1
|
Zhang Y, Gao J, Wang Z, Zhao Y, Liu Y, Zhang H, Zhao M. The responses of microbial metabolic activity, bacterial community and resistance genes under the coexistence of nanoplastics and quaternary ammonium compounds in the sewage environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163064. [PMID: 36966828 DOI: 10.1016/j.scitotenv.2023.163064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Nanoplastics (NPs) and quaternary ammonium compounds (QACs) are frequently detected in sewage. However, little is known about the risks of coexistence of NPs and QACs. In this study, the responses of microbial metabolic activity, bacterial community and resistance genes (RGs) to the exposure of polyethylene (PE), polylactic acid (PLA), silicon dioxide (SiO2) and dodecyl dimethyl benzyl ammonium chloride (DDBAC) were focused on 2nd and 30th day of incubation in sewer environment. Bacterial community contributed 25.01 % to shape RGs and mobile genetic elements (MGEs) after two days of incubation in sewage and plastisphere. After 30 days of incubation, the most important individual factor (35.82 %) was turned to microbial metabolic activity. The metabolic capacity of the microbial communities in plastisphere was stronger than that from SiO2 samples. Moreover, DDBAC inhibited the metabolic capacity of microorganisms in sewage samples, and increased the absolute abundances of 16S rRNA in plastisphere and sewage samples which might be similar to the hormesis effect. After 30 days of incubation, Aquabacterium was the predominant genus in plastisphere. As for SiO2 samples, Brevundimonas was the predominant genus. QACs RGs (qacEdelta1-01, qacEdelta1-02) and antibiotic RGs (ARGs) (aac(6')-Ib, tetG-1) significantly enriched in plastisphere. There was also co-selection among qacEdelta1-01, qacEdelta1-02 and ARGs. In addition, VadinBC27 which enriched in plastisphere of PLA NPs was positively correlated with the potentially disease-causing genus Pseudomonas. It showed that after 30 days of incubation, plastisphere had an important effect on distribution and transfer of pathogenic bacteria and RGs. Plastisphere of PLA NPs also carried the risk of spreading disease.
Collapse
Affiliation(s)
- Yi Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Ying Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Haoran Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Mingyan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Li W, Luo D, Adyel TM, Wu J, Miao L, Kong M, Hou J. Dynamic responses of carbon metabolism of sediment microbial communities to Ag nanoparticles: Effects of the single and repeated exposure scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161891. [PMID: 36731554 DOI: 10.1016/j.scitotenv.2023.161891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The widespread use of nanosilver will inevitably lead to their release into aquatic environment, threating the health of freshwater ecosystem. The toxic effects of silver nanoparticles (AgNPs) on sediment microbial diversity, community composition, and functional enzyme activity are well established, while little is known about how sediment microbes dynamically respond to the stress of different AgNPs exposure scenarios. Herein, microcosm experiments were performed to investigate the impacts of repeated (1 mg/L, applied every 6 days for 10 times) and single (10 mg/L) exposure scenarios of AgNPs on the specific functions of sediment microbes (5-60 days). The carbon metabolism of sediment microbial communities was measured using BIOLOG ECO microplates, and carbon metabolic rate and functional diversity indices were calculated. Compared to control group, the maximum carbon source utilization capacity of the microbial community increased by 6.6 and 15.4 % in the single and repeated exposure group, respectively. And the metabolic rates of sediment microorganisms were significant increased by 6.1 % in the repeated exposure group, which suggested that repetitive low-dosing of AgNPs induce a larger alteration of both capacity and rate of microbial carbon metabolism. Notably, different AgNPs exposure scenarios resulted in a shift in the carbon source preference of the microorganisms. After exposure for 60 days, compared with the controls, the ability to utilize polymers was significantly increased by 51.5 and 21.7 % in the single and repeated exposure groups, respectively, and decreased by 33.7 and 10.5 % in the utilization of miscellaneous, both exhibiting significant differences (P < 0.05), implying that AgNPs exposure scenarios affected the microbial-mediated carbon cycling processes in sediment. These results highlight that different exposure scenarios of AgNPs have different effects on the carbon metabolism capacity of microbial communities, thus affecting the carbon cycling processes in which microorganisms are involved.
