1
|
Duperray M, Hardet F, Henriet E, Saint-Marc C, Boué-Grabot E, Daignan-Fornier B, Massé K, Pinson B. Purine Biosynthesis Pathways Are Required for Myogenesis in Xenopus laevis. Cells 2023; 12:2379. [PMID: 37830593 PMCID: PMC10571971 DOI: 10.3390/cells12192379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Purines are required for fundamental biological processes and alterations in their metabolism lead to severe genetic diseases associated with developmental defects whose etiology remains unclear. Here, we studied the developmental requirements for purine metabolism using the amphibian Xenopus laevis as a vertebrate model. We provide the first functional characterization of purine pathway genes and show that these genes are mainly expressed in nervous and muscular embryonic tissues. Morphants were generated to decipher the functions of these genes, with a focus on the adenylosuccinate lyase (ADSL), which is an enzyme required for both salvage and de novo purine pathways. adsl.L knockdown led to a severe reduction in the expression of the myogenic regulatory factors (MRFs: Myod1, Myf5 and Myogenin), thus resulting in defects in somite formation and, at later stages, the development and/or migration of both craniofacial and hypaxial muscle progenitors. The reduced expressions of hprt1.L and ppat, which are two genes specific to the salvage and de novo pathways, respectively, resulted in similar alterations. In conclusion, our data show for the first time that de novo and recycling purine pathways are essential for myogenesis and highlight new mechanisms in the regulation of MRF gene expression.
Collapse
Affiliation(s)
- Maëlle Duperray
- Institut de Biochimie et Génétique Cellulaires, CNRS, UMR 5095, Université de Bordeaux, F-33000 Bordeaux, France
| | - Fanny Hardet
- CNRS, IMN, UMR 5293, Université de Bordeaux, F-33000 Bordeaux, France
| | - Elodie Henriet
- CNRS, IMN, UMR 5293, Université de Bordeaux, F-33000 Bordeaux, France
| | - Christelle Saint-Marc
- Institut de Biochimie et Génétique Cellulaires, CNRS, UMR 5095, Université de Bordeaux, F-33000 Bordeaux, France
| | - Eric Boué-Grabot
- CNRS, IMN, UMR 5293, Université de Bordeaux, F-33000 Bordeaux, France
| | - Bertrand Daignan-Fornier
- Institut de Biochimie et Génétique Cellulaires, CNRS, UMR 5095, Université de Bordeaux, F-33000 Bordeaux, France
| | - Karine Massé
- CNRS, IMN, UMR 5293, Université de Bordeaux, F-33000 Bordeaux, France
| | - Benoît Pinson
- Institut de Biochimie et Génétique Cellulaires, CNRS, UMR 5095, Université de Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
2
|
Mancinelli R, Fanò-Illic G, Pietrangelo T, Fulle S. Guanosine-Based Nucleotides, the Sons of a Lesser God in the Purinergic Signal Scenario of Excitable Tissues. Int J Mol Sci 2020; 21:ijms21051591. [PMID: 32111063 PMCID: PMC7084674 DOI: 10.3390/ijms21051591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/28/2022] Open
Abstract
Purines are nitrogen compounds consisting mainly of a nitrogen base of adenine (ABP) or guanine (GBP) and their derivatives: nucleosides (nitrogen bases plus ribose) and nucleotides (nitrogen bases plus ribose and phosphate). These compounds are very common in nature, especially in a phosphorylated form. There is increasing evidence that purines are involved in the development of different organs such as the heart, skeletal muscle and brain. When brain development is complete, some purinergic mechanisms may be silenced, but may be reactivated in the adult brain/muscle, suggesting a role for purines in regeneration and self-repair. Thus, it is possible that guanosine-5′-triphosphate (GTP) also acts as regulator during the adult phase. However, regarding GBP, no specific receptor has been cloned for GTP or its metabolites, although specific binding sites with distinct GTP affinity characteristics have been found in both muscle and neural cell lines. Finally, even if the cross regulation mechanisms between the two different purines (ABP and GBP) are still largely unknown, it is now possible to hypothesize the existence of specific signal paths for guanosine-based nucleotides that are capable of modulating the intensity and duration of the intracellular signal, particularly in excitable tissues such as brain and muscle.
