1
|
Baghdadi A, Dunn WR, Ralevic V. Involvement of purinergic signalling in the vasomotor response to hypochlorous acid in porcine coronary artery. Purinergic Signal 2025:10.1007/s11302-025-10086-7. [PMID: 40238052 DOI: 10.1007/s11302-025-10086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Hypochlorous acid (HOCl) is generated by neutrophils during the innate immune response. ATP is released from cells by various stimuli and during inflammation but whether ATP is released by and participates in the response to HOCl is unclear. This study investigated vasomotor effects of HOCl on the porcine coronary artery (PCA) and the involvement of ATP and purine receptors. HOCl at 100 μM induced rapid and transient endothelium-dependent relaxation followed by slow and sustained endothelium-independent relaxation. Transient endothelium-dependent relaxation was induced by 500 μM HOCl, followed by endothelium-dependent contraction, then slow endothelium-independent relaxation. 8-(p-sulphophenyl)theophylline (8-SPT), an adenosine/P1 receptor antagonist, blocked rapid relaxation and contraction to HOCl but an A2A receptor antagonist, ZM 241385, and an A1 receptor antagonist, DPCPX, had no effect. Suramin, a P2 receptor antagonist (and membrane channel inhibitor), blocked rapid relaxation (at 100 μM HOCl) and contraction to HOCl. Other antagonists for P2, P2X1, P2Y1 and P2X4 receptors (PPADS, reactive blue 2, NF449, MRS2179 and BX430) did not affect HOCl responses. Relaxation to exogenous ATP was inhibited by 8-SPT but not by suramin suggesting that suramin block of HOCl responses may involve inhibition of membrane channels and endogenous ATP release. Apyrase, which hydrolyzes nucleotides, abolished responses to HOCl, ATP and unexpectedly adenosine. Neither probenecid nor carbenoxelone (connexin and pannexin channel inhibitors) blocked responses to HOCl. Luminescent ATP assay showed that HOCl elicited ATP release from cultures of human coronary artery endothelial cells. These findings advance our understanding of inflammation by showing that HOCl evokes endothelium-dependent vasorelaxation and contraction in coronary arteries which may involve P1 receptors implicating endogenous adenosine, possibly generated from rapid metabolism of ATP released by HOCl.
Collapse
Affiliation(s)
- Ashwaq Baghdadi
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - William R Dunn
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Vera Ralevic
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
2
|
Sun WD, Zhu XJ, Li JJ, Mei YZ, Li WS, Li JH. Nicotinamide N-methyltransferase (NNMT): a novel therapeutic target for metabolic syndrome. Front Pharmacol 2024; 15:1410479. [PMID: 38919254 PMCID: PMC11196770 DOI: 10.3389/fphar.2024.1410479] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Metabolic syndrome (MetS) represents a constellation of metabolic abnormalities, typified by obesity, hypertension, hyperglycemia, and hyperlipidemia. It stems from intricate dysregulations in metabolic pathways governing energy and substrate metabolism. While comprehending the precise etiological mechanisms of MetS remains challenging, evidence underscores the pivotal roles of aberrations in lipid metabolism and insulin resistance (IR) in its pathogenesis. Notably, nicotinamide N-methyltransferase (NNMT) has recently surfaced as a promising therapeutic target for addressing MetS. Single nucleotide variants in the NNMT gene are significantly correlated with disturbances in energy metabolism, obesity, type 2 diabetes (T2D), hyperlipidemia, and hypertension. Elevated NNMT gene expression is notably observed in the liver and white adipose tissue (WAT) of individuals with diabetic mice, obesity, and rats afflicted with MetS. Knockdown of NNMT elicits heightened energy expenditure in adipose and hepatic tissues, mitigates lipid accumulation, and enhances insulin sensitivity. NNMT catalyzes the methylation of nicotinamide (NAM) using S-adenosyl-methionine (SAM) as the donor methyl group, resulting in the formation of S-adenosyl-l-homocysteine (SAH) and methylnicotinamide (MNAM). This enzymatic process results in the depletion of NAM, a precursor of nicotinamide adenine dinucleotide (NAD+), and the generation of SAH, a precursor of homocysteine (Hcy). Consequently, this cascade leads to reduced NAD+ levels and elevated Hcy levels, implicating NNMT in the pathogenesis of MetS. Moreover, experimental studies employing RNA interference (RNAi) strategies and small molecule inhibitors targeting NNMT have underscored its potential as a therapeutic target for preventing or treating MetS-related diseases. Nonetheless, the precise mechanistic underpinnings remain elusive, and as of yet, clinical trials focusing on NNMT have not been documented. Therefore, further investigations are warranted to elucidate the intricate roles of NNMT in MetS and to develop targeted therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiang-Hua Li