Collapse
Affiliation(s)
- Weiyu Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Dan Luo
- Tibet Research Academy of Eco-environmental Sciences, No. 26, Jinzhen Middle Road, Chengguan District, Lhasa 850030, Tibet Autonomous Region, People's Republic of China
| | - Tanveer M Adyel
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne, VIC 3125, Australia
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, People's Republic of China.
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
3
|
Matsui K, Miki T. Microbial community composition and function in an urban waterway with combined sewer overflows before and after implementation of a stormwater storage pipe. PeerJ 2023; 11:e14684. [PMID: 36650829 PMCID: PMC9840855 DOI: 10.7717/peerj.14684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023] Open
Abstract
When the wastewater volume exceeds the sewer pipe capacity during extreme rainfall events, untreated sewage discharges directly into rivers as combined sewer overflow (CSO). To compare the impacts of CSOs and stormwater on urban waterways, we assessed physicochemical water quality, the 16S rRNA gene-based bacterial community structure, and EcoPlate-based microbial functions during rainfall periods in an urban waterway before and after a stormwater storage pipe was commissioned. A temporal variation analysis showed that CSOs have significant impacts on microbial function and bacterial community structure, while their contributions to physicochemical parameters, bacterial abundance, and chlorophyll a were not confirmed. Heat map analysis showed that the impact of CSO on the waterway bacterial community structure was temporal and the bacterial community composition in CSO is distinct from that in sewers. Hierarchical clustering analysis revealed that the waterway physicochemical water qualities, bacterial community composition, and microbial community function were distinguishable from the upper reach of the river, rather than between CSO and stormwater. Changes in the relative abundance of tetracycline resistance (tet) genes-especially tet(M)-were observed after CSOs but did not coincide with changes in the microbial community composition, suggesting that the parameters affecting the microbial community composition and relative abundance of tet genes differ. After pipe implementation, however, stormwater did not contribute to the abundance of tet genes in the waterway. These results indicate that CSO-induced acute microbial disturbances in the urban waterway were alleviated by the implementation of a stormwater storage pipe and will support the efficiency of storage pipe operation for waterway management in urban areas.
Collapse
Affiliation(s)
- Kazuaki Matsui
- Department of Civil and Environmental Engineering, Kindai University, Higashiosaka, Japan
| | - Takeshi Miki
- Faculty of Advanced Science and Technology, Ryukoku University, Otsu, Shiga, Japan
| |
Collapse
|
4
|
Cheng WH, Hsieh CH, Chang CW, Shiah FK, Miki T. New index of functional specificity to predict the redundancy of ecosystem functions in microbial communities. FEMS Microbiol Ecol 2022; 98:6585974. [PMID: 35568503 DOI: 10.1093/femsec/fiac058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022] Open
Abstract
An ecosystem function is suggested to be more sensitive to biodiversity loss (i.e. low functional redundancy) when focusing on specific-type functions than broad-type functions. Thus far, specific-type functions have been loosely defined as functions performed by a small number of species (facilitative species) or functions involved in utilizing complex substrates. However, quantitative examination of functional specificity remains underexplored. We quantified the functional redundancy of 33 ecosystem functions in a freshwater system from 76 prokaryotic community samples over three years. For each function, we used a sparse regression model to estimate the number of facilitative Amplicon Sequence Variants (ASVs) and to define taxon-based functional specificity. We also used Bertz structural complexity to determine substrate-based functional specificity. We found that functional redundancy increased with the taxon-based functional specificity defined as the proportion of facilitative ASVs ( = facilitative ASV richness/ facilitative ASV richness + repressive ASV (ASVs reducing functioning) richness). When using substrate-based functional specificity, functional redundancy was influenced by Bertz complexity per se and by substrate acquisition mechanisms. Therefore, taxon-based functional specificity is a better predictive index for evaluating functional redundancy than substrate-based functional specificity. These findings provide a framework to quantitatively predict the consequences of diversity losses on ecosystem functioning.