Collapse
Affiliation(s)
- Rosa Mancinelli
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (T.P.)
- Interuniversity Institute of Miology (IIM), 66100 Chieti, Italy;
| | - Giorgio Fanò-Illic
- Interuniversity Institute of Miology (IIM), 66100 Chieti, Italy;
- Libera Università di Alcatraz, Santa Cristina di Gubbio, 06024 Gubbio, Italy
| | - Tiziana Pietrangelo
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (T.P.)
- Interuniversity Institute of Miology (IIM), 66100 Chieti, Italy;
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (T.P.)
- Interuniversity Institute of Miology (IIM), 66100 Chieti, Italy;
- Correspondence:
| |
Collapse
|
3
|
Bosutti A, Bernareggi A, Massaria G, D'Andrea P, Taccola G, Lorenzon P, Sciancalepore M. A "noisy" electrical stimulation protocol favors muscle regeneration in vitro through release of endogenous ATP. Exp Cell Res 2019; 381:121-128. [PMID: 31082374 DOI: 10.1016/j.yexcr.2019.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 02/04/2023]
Abstract
An in vitro system of electrical stimulation was used to explore whether an innovative "noisy" stimulation protocol derived from human electromyographic recordings (EMGstim) could promote muscle regeneration. EMGstim was delivered to cultured mouse myofibers isolated from Flexor Digitorum Brevis, preserving their satellite cells. In response to EMGstim, immunostaining for the myogenic regulatory factor myogenin, revealed an increased percentage of elongated myogenin-positive cells surrounding the myofibers. Conditioned medium collected from EMGstim-treated cell cultures, promoted satellite cells differentiation in unstimulated myofiber cell cultures, suggesting that extracellular soluble factors could mediate the process. Interestingly, the myogenic effect of EMGstim was mimicked by exogenously applied ATP (0.1 μM), reduced by the ATP diphosphohydrolase apyrase and prevented by blocking endogenous ATP release with carbenoxolone. In conclusion, our results show that "noisy" electrical stimulations favor muscle progenitor cell differentiation most likely via the release of endogenous ATP from contracting myofibres. Our data also suggest that "noisy" stimulation protocols could be potentially more efficient than regular stimulations to promote in vivo muscle regeneration after traumatic injury or in neuropathological diseases.
Collapse
Affiliation(s)
- Alessandra Bosutti
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy
| | - Annalisa Bernareggi
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy
| | - Gabriele Massaria
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy; Area Science Park, Padriciano, 99, I-34149, Trieste, Italy
| | - Paola D'Andrea
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy
| | - Giuliano Taccola
- Department of Neuroscience, SISSA, Via Bonomea 265, 34136, Trieste, Italy; SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR), Via Gervasutta 48, 33100, Udine, Italy
| | - Paola Lorenzon
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy
| | - Marina Sciancalepore
- Department of Life Sciences and Centre for Neuroscience B.R.A.I.N., University of Trieste, Via A. Fleming 22, I-34127, Trieste, Italy.
