1
|
Carracedo S, Launay A, Dechelle-Marquet PA, Faivre E, Blum D, Delarasse C, Boué-Grabot E. Purinergic-associated immune responses in neurodegenerative diseases. Prog Neurobiol 2024; 243:102693. [PMID: 39579963 DOI: 10.1016/j.pneurobio.2024.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
The chronic activation of immune cells can participate in the development of pathological conditions such as neurodegenerative diseases including Alzheimer's disease (AD), Multiple Sclerosis (MS), Parkinson's disease (PD), Huntington's disease (HD) and Amyotrophic Lateral Sclerosis (ALS). In recent years, compelling evidence indicates that purinergic signaling plays a key role in neuro-immune cell functions. The extracellular release of adenosine 5'-triphosphate (ATP), and its breakdown products (ADP and adenosine) provide the versatile basis for complex purinergic signaling through the activation of several families of receptors. G-protein coupled adenosine A2A receptors, ionotropic P2X and G-protein coupled P2Y receptors for ATP and other nucleotides are abundant and widely distributed in neurons, microglia, and astrocytes of the central nervous system as well as in peripheral immune cells. These receptors are strongly linked to inflammation, with a functional interplay that may influence the intricate purinergic signaling involved in inflammatory responses. In the present review, we examine the roles of the purinergic receptors in neuro-immune cell functions with particular emphasis on A2AR, P2X4 and P2X7 and their possible relevance to specific neurodegenerative disorders. Understanding the molecular mechanisms governing purinergic receptor interaction will be crucial for advancing the development of effective immunotherapies targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Sara Carracedo
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux F-33000, France
| | - Agathe Launay
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | | | - Emilie Faivre
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | - David Blum
- Université de Lille, Inserm, CHU Lille, U1172, LilNCog, "Alzheimer & Tauopathies", LabEx DISTALZ, Lille F-59000, France
| | - Cécile Delarasse
- Sorbonne Université, Inserm, CNRS, Institut de la Vision, 17, rue Moreau, Paris F-75012, France
| | | |
Collapse
|
2
|
Lalo U, Pankratov Y. ATP-mediated signalling in the central synapses. Neuropharmacology 2023; 229:109477. [PMID: 36841527 DOI: 10.1016/j.neuropharm.2023.109477] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
ATP released from the synaptic terminals and astrocytes can activate neuronal P2 receptors at a variety of locations across the CNS. Although the postsynaptic ATP-mediated signalling does not bring a major contribution into the excitatory transmission, it is instrumental for slow and diffuse modulation of synaptic dynamics and neuronal firing in many CNS areas. Neuronal P2X and P2Y receptors can be activated by ATP released from the synaptic terminals, astrocytes and microglia and thereby can participate in the regulation of synaptic homeostasis and plasticity. There is growing evidence of importance of purinergic regulation of synaptic transmission in different physiological and pathological contexts. Here, we review the main mechanisms underlying the complexity and diversity of purinergic signalling and purinergic modulation in central neurons.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, University of Warwick, United Kingdom
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, United Kingdom.
| |
Collapse
|
3
|
Abstract
Within the family of purinergic receptors, the P2X1 receptor is a ligand-gated ion channel that plays a role in urogenital, immune and cardiovascular function. Specifically, the P2X1 receptor has been implicated in controlling smooth muscle contractions of the vas deferens and therefore has emerged as an exciting drug target for male contraception. In addition, the P2X1 receptor contributes to smooth muscle contractions of the bladder and is a target to treat bladder dysfunction. Finally, platelets and neutrophils have populations of P2X1 receptors that could be targeted for thrombosis and inflammatory conditions. Drugs that specifically target the P2X1 receptor have been challenging to develop, and only recently have small molecule antagonists of the P2X1 receptor been available. However, these ligands need further biological validation for appropriate selectivity and drug-like properties before they will be suitable for use in preclinical models of disease. Although the atomic structure of the P2X1 receptor has yet to be determined, the recent discovery of several other P2X receptor structures and improvements in the field of structural biology suggests that this is now a distinct possibility. Such efforts may significantly improve drug discovery efforts at the P2X1 receptor.