Collapse
Affiliation(s)
- Wan-Hsuan Cheng
- Taiwan International Graduate Program (TIGP)-Earth System Science Program, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program (TIGP)-Earth System Science Program, National Central University, Taoyuan, Taiwan
| | - Chih-Hao Hsieh
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan.,Institute of Ecology and Evolutionary Biology, Department of Life Science, National Taiwan University, Taipei, Taiwan.,Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan.,National Center for Theoretical Sciences, Taipei, Taiwan
| | - Chun-Wei Chang
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan.,National Center for Theoretical Sciences, Taipei, Taiwan
| | - Fuh-Kwo Shiah
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Takeshi Miki
- Department of Environmental Solution Technology, Faculty of Science and Technology, Ryukoku University, Seta, Shiga, Japan
| |
Collapse
|
5
|
Nakamura M, Terada C, Ito K, Matsui K, Niwa S, Ishihara M, Kenta T, Yoshikawa T, Kadoya T, Hiura T, Muraoka H, Ishida K, Agetsuma N, Nakamura R, Sakio H, Takagi M, Mori AS, Kimura MK, Kurokawa H, Enoki T, Seino T, Takashima A, Kobayashi H, Matsumoto K, Takahashi K, Tateno R, Yoshida T, Nakaji T, Maki M, Kobayashi K, Fukuzawa K, Hoshizaki K, Ohta K, Kobayashi K, Hasegawa M, Suzuki SN, Sakimoto M, Kitagawa Y, Sakai A, Kondo H, Ichie T, Kageyama K, Hieno A, Kato S, Otani T, Utsumi Y, Kume T, Homma K, Kishimoto K, Masaka K, Watanabe K, Toda M, Nagamatsu D, Miyazaki Y, Yamashita T, Tokuchi N. Evaluating the soil microbe community‐level physiological profile using
EcoPlate
and soil properties at 33 forest sites across Japan. Ecol Res 2022. [DOI: 10.1111/1440-1703.12293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Masahiro Nakamura
- Wakayama Experimental Forest, Field Science Center for Northern Biosphere Hokkaido University Wakayama Japan
| | - Chisato Terada
- Wakayama Experimental Forest, Field Science Center for Northern Biosphere Hokkaido University Wakayama Japan
| | - Kinya Ito
- Wakayama Experimental Forest, Field Science Center for Northern Biosphere Hokkaido University Wakayama Japan
| | - Kazuaki Matsui
- Department of Civil and Environmental Engineering Kindai University Osaka Japan
| | | | - Masae Ishihara
- Field Science Education and Research Center, Kyoto University Kyoto Japan
| | - Tanaka Kenta
- Sugadaira Research Station, Mountain Science Center University of Tsukuba Ibaraki Japan
| | - Tetsuro Yoshikawa
- Biodiversity Division National Institute for Environmental Studies Tsukuba Ibaraki Japan
| | - Taku Kadoya
- Biodiversity Division National Institute for Environmental Studies Tsukuba Ibaraki Japan
| | - Tsutom Hiura
- Department of Ecosystem Studies The University of Tokyo Tokyo Japan
| | - Hiroyuki Muraoka
- River Basin Research Center, Gifu University, Tokai National Higher Education and Research System Gifu Japan
| | - Ken Ishida
- Amami Ecosystem Research Group Kagoshima Japan
| | - Naoki Agetsuma
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere Hokkaido University Sapporo Hokkaido Japan
| | - Ryosuke Nakamura
- Research Institute for Sustainable Humanosphere Kyoto University Uji Japan
| | - Hitoshi Sakio
- Sado Island Center for Ecological Sustainability Niigata University Niigata Japan
| | - Masahiro Takagi
- Faculty of Agriculture University of Miyazaki Miyazaki Japan
| | - Akira S. Mori
- Graduate School of Environment and Information Sciences, Yokohama National University Yokohama Kanagawa Japan
| | - Megumi K. Kimura
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute Ibaraki Japan
| | - Hiroko Kurokawa
- Forestry and Forest Products Research Institute Ibaraki Japan
| | - Tsutomu Enoki
- Kasuya Resarch Forest, Faculty of Agriculture Kyushu University Fukuoka Japan
| | - Tatsuyuki Seino
- Yatsugatake Forest Station, Mountain Science Center University of Tsukuba Nagano Japan
| | - Atsushi Takashima
- Yona Field, Subtropical Field Scienece Center, Faculty of Agriculture University of the Ryukyus Okinawa Japan
| | | | | | | | - Ryunosuke Tateno
- Field Science Education and Research Center, Kyoto University Kyoto Japan
| | - Tomohiro Yoshida