- Key Lab of Aquatic Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
3
|
Averin AS, Konakov MV, Pimenov OY, Galimova MH, Berezhnov AV, Nenov MN, Dynnik VV. Regulation of Papillary Muscle Contractility by NAD and Ammonia Interplay: Contribution of Ion Channels and Exchangers. MEMBRANES 2022; 12:1239. [PMID: 36557146 PMCID: PMC9785361 DOI: 10.3390/membranes12121239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Various models, including stem cells derived and isolated cardiomyocytes with overexpressed channels, are utilized to analyze the functional interplay of diverse ion currents involved in cardiac automaticity and excitation-contraction coupling control. Here, we used β-NAD and ammonia, known hyperpolarizing and depolarizing agents, respectively, and applied inhibitory analysis to reveal the interplay of several ion channels implicated in rat papillary muscle contractility control. We demonstrated that: 4 mM β-NAD, having no strong impact on resting membrane potential (RMP) and action potential duration (APD90) of ventricular cardiomyocytes, evoked significant suppression of isometric force (F) of paced papillary muscle. Reactive blue 2 restored F to control values, suggesting the involvement of P2Y-receptor-dependent signaling in β-NAD effects. Meantime, 5 mM NH4Cl did not show any effect on F of papillary muscle but resulted in significant RMP depolarization, APD90 shortening, and a rightward shift of I-V relationship for total steady state currents in cardiomyocytes. Paradoxically, NH4Cl, being added after β-NAD and having no effect on RMP, APD, and I-V curve, recovered F to the control values, indicating β-NAD/ammonia antagonism. Blocking of HCN, Kir2.x, and L-type calcium channels, Ca2+-activated K+ channels (SK, IK, and BK), or NCX exchanger reverse mode prevented this effect, indicating consistent cooperation of all currents mediated by these channels and NCX. We suggest that the activation of Kir2.x and HCN channels by extracellular K+, that creates positive and negative feedback, and known ammonia and K+ resemblance, may provide conditions required for the activation of all the chain of channels involved in the interplay. Here, we present a mechanistic model describing an interplay of channels and second messengers, which may explain discovered antagonism of β-NAD and ammonia on rat papillary muscle contractile activity.
Collapse
Affiliation(s)
- Alexey S. Averin
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maxim V. Konakov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Oleg Y. Pimenov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Miliausha H. Galimova
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Alexey V. Berezhnov
- Institute of Cell Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Miroslav N. Nenov
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| | - Vladimir V. Dynnik
- Institute of Theoretical and Experimental Biophysics, the Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
4
|
Koszalka P, Kutryb-Zajac B, Mierzejewska P, Tomczyk M, Wietrzyk J, Serafin PK, Smolenski RT, Slominska EM. 4-Pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR)—A Novel Oncometabolite Modulating Cancer-Endothelial Interactions in Breast Cancer Metastasis. Int J Mol Sci 2022; 23:ijms23105774. [PMID: 35628582 PMCID: PMC9145394 DOI: 10.3390/ijms23105774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
The accumulation of specific metabolic intermediates is known to promote cancer progression. We analyzed the role of 4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR), a nucleotide metabolite that accumulates in the blood of cancer patients, using the 4T1 murine in vivo breast cancer model, and cultured cancer (4T1) and endothelial cells (ECs) for in vitro studies. In vivo studies demonstrated that 4PYR facilitated lung metastasis without affecting primary tumor growth. In vitro studies demonstrated that 4PYR affected extracellular adenine nucleotide metabolism and the intracellular energy status in ECs, shifting catabolite patterns toward the accumulation of extracellular inosine, and leading to the increased permeability of lung ECs. These changes prevailed over the direct effect of 4PYR on 4T1 cells that reduced their invasive potential through 4PYR-induced modulation of the CD73-adenosine axis. We conclude that 4PYR is an oncometabolite that affects later stages of the metastatic cascade by acting specifically through the regulation of EC permeability and metabolic controls of inflammation.