Collapse
|
4
|
Bertin E, Martinez A, Fayoux A, Carvalho K, Carracedo S, Fernagut PO, Koch-Nolte F, Blum D, Bertrand SS, Boué-Grabot E. Increased surface P2X4 receptors by mutant SOD1 proteins contribute to ALS pathogenesis in SOD1-G93A mice. Cell Mol Life Sci 2022; 79:431. [PMID: 35852606 PMCID: PMC9296432 DOI: 10.1007/s00018-022-04461-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/27/2022] [Accepted: 06/30/2022] [Indexed: 12/26/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motoneuron (MN) disease characterized by protein misfolding and aggregation leading to cellular degeneration. So far neither biomarker, nor effective treatment has been found. ATP signaling and P2X4 receptors (P2X4) are upregulated in various neurodegenerative diseases. Here we show that several ALS-related misfolded proteins including mutants of SOD1 or TDP-43 lead to a significant increase in surface P2X4 receptor density and function in vitro. In addition, we demonstrate in the spinal the cord of SOD1-G93A (SOD1) mice that misfolded SOD1-G93A proteins directly interact with endocytic adaptor protein-2 (AP2); thus, acting as negative competitors for the interaction between AP2 and P2X4, impairing constitutive P2X4 endocytosis. The higher P2X4 surface density was particularly observed in peripheral macrophages of SOD1 mice before the onset and during the progression of ALS symptoms positioning P2X4 as a potential early biomarker for ALS. P2X4 expression was also upregulated in spinal microglia of SOD1 mice during ALS and affect microglial inflammatory responses. Importantly, we report using double transgenic SOD1 mice expressing internalization-defective P2X4mCherryIN knock-in gene or invalidated for the P2X4 gene that P2X4 is instrumental for motor symptoms, ALS progression and survival. This study highlights the role of P2X4 in the pathophysiology of ALS and thus its potential for the development of biomarkers and treatments. We also decipher the molecular mechanism by which misfolded proteins related to ALS impact P2X4 trafficking at early pathological stage in cells expressing-P2X4.
Collapse
Affiliation(s)
- Eléonore Bertin
- Univ. Bordeaux, CNRS, IMN, UMR 5293, 33000, Bordeaux, France
| | - Audrey Martinez
- Univ. Bordeaux, CNRS, IMN, UMR 5293, 33000, Bordeaux, France
| | - Anne Fayoux
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, 33000, Bordeaux, France
| | - Kevin Carvalho
- Univ. Lille, Inserm, CHU Lille, U1172, LilNCog, Lille, France.,"Alzheimer & Tauopathies", LabEx DISTALZ, 59000, Lille, France
| | - Sara Carracedo
- Univ. Bordeaux, CNRS, IMN, UMR 5293, 33000, Bordeaux, France
| | | | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, U1172, LilNCog, Lille, France.,"Alzheimer & Tauopathies", LabEx DISTALZ, 59000, Lille, France
| | | | | |
Collapse
|
5
|
Nadzirin IB, Fortuny-Gomez A, Ngum N, Richards D, Ali S, Searcey M, Fountain SJ. Taspine is a natural product that suppresses P2X4 receptor activity via phosphoinositide 3-kinase inhibition. Br J Pharmacol 2021; 178:4859-4872. [PMID: 34398973 DOI: 10.1111/bph.15663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND & PURPOSE P2X4 is a ligand-gated cation channel activated by extracellular ATP, involved in neuropathic pain, inflammation and arterial tone. EXPERIMENTAL APPROACH Natural products were screened against human or mouse P2X4 activity using fura-2 loaded 1321N1 cells for measurement of intracellular Ca2+ responses; whole-cell currents were measured by patch clamp electrophysiological. Human primary macrophage chemokine release was used to assess effect of taspine on inflammatory cell function. An enzymatic assay was performed to assess the effect of taspine on recombinant PI3-kinase. KEY RESULTS A natural product screen identified taspine as an inhibitor of human P2X4 activity. Taspine inhibits human and mouse P2X4-mediated Ca2+ influx in 1321N1 cells expressing receptors (IC50 1.6±0.4 μM and 1.6±0.3 μM, respectively), but lacked activity at human P2X2, P2X3, P2X2/3 and P2X7 receptors. Taspine inhibited the maximal response at human and mouse P2X4 but had no effect on ATP potency. Taspine has a slow onset rate (~15 mins for half-maximal inhibition), irreversible over 30 minutes of washout. Taspine inhibits P2X4-mediated Ca2+ signalling in mouse BV-2 microglia cells and human primary macrophage. Taspine inhibited P2X4-mediated CXCL5 secretion in human primary macrophage. Taspine reversed ivermectin-induced potentiation of P2X4 currents in 1321N1 stably expressing cells. The known PI3-kinase inhibitor LY294002 mimicked the properties of taspine on P2X4-mediated Ca2+ influx and whole-cell currents. Taspine directly inhibited the enzymatic activity of recombinant PI3-kinase in a competitive manner. CONCLUSIONS AND IMPLICATIONS Taspine is a novel natural product P2X4 inhibitor, mediating its effect through PI3-kinase inhibitor rather than receptor antagonism. Taspine can inhibit the pro-inflammatory signalling by P2X4 in human primary macrophage.