- Faculty of Agriculture Tokyo University of Agriculture and Technology Tokyo Japan
| | - Tatsuro Nakaji
- Uryu Experimental Forest, Field Science Center for Northern Biosphere Hokkaido University Sapporo Hokkaido Japan
| | - Masayuki Maki
- Botanical Gardens, Tohoku University Sendai Miyagi Japan
| | | | - Karibu Fukuzawa
- Nakagawa Experimental Forest, Field Science Center for Northern Biosphere Hokkaido University Sapporo Hokkaido Japan
| | - Kazuhiko Hoshizaki
- Faculty of Bioresource Sciences Akita Prefectural University Akita Japan
| | - Kazuhide Ohta
- Faculty of Bioresource Sciences Akita Prefectural University Akita Japan
| | - Keito Kobayashi
- Graduate School of Agriculture, Kyoto University Kyoto Japan
- Kansai Research Center, Forestry and Forest Products Research Institute Kyoto Japan
| | | | - Satoshi N. Suzuki
- The University of Tokyo Hokkaido Forest, The University of Tokyo Furano Japan
| | - Michinori Sakimoto
- Field Science Education and Research Center, Kyoto University Kyoto Japan
| | - Yoichiro Kitagawa
- Field Science Education and Research Center, Kyoto University Kyoto Japan
| | - Akiko Sakai
- Graduate School of Environment and Information Sciences, Yokohama National University Yokohama Kanagawa Japan
| | - Hirofumi Kondo
- Graduate School of Environment and Information Sciences, Yokohama National University Yokohama Kanagawa Japan
| | - Tomoaki Ichie
- Faculty of Agriculture and Marine Science Graduate School of Integrated Arts and Sciences, Kochi University Kochi Kochi Japan
| | - Koji Kageyama
- River Basin Research Center, Gifu University, Tokai National Higher Education and Research System Gifu Japan
| | - Ayaka Hieno
- River Basin Research Center, Gifu University, Tokai National Higher Education and Research System Gifu Japan
| | - Shogo Kato
- Faculty of Applied Biological Sciences Gifu University, Tokai National Higher Education and Research System Gifu Japan
| | - Tatsuya Otani
- Shikoku Research Center, Forestry and Forest Products Research Institute Kochi Kochi Japan
| | - Yasuhiro Utsumi
- Ashoro Research Forest, Faculty of Agriculture Kyushu University Ashoro Hokkaido Japan
| | - Tomonori Kume
- Shiiba Research Forest, Faculty of Agriculture Kyushu University Miyazaki Japan
| | - Kosuke Homma
- Sado Island Center for Ecological Sustainability Niigata University Niigata Japan
| | - Koju Kishimoto
- Ecohydrology Research Institute, The University of Tokyo Forests, Graduate School of Agricultural and Life Sciences, the University of Tokyo Seto Aichi Japan
| | - Kazuhiko Masaka
- Department of Forest Science, Faculty of Agriculture Iwate University Iwate Japan
| | - Kenta Watanabe
- National Institute of Technology, Okinawa College Okinawa Japan
| | - Motomu Toda
- Graduate School of Integrated Sciences for Life, Hiroshima University Higashihiroshima Japan
| | - Dai Nagamatsu
- Faculty of Agriculture Tottori University Tottori Japan
| | - Yuko Miyazaki
- Graduate School of Environmental and Life Science, Okayama University Okayama Japan
| | - Tamon Yamashita
- Education and Research Center for Biological Resources, Faculty of Life and Environmental Sciences Shimane University Matsue Shimane Japan
| | - Naoko Tokuchi
- Field Science Education and Research Center, Kyoto University Kyoto Japan
| |
Collapse
|
6
|
Brandstaetter C, Fricko N, Rahimi MJ, Fellner J, Ecker-Lala W, Druzhinina IS. The microbial metabolic activity on carbohydrates and polymers impact the biodegradability of landfilled solid waste. Biodegradation 2021; 33:71-85. [PMID: 34812990 PMCID: PMC8803693 DOI: 10.1007/s10532-021-09967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022]
Abstract