| |
Collapse
|
4
|
Pietrangelo T, Di Filippo ES, Locatelli M, Piacenza F, Farina M, Pavoni E, Di Donato A, Innosa D, Provinciali M, Fulle S. Extracellular Guanosine 5'-Triphosphate Induces Human Muscle Satellite Cells to Release Exosomes Stuffed With Guanosine. Front Pharmacol 2018; 9:152. [PMID: 29615899 PMCID: PMC5865081 DOI: 10.3389/fphar.2018.00152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/13/2018] [Indexed: 11/13/2022] Open
Abstract
The extracellular guanosine 5'-triphosphate, GTP, has been demonstrated to be an enhancer of myogenic cell differentiation in a murine cell line, not yet in human muscle cells. Our hypothesis was that GTP could influence also human skeletal muscle regeneration, specifically in the first phases. We tested GTP stimulus on human muscle precursor cells established in culture by human satellite cells derived from Vastus Lateralis of three young male. Our data show that extracellular GTP (a) up-regulated miRNA (specifically miR133a and miR133b) and myogenic regulator factor and (b) induces human myogenic precursor cells to release exosomes stuffed with guanosine based molecules (mainly guanosine) in the extracellular milieu. We think that probably these exosomes could be addressed to influence by means of their content (mainly guanosine) in paracrine or autocrine manner the surrounding cells and/or at distance other muscles or tissues.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Dipartimento Neuroscienze Imaging and Scienze Cliniche, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Ester S Di Filippo
- Dipartimento Neuroscienze Imaging and Scienze Cliniche, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Marcello Locatelli
- Dipartimento di Farmacia, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Francesco Piacenza
- IRCCS-Istituto Nazionale di Riposo e Cura per Anziani, Polo Scientifico e Tecnologico, Centro di Tecnologie Avanzate nell'Invecchiamento, Ancona, Italy
| | - Marco Farina
- Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, Ancona, Italy
| | - Eleonora Pavoni
- Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, Ancona, Italy
| | - Andrea Di Donato
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Denise Innosa
- Facoltà di Bioscienze e Tecnologie Agro-Alimentari e Ambientali, Università di Teramo, Teramo, Italy
| | - Mauro Provinciali
- IRCCS-Istituto Nazionale di Riposo e Cura per Anziani, Polo Scientifico e Tecnologico, Centro di Tecnologie Avanzate nell'Invecchiamento, Ancona, Italy
| | - Stefania Fulle
- Dipartimento Neuroscienze Imaging and Scienze Cliniche, Università degli Studi "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| |
Collapse
|
5
|
|
6
|
Ostrovidov S, Hosseini V, Ahadian S, Fujie T, Parthiban SP, Ramalingam M, Bae H, Kaji H, Khademhosseini A. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. TISSUE ENGINEERING. PART B, REVIEWS 2014; 20:403-36. [PMID: 24320971 PMCID: PMC4193686 DOI: 10.1089/ten.teb.2013.0534] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/05/2013] [Indexed: 12/25/2022]
Abstract
Skeletal muscle tissue engineering (SMTE) aims to repair or regenerate defective skeletal muscle tissue lost by traumatic injury, tumor ablation, or muscular disease. However, two decades after the introduction of SMTE, the engineering of functional skeletal muscle in the laboratory still remains a great challenge, and numerous techniques for growing functional muscle tissues are constantly being developed. This article reviews the recent findings regarding the methodology and various technical aspects of SMTE, including cell alignment and differentiation. We describe the structure and organization of muscle and discuss the methods for myoblast alignment cultured in vitro. To better understand muscle formation and to enhance the engineering of skeletal muscle, we also address the molecular basics of myogenesis and discuss different methods to induce myoblast differentiation into myotubes. We then provide an overview of different coculture systems involving skeletal muscle cells, and highlight major applications of engineered skeletal muscle tissues. Finally, potential challenges and future research directions for SMTE are outlined.
Collapse
Affiliation(s)
- Serge Ostrovidov
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Vahid Hosseini
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| | - Samad Ahadian
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Toshinori Fujie
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | | | - Murugan Ramalingam
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg Cedex, France
- Centre for Stem Cell Research, Christian Medical College Campus, Vellore, India
| | - Hojae Bae
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, Republic of Korea
| | - Hirokazu Kaji
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Ali Khademhosseini
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
- Department of Maxillofacial Biomedical Engineering, Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States
- Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Bedreag OH, Rogobete AF, Sărăndan M, Cradigati A, Păpurică M, Roşu OM, Dumbuleu CM, Săndesc D. Oxidative stress and antioxidant therapy in traumatic spinal cord injuries. Rom J Anaesth Intensive Care 2014; 21:123-129. [PMID: 28913444 PMCID: PMC5505350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
Spinal cord injury (SCI) is often accompanied by motor, vegetative and sensitive dysfunctions that can significantly decrease the chance of the complete recovery of the patients. The pathophysiological implication of these dysfunctions is represented by the increased production of the reactive species that are extremely aggressive to the surrounding tissue. The combination of massive production of free radicals, low concentration of antioxidants and the hypermetabolism present in patients with SCI leads to enhancement of the oxidative stress. Current studies are focused on several biological active compounds that are able to reduce the effects of free radicals - tissue necrosis, inflammation, infection, apoptosis. In this paper, the mechanism of the action of several biological active compounds that are able to significantly reduce oxidative stress in critical patients with spinal cord injury is presented.