Collapse
Affiliation(s)
- Izzuddin Bin Nadzirin
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park.,Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan Campus, Kuantan, Malaysia
| | - Anna Fortuny-Gomez
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park
| | - Neville Ngum
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park
| | - David Richards
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park
| | - Seema Ali
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park
| | - Mark Searcey
- School of Pharmacy, University of East Anglia, Norwich Research Park
| | - Samuel J Fountain
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park
| |
Collapse
|
6
|
Dissection of P2X4 and P2X7 Receptor Current Components in BV-2 Microglia. Int J Mol Sci 2020; 21:ijms21228489. [PMID: 33187309 PMCID: PMC7696836 DOI: 10.3390/ijms21228489] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Microglia cells represent the immune system of the central nervous system. They become activated by ATP released from damaged and inflamed tissue via purinergic receptors. Ionotropic purinergic P2X4 and P2X7 receptors have been shown to be involved in neurological inflammation and pain sensation. Whether the two receptors assemble exclusively as homotrimers or also as heterotrimers is still a matter of debate. We investigated the expression of P2X receptors in BV-2 microglia cells applying the whole-cell voltage-clamp technique. We dissected P2X4 and P2X7 receptor-mediated current components by using specific P2X4 and P2X7 receptor blockers and by their characteristic current kinetics. We found that P2X4 and P2X7 receptors are activated independently from each other, indicating that P2X4/P2X7 heteromers are not of functional significance in these cells. The pro-inflammatory mediators lipopolysaccharide and interferon γ, if applied in combination, upregulated P2X4, but not P2X7 receptor-dependent current components also arguing against phenotypically relevant heteromerization of P2X4 and P2X7 receptor subunits.
Collapse
|
7
|
Implication of Neuronal Versus Microglial P2X4 Receptors in Central Nervous System Disorders. Neurosci Bull 2020; 36:1327-1343. [PMID: 32889635 DOI: 10.1007/s12264-020-00570-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023] Open
Abstract
The P2X4 receptor (P2X4) is an ATP-gated cation channel that is highly permeable to Ca2+ and widely expressed in neuronal and glial cell types throughout the central nervous system (CNS). A growing body of evidence indicates that P2X4 plays key roles in numerous central disorders. P2X4 trafficking is highly regulated and consequently in normal situations, P2X4 is present on the plasma membrane at low density and found mostly within intracellular endosomal/lysosomal compartments. An increase in the de novo expression and/or surface density of P2X4 has been observed in microglia and/or neurons during pathological states. This review aims to summarize knowledge on P2X4 functions in CNS disorders and provide some insights into the relative contributions of neuronal and glial P2X4 in pathological contexts. However, determination of the cell-specific functions of P2X4 along with its intracellular and cell surface roles remain to be elucidated before its potential as a therapeutic target in multiple disorders can be defined.