Biological waste degradation is the main driving factor for landfill emissions. In a 2-year laboratory experiment simulating different landfill in-situ aeration scenarios, the microbial degradation of solid waste under different oxygen conditions (treatments) was investigated. Nine landfill simulation reactors were operated in triplicates under three distinct treatments. Three were kept anaerobic, three were aerated for 706 days after an initial anaerobic phase and three were aerated for 244 days in between two anaerobic phases. In total, 36 solid and 36 leachate samples were taken. Biolog® EcoPlates™ were used to assess the functional diversity of the microbial community. It was possible to directly relate the functional diversity to the biodegradability of MSW (municipal solid waste), measured as RI4 (respiration index after 4 days). The differences between the treatments in RI4 as well as in carbon and polymer degradation potential were small. Initially, a RI4 of about 6.5 to 8 mg O2 kg-1 DW was reduced to less than 1 mg O2 kg-1 DW within 114 days of treatment. After the termination of aeration, an increase 3 mg O2 kg-1 DW was observed. By calculating the integral of the Gompertz equation based on spline interpolation of the Biolog® EcoPlates™ results after 96 h two substrate groups mainly contributing to the biodegradability were identified: carbohydrates and polymers. The microbial activity of the respective microbial consortium could thus be related to the biodegradability with a multilinear regression model.
Collapse
Affiliation(s)
- Christian Brandstaetter
- Research Unit Waste and Resource Management, Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/226.2, 1040, Vienna, Austria.,Institute of Computer Science, University of Applied Sciences Wiener Neustadt, Johannes-Gutenberg-Straße 3, 2700, Wiener Neustadt, Austria
| | - Nora Fricko
- Research Unit Waste and Resource Management, Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/226.2, 1040, Vienna, Austria
| | - Mohammad J Rahimi
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Gumpendorferstrasse 1a, 1060, Vienna, Austria
| | - Johann Fellner
- Research Unit Waste and Resource Management, Institute for Water Quality and Resource Management, TU Wien, Karlsplatz 13/226.2, 1040, Vienna, Austria
| | - Wolfgang Ecker-Lala
- Institute of Computer Science, University of Applied Sciences Wiener Neustadt, Johannes-Gutenberg-Straße 3, 2700, Wiener Neustadt, Austria
| | - Irina S Druzhinina
- Institute of Chemical, Environmental and Bioscience Engineering (ICEBE), TU Wien, Gumpendorferstrasse 1a, 1060, Vienna, Austria.,Key Laboratory of Plant Immunity, Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, People's Republic of China
| |
Collapse
|
7
|
Masigol H, Woodhouse JN, van West P, Mostowfizadeh-Ghalamfarsa R, Rojas-Jimenez K, Goldhammer T, Khodaparast SA, Grossart HP. Phylogenetic and Functional Diversity of Saprolegniales and Fungi Isolated from Temperate Lakes in Northeast Germany. J Fungi (Basel) 2021; 7:jof7110968. [PMID: 34829255 PMCID: PMC8622742 DOI: 10.3390/jof7110968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/02/2021] [Accepted: 11/10/2021] [Indexed: 01/28/2023] Open
Abstract
The contribution of fungi to the degradation of plant litter and transformation of dissolved organic matter (humic substances, in particular) in freshwater ecosystems has received increasing attention recently. However, the role of Saprolegniales as one of the most common eukaryotic organisms is rarely studied. In this study, we isolated and phylogenetically placed 51 fungal and 62 Saprolegniales strains from 12 German lakes. We studied the cellulo-, lignino-, and chitinolytic activity of the strains using plate assays. Furthermore, we determined the capacity of 10 selected strains to utilize 95 different labile compounds, using Biolog FF MicroPlates™. Finally, the ability of three selected strains to utilize maltose and degrade/produce humic substances was measured. Cladosporium and Penicillium were amongst the most prevalent fungal strains, while Saprolegnia, Achlya, and Leptolegnia were the most frequent Saprolegniales strains. Although the isolated strains assigned to genera were phylogenetically similar, their enzymatic activity and physiological profiling were quite diverse. Our results indicate that Saprolegniales, in contrast to fungi, lack ligninolytic activity and are not involved in the production/transformation of humic substances. We hypothesize that Saprolegniales and fungi might have complementary roles in interacting with dissolved organic matter, which has ecological implications for carbon cycling in freshwater ecosystems.
