR and biofilm infection. In addition, it provides insight on development and mechanisms of antibiotic resistance, spread of MDR and XDR infection, and development of nanoparticles and mechanisms of their antibacterial activity. Moreover, this review considers the difference between free antibiotics and nanoantibiotics, and the synergistic effect of nanoantibiotics to combat planktonic bacteria, intracellular bacteria and biofilm. Finally, we will discuss the strength and limitations of the application of nanotechnology against bacterial infection and future perspectives.
Collapse
Affiliation(s)
- Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Correspondence: (H.F.H.); (M.G.D.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Alhanouf I. Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46411, Saudi Arabia
| | - Esraa A. Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Syrian Private University (SPU), Daraa International Highway, 36822 Damascus, Syria
| | - Noura H. Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Assiut, Naser City, Assiut 2014101, Egypt
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Matthew Gavino Donadu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy
- Correspondence: (H.F.H.); (M.G.D.)
| |
Collapse
|
7
|
Abolarinwa TO, Ajose DJ, Oluwarinde BO, Fri J, Montso KP, Fayemi OE, Aremu AO, Ateba CN. Plant-derived nanoparticles as alternative therapy against Diarrheal pathogens in the era of antimicrobial resistance: A review. Front Microbiol 2022; 13:1007115. [PMID: 36590407 PMCID: PMC9797601 DOI: 10.3389/fmicb.2022.1007115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Diarrhea is a condition in which feces is discharged from the bowels frequently and in a liquid form. It is one of the frequent causes of morbidity and mortality in developing countries. The impact of Diarrhea is worsened by the increasing incidence of antimicrobial resistance among the causative agents, and this is now categorized as a global healthcare challenge. Antimicrobial resistance among Diarrheal pathogens also contributes to extended infection durations, and huge economic loss even in countries with advanced public health policies. The ever-increasing incidence of antimicrobial resistance including the contraindications arising from the administration of antibiotics in some Diarrheal cases highlights a crucial need for the development of novel non-antibiotic alternative agents for therapeutic and biocontrol applications. One such intervention includes the application of plant-derived nanoparticles (PDNPs) with novel antimicrobial properties. Given their small size and large surface area to volume ratio, PDNPs can attack target bacterial cell walls to generate reactive oxygen species that may simultaneously disrupt bacteria cell components such as DNA and proteins leading to cell damage or death. This potential can make it very difficult for pathogenic organisms to develop resistance against these antibacterial agents. In this review, we provide a critical overview on the antimicrobial resistance crisis among Diarrheagenic bacteria. We also discuss the evidence from the existing literature to support the potential associated with the use of PDNPs as alternative therapeutic agents for multidrug resistant and antibiotics administer contraindicated bacteria that are associated with Diarrhea.
Collapse
Affiliation(s)
- Tesleem Olatunde Abolarinwa
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Daniel Jesuwenu Ajose
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Bukola Opeyemi Oluwarinde
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Justine Fri
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Kotsoana Peter Montso
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Omolola Esther Fayemi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems Center, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Collins Njie Ateba
- Antimicrobial Resistance and Phage Biocontrol Research Group, Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa,*Correspondence: Collins Njie Ateba,
| |
Collapse
|
8
|
Ye W, Qin M, Qiu R, Li J. Keratin-based wound dressings: From waste to wealth. Int J Biol Macromol 2022; 211:183-197. [PMID: 35513107 DOI: 10.1016/j.ijbiomac.2022.04.216] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Keratin is a natural protein with a high content of cysteine residues (7-13%) and is widely found in hair, wool, horns, hooves, and nails. Keratin possesses abundant cell-binding motifs such as leucine-aspartate-valine (LDV), glutamate-aspartate-serine (EDS), and arginine-glycine-aspartate (RGD), which benefit cell attachment and proliferation. It has been confirmed that keratin plays important roles in every stage of wound healing, including hemostasis, inflammation, proliferation, and remodeling, making keratin-based materials good candidates for wound dressings. In combination with synthetic and natural polymers, keratin-based wound dressings in the forms of films, hydrogels, and nanofibers can be achieved with improved mechanical properties. This review focuses on the recent development of keratin-based wound dressings. Firstly, the physicochemical and biological properties of keratin, are systematically discussed. Secondly, the role of keratin in wound healing is proposed. Thirdly, the applications of keratin-based wound dressings are summarized, in terms of the forms and functionalization. Finally, the current challenges and future development of keratin-based wound dressings are presented.
Collapse
Affiliation(s)
- Wenjin Ye
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065
| | - Rongmin Qiu
- College & Hospital of Stomatology, Guangxi Medical University, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, Guangxi 530021, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China; Med-X Center for Materials, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
9
|
Metal nanoparticles functionalized with nutraceutical Kaempferitrin from edible Crotalaria juncea, exert potent antimicrobial and antibiofilm effects against Methicillin-resistant Staphylococcus aureus. Sci Rep 2022; 12:7061. [PMID: 35487931 PMCID: PMC9055053 DOI: 10.1038/s41598-022-11004-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022] Open
Abstract
Kaempferitrin (KF), a flavonol glycoside, was isolated from the edible plant Crotalaria juncea. Optimization for the synthesis of silver (AgNPs) and copper (CuNPs) nanoparticles using C. juncea extract and kaempferitrin were attempted for the first time. A detailed study on size and stability analysis have been reported. Efficacy of KF@AgNPs and KF@CuNPs against biofilm formation and planktonic mode of growth on methicillin-resistant Staphylococcus aureus (MRSA) along with possible mechanisms has been explored. Release of Cu(II) upon prolonged treatment with KF@CuNPs in the presence of MRSA was quantified through Alizarin red test, indicating the antibacterial effect is initiated by the CuNPs itself. Time kill curve depicted both the NPs have similar kill kinetics to curtail the pathogen and imaging with Crystal violet assay, Fluorescent live dead imaging and SEM analysis revealed a 60% reduction in biofilm formation at the Sub-MIC concentration of KF@AgNPs and KF@CuNPs. Furthermore, the membrane permeability and cell surface hydrophobicity were altered in the presence of both the NPs. The colony count from the in vivo infection zebrafish model in the treatment group showed a decline of > 1.8 fold for KF@AgNPs and > two fold for KF@CuNPs. Toxicity studies did not reveal any abnormality in liver and brain enzyme levels. Liver morphology images show no severe cytological alterations when treated with KF@AgNPs and were almost similar to the normal liver. Thus, KF@AgNPs was nontoxic and caused significant reduction in biofilm formation in MRSA, also reduced bacterial bioburden in the infected zebrafish, which has the potential to be explored in higher animal models.
Collapse
|