Collapse
|
8
|
Stokes L, Bidula S, Bibič L, Allum E. To Inhibit or Enhance? Is There a Benefit to Positive Allosteric Modulation of P2X Receptors? Front Pharmacol 2020; 11:627. [PMID: 32477120 PMCID: PMC7235284 DOI: 10.3389/fphar.2020.00627] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
The family of ligand-gated ion channels known as P2X receptors were discovered several decades ago. Since the cloning of the seven P2X receptors (P2X1-P2X7), a huge research effort has elucidated their roles in regulating a range of physiological and pathophysiological processes. Transgenic animals have been influential in understanding which P2X receptors could be new therapeutic targets for disease. Furthermore, understanding how inherited mutations can increase susceptibility to disorders and diseases has advanced this knowledge base. There has been an emphasis on the discovery and development of pharmacological tools to help dissect the individual roles of P2X receptors and the pharmaceutical industry has been involved in pushing forward clinical development of several lead compounds. During the discovery phase, a number of positive allosteric modulators have been described for P2X receptors and these have been useful in assigning physiological roles to receptors. This review will consider the major physiological roles of P2X1-P2X7 and discuss whether enhancement of P2X receptor activity would offer any therapeutic benefit. We will review what is known about identified compounds acting as positive allosteric modulators and the recent identification of drug binding pockets for such modulators.
Collapse
Affiliation(s)
- Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Stefan Bidula
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Lučka Bibič
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Elizabeth Allum
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
9
|
Ali SB, Turner JJO, Fountain SJ. Constitutive P2Y 2 receptor activity regulates basal lipolysis in human adipocytes. J Cell Sci 2018; 131:jcs.221994. [PMID: 30333139 DOI: 10.1242/jcs.221994] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/05/2018] [Indexed: 12/28/2022] Open
Abstract
White adipocytes are key regulators of metabolic homeostasis, which release stored energy as free fatty acids via lipolysis. Adipocytes possess both basal and stimulated lipolytic capacity, but limited information exists regarding the molecular mechanisms that regulate basal lipolysis. Here, we describe a mechanism whereby autocrine purinergic signalling and constitutive P2Y2 receptor activation suppresses basal lipolysis in primary human in vitro-differentiated adipocytes. We found that human adipocytes possess cytoplasmic Ca2+ tone due to ATP secretion and constitutive P2Y2 receptor activation. Pharmacological antagonism or knockdown of P2Y2 receptors increases intracellular cAMP levels and enhances basal lipolysis. P2Y2 receptor antagonism works synergistically with phosphodiesterase inhibitors in elevating basal lipolysis, but is dependent upon adenylate cyclase activity. Mechanistically, we suggest that the increased Ca2+ tone exerts an anti-lipolytic effect by suppression of Ca2+-sensitive adenylate cyclase isoforms. We also observed that acute enhancement of basal lipolysis following P2Y2 receptor antagonism alters the profile of secreted adipokines leading to longer-term adaptive decreases in basal lipolysis. Our findings demonstrate that basal lipolysis and adipokine secretion are controlled by autocrine purinergic signalling in human adipocytes.
Collapse
Affiliation(s)
- Seema B Ali
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
| | - Jeremy J O Turner
- Norfolk and Norwich University Hospital, Colney Lane, NR4 7TJ Norwich, UK
| | - Samuel J Fountain
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
| |
Collapse
|
10
|
Yuan H, Ouyang S, Yang R, Li S, Gong Y, Zou L, Jia T, Zhao S, Wu B, Yi Z, Liu H, Shi L, Li L, Gao Y, Li G, Xu H, Liu S, Zhang C, Liang S. Osthole alleviated diabetic neuropathic pain mediated by the P2X4 receptor in dorsal root ganglia. Brain Res Bull 2018; 142:289-296. [DOI: 10.1016/j.brainresbull.2018.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 12/14/2022]
|
11
|