Collapse
Affiliation(s)
- Hossein Masigol
- Experimental Limnology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), 16775 Neuglobsow, Germany; (H.M.); (J.N.W.)
| | - Jason Nicholas Woodhouse
- Experimental Limnology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), 16775 Neuglobsow, Germany; (H.M.); (J.N.W.)
| | - Pieter van West
- Aberdeen Oomycete Laboratory, International Centre for Aquaculture Research and Development (ICARD), Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK;
| | | | | | - Tobias Goldhammer
- Department of Ecohydrology and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany;
| | - Seyed Akbar Khodaparast
- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht 41996-13776, Iran;
| | - Hans-Peter Grossart
- Experimental Limnology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), 16775 Neuglobsow, Germany; (H.M.); (J.N.W.)
- Institute for Biochemistry and Biology, Potsdam University, 14469 Potsdam, Germany
- Correspondence: ; Tel.: +49-(0)33082-699-91
| |
Collapse
|
8
|
Xie G, Tang X, Shao K, Zhu G, Gao G. Bacterial diversity, community composition and metabolic function in Lake Tianmuhu and its dammed river: Effects of domestic wastewater and damming. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112069. [PMID: 33631636 DOI: 10.1016/j.ecoenv.2021.112069] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/30/2020] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Anthropogenic disturbances, such as pollution discharge and damming, can lead to a global decline in biodiversity in aquatic ecosystems. However, how such disturbances affect microbial community composition and function remains poorly understood. In November 2019, we explored bacterial diversity, community composition and metabolic function in Lake Tianmuhu, China, and in its upstream dammed river, using Illumina MiSeq sequencing and Biolog EcoPlate method based on carbon source utilization. Our results revealed higher variations in bacterial α- and β-diversity in the dammed river ecosystem than in the lake ecosystem. In addition, the dammed river and lake ecosystems were significantly different in bacterial community compositions and metabolic structures. No significant relationship between species richness and functional (metabolic) diversity was observed in this study. The site that was most impacted by domestic wastewater had the lowest taxonomic diversity but highest metabolic capacity and activity, suggesting that community composition rather than species diversity is more important in determining ecosystem functioning. Overall, our findings indicate that anthropogenic disturbances can significantly alter bacterial community and function, and taxonomic diversity is a weak proxy for ecosystem functioning in a natural freshwater habitat.
Collapse
Affiliation(s)
- Guijuan Xie
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guangwei Zhu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Miao L, Yu Y, Adyel TM, Wang C, Liu Z, Liu S, Huang L, You G, Meng M, Qu H, Hou J. Distinct microbial metabolic activities of biofilms colonizing microplastics in three freshwater ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123577. [PMID: 32795819 DOI: 10.1016/j.jhazmat.2020.123577] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 05/21/2023]
Abstract
Concerns are growing about the increasing amounts of microplastics (MPs) and their ecological impacts, especially the influences of "plastisphere" in the freshwater ecosystems. Although the microbial structure and composition of biofilms are investigated, knowledge of their microbial functions remains limited. Herein, we investigated the functional diversity of carbon metabolism in biofilms colonizing one inert (glass) and two MPs as polyvinyl chloride (PVC) and polyethylene terephthalate (PET) substrates incubated for 44 days in situ in the Niushoushan River, the Qinhuai River, and Donghu Lake. 2D confocal laser scanning microscopy images visualized distinct micro-structures and biofilm compositions on three substrates. BIOLOG ECO microplates indicated variation on carbon utilization capacities of biofilms of inert and MPs in three freshwater ecosystems. Biofilms on PET showed lower capacities and carbon metabolism rates than those on glass and PVC, indicating the presence of substrate-specific functional diversity. The Shannon-Wiener diversity, Simpson diversity and Shannon evenness indices for the Niushoushan River and Donghu Lake were ordered as glass > PVC > PET. Besides to MPs-specific factors, environmental factors including nutrient (i.e., TN and TP) and turbidity largely shaped biofilm carbon metabolism. Overall findings demonstrated that as specific niches, MPs influenced microbial-mediated carbon cycling in the freshwater ecosystems and MPs-promoted microbial communities posed ecological significance.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Yue Yu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Tanveer M Adyel