Collapse
Affiliation(s)
- Ovidiu Horea Bedreag
- Anaesthesia and Intensive Care Clinic, Emergency County Hospital, Timişoara, Romania
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, Timişoara, Romania
| | - Alexandru Florin Rogobete
- Anaesthesia and Intensive Care Clinic, Emergency County Hospital, Timişoara, Romania
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, Timişoara, Romania
- Faculty of Chemistry, Biology, Geography, West University of Timişoara, Romania
| | - Mirela Sărăndan
- Anaesthesia and Intensive Care Clinic, “Casa Austria”, Emergency County Hospital, Timişoara, Romania
| | - Alina Cradigati
- Anaesthesia and Intensive Care Clinic, “Casa Austria”, Emergency County Hospital, Timişoara, Romania
| | - Marius Păpurică
- Anaesthesia and Intensive Care Clinic, Emergency County Hospital, Timişoara, Romania
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, Timişoara, Romania
| | - Oana Maria Roşu
- Anaesthesia and Intensive Care Clinic, “Casa Austria”, Emergency County Hospital, Timişoara, Romania
| | - Corina Maria Dumbuleu
- Anaesthesia and Intensive Care Clinic, Emergency County Hospital, Timişoara, Romania
| | - Dorel Săndesc
- Anaesthesia and Intensive Care Clinic, Emergency County Hospital, Timişoara, Romania
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, Timişoara, Romania
| |
Collapse
|
8
|
New insights into the relationship between mIGF-1-induced hypertrophy and Ca2+ handling in differentiated satellite cells. PLoS One 2014; 9:e107753. [PMID: 25229238 PMCID: PMC4168228 DOI: 10.1371/journal.pone.0107753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/16/2014] [Indexed: 11/19/2022] Open
Abstract
Muscle regeneration involves the activation of satellite cells, is regulated at the genetic and epigenetic levels, and is strongly influenced by gene activation and environmental conditions. The aim of this study was to determine whether the overexpression of mIGF-1 can modify functional features of satellite cells during the differentiation process, particularly in relation to modifications of intracellular Ca2+ handling. Satellite cells were isolated from wild-type and MLC/mIGF-1 transgenic mice. The cells were differentiated in vitro, and morphological analyses, intracellular Ca2+ measurements, and ionic current recordings were performed. mIGF-1 overexpression accelerates satellite cell differentiation and promotes myotube hypertrophy. In addition, mIGF-1 overexpression-induced potentiation of myogenesis triggers both quantitative and qualitative changes to the control of intracellular Ca2+ handling. In particular, the differentiated MLC/mIGF-1 transgenic myotubes have reduced velocity and amplitude of intracellular Ca2+ increases after stimulation with caffeine, KCl and acetylcholine. This appears to be due, at least in part, to changes in the physico-chemical state of the sarcolemma (increased membrane lipid oxidation, increased output currents) and to increased expression of dihydropyridine voltage-operated Ca2+ channels. Interestingly, extracellular ATP and GTP evoke intracellular Ca2+ mobilization to greater extents in the MLC/mIGF-1 transgenic satellite cells, compared to the wild-type cells. These data suggest that these MLC/mIGF-1 transgenic satellite cells are more sensitive to trophic stimuli, which can potentiate the effects of mIGF-1 on the myogenic programme.