P2Y 2 and P2Y 6 receptor activation elicits intracellular calcium responses in human adipose-derived mesenchymal stromal cells. Purinergic Signal 2018; 14:371-384. [PMID: 30088129 PMCID: PMC6298923 DOI: 10.1007/s11302-018-9618-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/29/2018] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue contains self-renewing multipotent cells termed mesenchymal stromal cells. In situ, these cells serve to expand adipose tissue by adipogenesis, but their multipotency has gained interest for use in tissue regeneration. Little is known regarding the repertoire of receptors expressed by adipose-derived mesenchymal stromal cells (AD-MSCs). The purpose of this study was to undertake a comprehensive analysis of purinergic receptor expression. Mesenchymal stromal cells were isolated from human subcutaneous adipose tissue and confirmed by flow cytometry. The expression profile of purinergic receptors was determined by quantitative real-time PCR and immunocytochemistry. The molecular basis for adenine and uracil nucleotide-evoked intracellular calcium responses was determined using Fura-2 measurements. All the known subtypes of P2X and P2Y receptors, excluding P2X2, P2X3 and P2Y12 receptors, were detected at the mRNA and protein level. ATP, ADP and UTP elicited concentration-dependent calcium responses in mesenchymal cells (N = 7–9 donors), with a potency ranking ADP (EC50 1.3 ± 1.0 μM) > ATP (EC50 2.2 ± 1.1 μM) = UTP (3.2 ± 2.8 μM). Cells were unresponsive to UDP (< 30 μM) and UDP-glucose (< 30 μM). ATP responses were attenuated by selective P2Y2 receptor antagonism (AR-C118925XX; IC50 1.1 ± 0.8 μM, 73.0 ± 8.5% max inhibition; N = 7 donors), and UTP responses were abolished. ADP responses were attenuated by the selective P2Y6 receptor antagonist, MRS2587 (IC50 437 ± 133nM, 81.0 ± 8.4% max inhibition; N = 6 donors). These data demonstrate that adenine and uracil nucleotides elicit intracellular calcium responses in human AD-MSCs with a predominant role for P2Y2 and P2Y6 receptor activation. This study furthers understanding about how human adipose-derived mesenchymal stromal cells can respond to external signalling cues.
Collapse
|
12
|
Hasan D, Satalin J, van der Zee P, Kollisch-Singule M, Blankman P, Shono A, Somhorst P, den Uil C, Meeder H, Kotani T, Nieman GF. Excessive Extracellular ATP Desensitizes P2Y2 and P2X4 ATP Receptors Provoking Surfactant Impairment Ending in Ventilation-Induced Lung Injury. Int J Mol Sci 2018; 19:ijms19041185. [PMID: 29652806 PMCID: PMC5979391 DOI: 10.3390/ijms19041185] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 12/16/2022] Open
Abstract
Stretching the alveolar epithelial type I (AT I) cells controls the intercellular signaling for the exocytosis of surfactant by the AT II cells through the extracellular release of adenosine triphosphate (ATP) (purinergic signaling). Extracellular ATP is cleared by extracellular ATPases, maintaining its homeostasis and enabling the lung to adapt the exocytosis of surfactant to the demand. Vigorous deformation of the AT I cells by high mechanical power ventilation causes a massive release of extracellular ATP beyond the clearance capacity of the extracellular ATPases. When extracellular ATP reaches levels >100 μM, the ATP receptors of the AT II cells become desensitized and surfactant impairment is initiated. The resulting alteration in viscoelastic properties and in alveolar opening and collapse time-constants leads to alveolar collapse and the redistribution of inspired air from the alveoli to the alveolar ducts, which become pathologically dilated. The collapsed alveoli connected to these dilated alveolar ducts are subject to a massive strain, exacerbating the ATP release. After reaching concentrations >300 μM extracellular ATP acts as a danger-associated molecular pattern, causing capillary leakage, alveolar space edema, and further deactivation of surfactant by serum proteins. Decreasing the tidal volume to 6 mL/kg or less at this stage cannot prevent further lung injury.
Collapse
Affiliation(s)
- Djo Hasan
- Mobile Intensive Care Unit Zuid-West Nederland, 3062 NW Rotterdam, The Netherlands.
- Department of Surgery, Erasmus MC, Erasmus Universiteit Rotterdam, 3015 CE Rotterdam, The Netherlands.
| | - Joshua Satalin
- Department of Surgery, Upstate Medical University, Syracuse, NY 13210, USA.
| | - Philip van der Zee
- Adult Intensive Care Unit, Erasmus MC, Erasmus Universiteit Rotterdam, 3015 CE Rotterdam, The Netherlands.
| | | | - Paul Blankman
- Department of Anesthesiology, Universitair Medisch Centrum Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Atsuko Shono
- Department of Anesthesiology, Shimane University, Izumo, Shimane Prefecture 693-0021, Japan.
| | - Peter Somhorst
- Adult Intensive Care Unit, Erasmus MC, Erasmus Universiteit Rotterdam, 3015 CE Rotterdam, The Netherlands.
| | - Corstiaan den Uil
- Adult Intensive Care Unit, Erasmus MC, Erasmus Universiteit Rotterdam, 3015 CE Rotterdam, The Netherlands.