- Department of Civil Engineering, Monash University, 23 College Walk, Clayton, VIC, 3800, Australia
| | - Chengqian Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Zhilin Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Songqi Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Liuyan Huang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Meng Meng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Hao Qu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| |
Collapse
|
10
|
Abstract
Riparian forests were frequently cleared and converted to agricultural pastures, but in recent times these pastures are often revegetated in an effort to return riparian forest structure and function. We tested if there is a change in the soil bacterial taxonomy and function in areas of riparian forest cleared for agricultural pasture then revegetated, and if soil bacterial taxonomy and function is related to vegetation and soil physicochemical properties. The study was conducted in six riparian areas in south-eastern Australia, each comprising of three land-use types: remnant riparian forest, cleared forest converted to pasture, and revegetated pastures. We surveyed three strata of vegetation and sampled surface soil and subsoil to characterize physicochemical properties. Taxonomic and functional composition of soil bacterial communities were assessed using 16S rRNA gene sequences and community level physiological profiles, respectively. Few soil physiochemical properties differed with land use despite distinct vegetation in pasture relative to remnant and revegetated areas. Overall bacterial taxonomic and functional composition of remnant forest and revegetated soils were distinct from pasture soil. Land-use differences were not consistent for all bacterial phyla, as Acidobacteria were more abundant in remnant soils; conversely, Actinobacteria were more abundant in pasture soils. Overall, bacterial metabolic activity and soil carbon and nitrogen content decreased with soil depth, while bacterial metabolic diversity and evenness increased with soil depth. Soil bacterial taxonomic composition was related to soil texture and soil fertility, but functional composition was only related to soil texture. Our results suggest that the conversion of riparian forests to pasture is associated with significant changes in the soil bacterial community, and that revegetation contributes to reversing such changes. Nevertheless, the observed changes in bacterial community composition (taxonomic and functional) were not directly related to changes in vegetation but were more closely related to soil attributes.
Collapse
|
11
|
Miao L, Wang C, Adyel TM, Wu J, Liu Z, You G, Meng M, Qu H, Huang L, Yu Y, Hou J. Microbial carbon metabolic functions of biofilms on plastic debris influenced by the substrate types and environmental factors. ENVIRONMENT INTERNATIONAL 2020; 143:106007. [PMID: 32763634 DOI: 10.1016/j.envint.2020.106007] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
As an artificial type of microbial carrier, plastic debris has been widely detected in freshwater habitats, and the potential impacts of the plastisphere (biofilms colonized on plastics) in aquatic ecosystems have drawn increasing attention. Distinct community compositions and structures of biofilms in plastic and natural substrates have been recorded in freshwater environments. However, the microbial metabolic functioning of the plastisphere was underestimated, especially in freshwater environments. In this study, the effects of substrate types on the carbon metabolic functions of biofilms were studied by in situ cultivation of biofilms on plastics (polyvinyl chloride, PVC and polyethylene, PE) and natural substrate (cobblestone) for 44 days in two rivers (the Niushoushan River and the Qinhuai River) and two lakes (Donghu Lake and Xuanwu Lake). Biofilms on plastics showed higher biomasses than those on natural substrates in all ecosystems. Variations in the micro-structure and compactness of biofilms developed under different substrates were observed from scanning electron microscope and confocal laser scanning microscope image analyses. The carbon metabolic activities of the biofilms evaluated by BIOLOG EcoPlate were different between plastics (PVC and PE) and natural substrate (cobblestone) in the four freshwater ecosystems. In the Niushoushan River, PE-associated biofilms had different capacity in using carbon sources from cobblestone-associated biofilms as illustrated