Collapse
|
9
|
Mancinelli R, Kern H, Fulle S, Carraro U, Zampieri S, La Rovere R, Fanò G, Pietrangelo T. Transcriptional profile of denervated vastus lateralis muscle derived from a patient 8 months after spinal cord injury: a case-report. Int J Immunopathol Pharmacol 2011; 24:749-59. [PMID: 21978686 DOI: 10.1177/039463201102400321] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A lack of motor neurons abolishes both neurotrophic factor secretion and contractile activity in muscle, which impairs mass, contractile properties, and fibre-type characteristics of the muscle. However, the molecular pathways that can be stimulated or repressed in the scenario of spinal cord injury remain unknown. We investigated for the first time the transcriptional profile of a young male patient 8 months after spinal cord injury. Adaptive metabolic changes of complete denervated skeletal muscle were revealed. In particular, the main molecular pathways involved include metabolic and proteolitic pathways, mitochondrial and synaptic function, calcium homeostasis, sarcomere and anchorage structures. Our data depict the molecular signalling still present in complete denervated skeletal muscle fibres a few months after spinal cord injury. These data could be of interest also to design a specific therapeutic approach aimed at the electrical-stimulation of severe atrophied skeletal muscle.
Collapse
Affiliation(s)
- R Mancinelli
- Department of Neurosciences and Imaging, University of Chieti-Pescara, Chieti, and Interuniversity Institute of Myology, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Mancinelli R, Pietrangelo T, Burnstock G, Fanò G, Fulle S. Transcriptional profile of GTP-mediated differentiation of C2C12 skeletal muscle cells. Purinergic Signal 2011; 8:207-21. [PMID: 22127439 DOI: 10.1007/s11302-011-9266-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 10/03/2011] [Indexed: 02/01/2023] Open
Abstract
Several purine receptors have been localised on skeletal muscle membranes. Previous data support the hypothesis that extracellular guanosine 5'-triphosphate (GTP) is an important regulatory factor in the development and function of muscle tissue. We have previously described specific extracellular binding sites for GTP on the plasma membrane of mouse skeletal muscle (C2C12) cells. Extracellular GTP induces an increase in intracellular Ca(2+) concentrations that results in membrane hyperpolarisation through Ca(2+)-activated K(+) channels, as has been demonstrated by patch-clamp experiments. This GTP-evoked increase in intracellular Ca(2+) is due to release of Ca(2+) from intracellular inositol-1,4,5-trisphosphate-sensitive stores. This enhances the expression of the myosin heavy chain in these C2C12 myoblasts and commits them to fuse into multinucleated myotubes, probably via a phosphoinositide-3-kinase-dependent signal-transduction mechanism. To define the signalling of extracellular GTP as an enhancer or modulator of myogenesis, we investigated whether the gene-expression profile of differentiated C2C12 cells (4 and 24 h in culture) is affected by extracellular GTP. To investigate the nuclear activity and target genes modulated by GTP, transcriptional profile analysis and real-time PCR were used. We demonstrate that in the early stages of differentiation, GTP up-regulates genes involved in different pathways associated with myogenic processes, including cytoskeleton structure, the respiratory chain, myogenesis, chromatin reorganisation, cell adhesion, and the Jak/Stat pathway, and down-regulates the mitogen-activated protein kinase pathway. GTP also increases the expression of three genes involved in myogenesis, Pp3ca, Gsk3b, and Pax7. Our data suggests that in the myogenic C2C12 cell line, extracellular GTP acts as a differentiative factor in the induction and sustaining of myogenesis.