- Department of Cardiology, Erasmus MC, Erasmus Universiteit Rotterdam, 3062 PA Rotterdam, The Netherlands.
| | - Han Meeder
- Mobile Intensive Care Unit Zuid-West Nederland, 3062 NW Rotterdam, The Netherlands.
- Adult Intensive Care Unit, Erasmus MC, Erasmus Universiteit Rotterdam, 3015 CE Rotterdam, The Netherlands.
| | - Toru Kotani
- Department of Anesthesiology and Critical Care Medicine, Showa University, School of Medicine, Tokyo 142-8666, Japan.
| | - Gary F Nieman
- Department of Surgery, Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
13
|
Weddell JC, Imoukhuede PI. Integrative meta-modeling identifies endocytic vesicles, late endosome and the nucleus as the cellular compartments primarily directing RTK signaling. Integr Biol (Camb) 2018; 9:464-484. [PMID: 28436498 DOI: 10.1039/c7ib00011a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, intracellular receptor signaling has been identified as a key component mediating cell responses for various receptor tyrosine kinases (RTKs). However, the extent each endocytic compartment (endocytic vesicle, early endosome, recycling endosome, late endosome, lysosome and nucleus) contributes to receptor signaling has not been quantified. Furthermore, our understanding of endocytosis and receptor signaling is complicated by cell- or receptor-specific endocytosis mechanisms. Therefore, towards understanding the differential endocytic compartment signaling roles, and identifying how to achieve signal transduction control for RTKs, we delineate how endocytosis regulates RTK signaling. We achieve this via a meta-analysis across eight RTKs, integrating computational modeling with experimentally derived cell (compartment volume, trafficking kinetics and pH) and ligand-receptor (ligand/receptor concentration and interaction kinetics) physiology. Our simulations predict the abundance of signaling from eight RTKs, identifying the following hierarchy in RTK signaling: PDGFRβ > IGFR1 > EGFR > PDGFRα > VEGFR1 > VEGFR2 > Tie2 > FGFR1. We find that endocytic vesicles are the primary cell signaling compartment; over 43% of total receptor signaling occurs within the endocytic vesicle compartment for these eight RTKs. Mechanistically, we found that high RTK signaling within endocytic vesicles may be attributed to their low volume (5.3 × 10-19 L) which facilitates an enriched ligand concentration (3.2 μM per ligand molecule within the endocytic vesicle). Under the analyzed physiological conditions, we identified extracellular ligand concentration as the most sensitive parameter to change; hence the most significant one to modify when regulating absolute compartment signaling. We also found that the late endosome and nucleus compartments are important contributors to receptor signaling, where 26% and 18%, respectively, of average receptor signaling occurs across the eight RTKs. Conversely, we found very low membrane-based receptor signaling, exhibiting <1% of the total receptor signaling for these eight RTKs. Moreover, we found that nuclear translocation, mechanistically, requires late endosomal transport; when we blocked receptor trafficking from late endosomes to the nucleus we found a 57% reduction in nuclear translocation. In summary, our research has elucidated the significance of endocytic vesicles, late endosomes and the nucleus in RTK signal propagation.