by the Shannon-Wiener diversity index and Shannon evenness index. Additionally, the metabolic functional diversity profiles of biofilms on PVC were significantly different from those on cobblestone in the other three aquatic ecosystems. Moreover, results from variation partitioning analysis suggested that the impact of environmental factors (contribution: 21%) on microbial carbon metabolic functions was much greater than that of substrate types (contribution: 6%). These findings illustrated distinct microbial functions of biofilms inhabited on plastics, and environmental factors play a decisive role in the differentiation and specificity of carbon metabolism of the plastisphere. This study offers new insights that plastics serving as artificial microbial niches have the ability to affect the microbial-mediated carbon cycling process in aquatic ecosystems.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Chengqian Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Tanveer M Adyel
- Department of Civil Engineering, Monash University, 23 College Walk, Clayton, VIC 3800, Australia
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Zhilin Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Meng Meng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Hao Qu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Liuyan Huang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yue Yu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| |
Collapse
|
12
|
Agnelo L, Leonel LP, Silva NB, Candello FP, Schneider J, Tonetti AL. Effects of wastewater disinfectants on the soil: Implications for soil microbial and chemical attributes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136007. [PMID: 31846886 DOI: 10.1016/j.scitotenv.2019.136007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
In most cases, chlorination is used for effluent disinfection. However, this process can lead to the formation of byproducts hazardous to the environment and public health. Therefore, new disinfectants, such as calcium hypochlorite (CH) and peracetic acid (PAA), were investigated as alternatives. This study aimed at determining doses of the disinfectants PAA and CH to be applied to the soil and analyzing the possible changes in the major chemical and microbiological attributes of the soil, thus encouraging the practice of reusing wastewater in agriculture. Initially, toxicity bioassays were conducted with lettuce (Lactuca sativa L.) seeds in order to determine which concentrations affected germination and also which would be analyzed. From these trials, three concentrations of each disinfectant were chosen to be subjected to basal respiration, microbial biomass carbon and metabolic quotient analyses. Doses of 3, 5 and 10 mg L-1 were used for PAA, and concentrations of 25, 32 and 64 mg L-1 for CH. Thus, it was observed that the greater concentration of each disinfectant provided a significant increase in the metabolic potential of microorganisms. However, it was observed that PAA increased ecotoxicity besides promoting changes in the chemical attributes of the soil, compared to CH. On the other hand, concentrations of 3 mg L-1 and 25 mg L-1 of PAA and CH, respectively, did not cause large impacts and could be an alternative in effluent disinfection with the aim of recycling it in agriculture.
Collapse
Affiliation(s)
- Lucas Agnelo
- School of Civil Engineering, Architecture and Urbanism - FEC, at UNICAMP (State University of Campinas), Avenida Albert Einstein, 951, Cidade Universitária "Zeferino Vaz", P.O. Box 6021, 13083-852 Campinas, SP, Brazil
| | - Lays Paulino Leonel
- School of Civil Engineering, Architecture and Urbanism - FEC, at UNICAMP (State University of Campinas), Avenida Albert Einstein, 951, Cidade Universitária "Zeferino Vaz", P.O. Box 6021, 13083-852 Campinas, SP, Brazil
| | - Noely Bochi Silva
- School of Civil Engineering, Architecture and Urbanism - FEC, at UNICAMP (State University of Campinas), Avenida Albert Einstein, 951, Cidade Universitária "Zeferino Vaz", P.O. Box 6021, 13083-852 Campinas, SP, Brazil
| | - Fernando Pena Candello
- School of Civil Engineering, Architecture and Urbanism - FEC, at UNICAMP (State University of Campinas), Avenida Albert Einstein, 951, Cidade Universitária "Zeferino Vaz", P.O. Box 6021, 13083-852 Campinas, SP, Brazil
| | - Jerusa Schneider
- Department of Geology and Natural Resources, Institute of Geosciences, University of Campinas, 13083-855, Campinas, SP, Brazil
| | - Adriano Luiz Tonetti
- School of Civil Engineering, Architecture and Urbanism - FEC, at UNICAMP (State University of Campinas), Avenida Albert Einstein, 951, Cidade Universitária "Zeferino Vaz", P.O. Box 6021, 13083-852 Campinas, SP, Brazil.
| |
Collapse
|