Collapse
Affiliation(s)
- Rosa Mancinelli
- Department of Neuroscience and Imaging, University G. d'Annunzio Chieti-Pescara, Chieti, Italy.
| | | | | | | | | |
Collapse
|
11
|
Ipata PL, Balestri F, Camici M, Tozzi MG. Molecular mechanisms of nucleoside recycling in the brain. Int J Biochem Cell Biol 2010; 43:140-5. [PMID: 20974280 DOI: 10.1016/j.biocel.2010.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/13/2010] [Accepted: 10/15/2010] [Indexed: 01/28/2023]
Abstract
A major role of plasma membrane bound ectonucleotidases is the modulation of ATP, ADP, adenosine (the purinergic agonists), UTP, and UDP (the pyrimidinergic agonists) availability in the extracellular space at their respective receptors. We have recently shown that an ATP driven uridine-UTP cycle is operative in the brain, based on the strictly compartmentalized processes of uridine salvage to UTP and uridine generation from UTP, in which uptaken uridine is anabolized to UTP in the cytosol, and converted back to uridine in the extracellular space by the action of ectonucleotidases (Ipata et al. Int J Biochem Cell Biol 2010;42:932-7). In this paper we show that a similar cytidine-CTP cycle exists in rat brain. Since (i) brain relies on imported preformed nucleosides for the synthesis of nucleotides, RNA, nuclear and mitochondrial DNA, coenzymes, pyrimidine sugar- and lipid-conjugates and (ii) no specific pyrimidinergic receptors have been identified for cytidine and their nucleotides, our results, taken together with previous studies on the intra- and extracellular metabolic network of ATP, GTP, UTP, and their nucleosides in the brain (Barsotti and Ipata. Int J Biochem Cell Biol 2004;36:2214-25; Balestri et al. Neurochem Int 2007;50:517-23), strongly suggest that, apart from the modulation of ligand availability, ectonucleotidases may serve the process of local nucleoside recycling in the brain.
Collapse
Affiliation(s)
- Piero Luigi Ipata
- Dipartimento di Biologia, Unità di Biochimica, Università di Pisa, Via San Zeno, 51, 56127 Pisa, Italy.
| | | | | | | |
Collapse
|
12
|
Guarnieri S, Pilla R, Morabito C, Sacchetti S, Mancinelli R, Fanò G, Mariggiò MA. Extracellular guanosine and GTP promote expression of differentiation markers and induce S-phase cell-cycle arrest in human SH-SY5Y neuroblastoma cells. Int J Dev Neurosci 2008; 27:135-47. [PMID: 19111604 DOI: 10.1016/j.ijdevneu.2008.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 11/04/2008] [Accepted: 11/29/2008] [Indexed: 01/09/2023] Open
Abstract
SH-SY5Y neuroblastoma cells, a model for studying neuronal differentiation, are able to differentiate into either cholinergic or dopaminergic/adrenergic phenotypes depending on media conditions. Using this system, we asked whether guanosine (Guo) or guanosine-5'-triphosphate (GTP) are able to drive differentiation towards one particular phenotype. Differentiation was determined by evaluating the frequency of cells bearing neurites and assessing neurite length after exposure to different concentrations of Guo or GTP for different durations. After 6 days, 0.3 mM Guo or GTP induced a significant increase in the number of cells bearing neurites and increased neurite length. Western blot analyses confirmed that purines induced differentiation; cells exposed to purines showed increases in the levels of GAP43, MAP2, and tyrosine hydroxylase. Proliferation assays and cytofluorimetric analyses indicated a significant anti-proliferative effect of purines, and a concentration-dependent accumulation of cells in S-phase, starting after 24 h of purine exposure and extending for up to 6 days. A transcriptional profile analysis using gene arrays showed that an up-regulation of cyclin E2/cdk2 evident after 24 h was responsible for S-phase entry, and a concurrent down-regulation of cell-cycle progression-promoting cyclin B1/B2 prevented S-phase exit. In addition, patch-clamp recordings revealed that 0.3 mM Guo or GTP, after 6 day incubation, significantly decreased Na(+) currents. In conclusion, we showed Guo- and GTP-induced cell-cycle arrest in neuroblastoma cells and suggest that this makes these cells more responsive to differentiation processes that favor the dopaminergic/adrenergic phenotype.
Collapse
Affiliation(s)
- S Guarnieri
- Dipartamento Scienze Mediche di Base ed Applicate Università G. d'Annunzio, Chieti, Italy
| | | | | | | | | | | | | |
Collapse
|