Collapse
Affiliation(s)
- Jared C Weddell
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W Springfield Ave., 3233 Digital Computer Laboratory, Urbana, IL 61801, USA.
| | | |
Collapse
|
14
|
Ventre E, Rozières A, Lenief V, Albert F, Rossio P, Laoubi L, Dombrowicz D, Staels B, Ulmann L, Julia V, Vial E, Jomard A, Hacini-Rachinel F, Nicolas JF, Vocanson M. Topical ivermectin improves allergic skin inflammation. Allergy 2017; 72:1212-1221. [PMID: 28052336 DOI: 10.1111/all.13118] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Ivermectin (IVM) is widely used in both human and veterinary medicine to treat parasitic infections. Recent reports have suggested that IVM could also have anti-inflammatory properties. METHODS Here, we investigated the activity of IVM in a murine model of atopic dermatitis (AD) induced by repeated exposure to the allergen Dermatophagoides farinae, and in standard cellular immunological assays. RESULTS Our results show that topical IVM improved allergic skin inflammation by reducing the priming and activation of allergen-specific T cells, as well as the production of inflammatory cytokines. While IVM had no major impact on the functions of dendritic cells in vivo and in vitro, IVM impaired T-cell activation, proliferation, and cytokine production following polyclonal and antigen-specific stimulation. CONCLUSION Altogether, our results show that IVM is endowed with topical anti-inflammatory properties that could have important applications for the treatment of T-cell-mediated skin inflammatory diseases.
Collapse
Affiliation(s)
- E. Ventre
- CIRI; International Center for Infectiology Research; Université de Lyon; INSERM, U1111; Ecole Normale Supérieure de Lyon; Centre International de Recherche en Infectiologie; Université Lyon 1; CNRS; UMR 5308; Lyon France
| | - A. Rozières
- CIRI; International Center for Infectiology Research; Université de Lyon; INSERM, U1111; Ecole Normale Supérieure de Lyon; Centre International de Recherche en Infectiologie; Université Lyon 1; CNRS; UMR 5308; Lyon France
| | - V. Lenief
- CIRI; International Center for Infectiology Research; Université de Lyon; INSERM, U1111; Ecole Normale Supérieure de Lyon; Centre International de Recherche en Infectiologie; Université Lyon 1; CNRS; UMR 5308; Lyon France
| | - F. Albert
- CIRI; International Center for Infectiology Research; Université de Lyon; INSERM, U1111; Ecole Normale Supérieure de Lyon; Centre International de Recherche en Infectiologie; Université Lyon 1; CNRS; UMR 5308; Lyon France
| | - P. Rossio
- Nestlé Skin Health R&D; Sophia-Antipolis; Biot France
| | - L. Laoubi
- CIRI; International Center for Infectiology Research; Université de Lyon; INSERM, U1111; Ecole Normale Supérieure de Lyon; Centre International de Recherche en Infectiologie; Université Lyon 1; CNRS; UMR 5308; Lyon France
| | - D. Dombrowicz
- Université de Lille; INSERM; CHU de Lille; European Genomic Institute of Diabetes; Institut Pasteur de Lille; U1011-récepteurs nucléaires maladies cardiovasculaires et diabète; Lille France
| | - B. Staels
- Université de Lille; INSERM; CHU de Lille; European Genomic Institute of Diabetes; Institut Pasteur de Lille; U1011-récepteurs nucléaires maladies cardiovasculaires et diabète; Lille France
| | - L. Ulmann
- Institut de Génomique Fonctionnelle; CNRS; INSERM; Université de Montpellier; Montpellier France
| | - V. Julia
- Nestlé Skin Health R&D; Sophia-Antipolis; Biot France
| | - E. Vial
- Nestlé Skin Health R&D; Sophia-Antipolis; Biot France
| | - A. Jomard
- Nestlé Skin Health R&D; Sophia-Antipolis; Biot France
| | | | - J.-F. Nicolas
- CIRI; International Center for Infectiology Research; Université de Lyon; INSERM, U1111; Ecole Normale Supérieure de Lyon; Centre International de Recherche en Infectiologie; Université Lyon 1; CNRS; UMR 5308; Lyon France
| | - M. Vocanson
- CIRI; International Center for Infectiology Research; Université de Lyon; INSERM, U1111; Ecole Normale Supérieure de Lyon; Centre International de Recherche en Infectiologie; Université Lyon 1; CNRS; UMR 5308; Lyon France
| |
Collapse
|
15
|
Schneider G, Glaser T, Lameu C, Abdelbaset-Ismail A, Sellers ZP, Moniuszko M, Ulrich H, Ratajczak MZ. Extracellular nucleotides as novel, underappreciated pro-metastatic factors that stimulate purinergic signaling in human lung cancer cells. Mol Cancer 2015; 14:201. [PMID: 26597723 PMCID: PMC4657356 DOI: 10.1186/s12943-015-0469-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 11/10/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND One of the challenging problems of current radio-chemotherapy is recurrence and metastasis of cancer cells that survive initial treatment. We propose that one of the unwanted effects of radiochemotherapy is the release from damaged ("leaky") cells of nucleotides such as ATP and UTP that exert pro-metastatic functions and can directly stimulate chemotaxis of cancer cells. METHODS To address this problem in a model of human lung cancer (LC), we employed several complementary in vitro and in vivo approaches to demonstrate the role of extracellular nucleotides (EXNs) in LC cell line metastasis and tumor progression. We measured concentrations of EXNs in several organs before and after radiochemotherapy. The purinergic receptor agonists and antagonists, inhibiting all or selected subtypes of receptors, were employed in in vitro and in vivo pro-metastatic assays. RESULTS We found that EXNs accumulate in several organs in response to radiochemotherapy, and RT-PCR analysis revealed that most of the P1 and P2 receptor subtypes are expressed in human LC cells. EXNs were found to induce chemotaxis and adhesion of LC cells, and an autocrine loop was identified that promotes the proliferation of LC cells. Most importantly, metastasis of these cells could be inhibited in immunodeficient mice in the presence of specific small molecule inhibitors of purinergic receptors. CONCLUSIONS Based on this result, EXNs are novel pro-metastatic factors released particularly during radiochemotherapy, and inhibition of their pro-metastatic effects via purinergic signaling could become an important part of anti-metastatic treatment.
Collapse
Affiliation(s)
- Gabriela Schneider
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 South Floyd Street, Louisville, KY, 40202, USA
| | - Talita Glaser
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Claudiana Lameu
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ahmed Abdelbaset-Ismail
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 South Floyd Street, Louisville, KY, 40202, USA
| | - Zachariah Payne Sellers
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 South Floyd Street, Louisville, KY, 40202, USA
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 South Floyd Street, Louisville, KY, 40202, USA.
- Department of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
16
|
Intracellular expression of purinoceptors. Purinergic Signal 2015; 11:275-6. [PMID: 26009501 DOI: 10.1007/s11302-015-9455-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 10/23/2022] Open
|
17
|
Bastin G, Heximer SP. Rab family proteins regulate the endosomal trafficking and function of RGS4. J Biol Chem 2013; 288:21836-49. [PMID: 23733193 DOI: 10.1074/jbc.m113.466888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGS4, a heterotrimeric G-protein inhibitor, localizes to plasma membrane (PM) and endosomal compartments. Here, we examined Rab-mediated control of RGS4 internalization and recycling. Wild type and constitutively active Rab5 decreased RGS4 PM levels while increasing its endosomal targeting. Rab5, however, did not appreciably affect the PM localization or function of the M1 muscarinic receptor (M1R)/Gq signaling cascade. RGS4-containing endosomes co-localized with subsets of Rab5-, transferrin receptor-, and Lamp1/Lysotracker-marked compartments suggesting RGS4 traffics through PM recycling or acidified endosome pathways. Rab7 activity promoted TGN association, whereas Rab7(dominant negative) trapped RGS4 in late endosomes. Furthermore, RGS4 was found to co-localize with an endosomal pool marked by Rab11, the protein that mediates recycling/sorting of proteins to the PM. The Cys-12 residue in RGS4 appeared important for its Rab11-mediated trafficking to the PM. Rab11(dominant negative) decreased RGS4 PM levels and increased the number of RGS4-containing endosomes. Inhibition of Rab11 activity decreased RGS4 function as an inhibitor of M1R activity without affecting localization and function of the M1R/Gq signaling complex. Thus, both Rab5 activation and Rab11 inhibition decreased RGS4 function in a manner that is independent from their effects on the localization and function of the M1R/Gq signaling complex. This is the first study to implicate Rab GTPases in the intracellular trafficking of an RGS protein. Thus, Rab GTPases may be novel molecular targets for the selective regulation of M1R-mediated signaling via their specific effects on RGS4 trafficking and function.
Collapse
Affiliation(s)
- Guillaume Bastin
- Department of Physiology, Heart and Stroke/Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|