Collapse
Affiliation(s)
- Patrycja Koszalka
- Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Correspondence: (P.K.); (E.M.S.); Tel.: +48-58-349-1410 (P.K.); +48-58-349-1006 (E.M.S.)
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (B.K.-Z.); (P.M.); (M.T.); (R.T.S.)
| | - Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (B.K.-Z.); (P.M.); (M.T.); (R.T.S.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (B.K.-Z.); (P.M.); (M.T.); (R.T.S.)
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Pawel K. Serafin
- Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (B.K.-Z.); (P.M.); (M.T.); (R.T.S.)
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (B.K.-Z.); (P.M.); (M.T.); (R.T.S.)
- Correspondence: (P.K.); (E.M.S.); Tel.: +48-58-349-1410 (P.K.); +48-58-349-1006 (E.M.S.)
| |
Collapse
|
5
|
Yang F, Zhang X, Hu F, Yu Y, Luo L, Deng X, Zhao Y, Pan B, Zheng J, Qiu Y, Guo J, Xiao F, Xie X, Ju Z, Zhou Y. Association between NAD + levels and anaemia among women in community-based study. J Cell Mol Med 2022; 26:2698-2705. [PMID: 35384323 PMCID: PMC9077291 DOI: 10.1111/jcmm.17281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/12/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) level is the protective factor of cardiovascular diseases (CVDs). In addition, anaemia is a risk factor of adverse cardiovascular outcomes in women. However, there are limited data about the association between NAD+ and anaemia. The aim of this study was to evaluate association of NAD+ with anaemia among women. A total of 727 females from Jidong community were included in the current analysis. NAD+ levels were tested by the cycling assay and HPLC assay using whole blood samples. Anaemia was determined by haemoglobin (Hb) concentration, and the subtypes of anaemia were further defined according to mean corpuscular volume (MCV) in blood. Multivariable logistic analysis was used to analyse the association between NAD+ levels and anaemia or its subtypes. The mean age of recruited subjects was 42.7 years. The proportion of anaemia by NAD+ levels quartiles were 19.7% (35/178), 4.8% (9/189), 3.4% (6/178) and 2.7% (5/182). Haematological parameters including haemoglobin (Hb), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC) and red blood count (RBC) increased over NAD+ quartiles. Red cell volume distribution width (RDW) decreased over NAD+ quartiles. Compared with the lowest quartile of NAD+ levels (<27.6μM), the adjusted odds ratios with 95% confidence intervals of the top quartile were 0.15 (0.06–0.41) for anaemia, 0.05 (0.01–0.36) for microcytic anaemia and 0.37 (0.10–1.36) for normocytic anaemia respectively. Higher NAD+ levels were significantly associated with lower prevalence of anaemia among women, especially microcytic anaemia and normocytic anaemia. Haematological parameters might serve as a predictor of the blood NAD+ levels.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Aging and Regenerative Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xuguang Zhang
- Science and Technology Centre, By-Health Co. Ltd., Guangzhou, China
| | - Feifei Hu
- Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Yu
- Administrative Office, Total Quality Management Office, Total Quality Management Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Luo
- Institute of Aging and Regenerative Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xuan Deng
- Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuzheng Zhao
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Optogenetics & Synthetic Biology Interdisciplinary Research Center, Research Unit of Chinese Academy of Medical Sciences, East China University of Science and Technology, Shanghai, China
| | - Bo Pan
- Department of Auricular Reconstruction, Plastic Surgery Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Jinping Zheng
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China
| | - Yugang Qiu
- School of Rehabilitation Medicine, Weifang Medical University, Weifang, China
| | - Jun Guo
- Institute of Aging and Regenerative Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Feng Xiao
- Institute of Aging and Regenerative Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xiaomei Xie
- Tangshan Gem Flower Hospital, Tangshan, China
| | - Zhenyu Ju
- Institute of Aging and Regenerative Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yong Zhou
- Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Audrito V, Messana VG, Brandimarte L, Deaglio S. The Extracellular NADome Modulates Immune Responses. Front Immunol 2021; 12:704779. [PMID: 34421911 PMCID: PMC8371318 DOI: 10.3389/fimmu.2021.704779] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
The term NADome refers to the intricate network of intracellular and extracellular enzymes that regulate the synthesis or degradation of nicotinamide adenine dinucleotide (NAD) and to the receptors that engage it. Traditionally, NAD was linked to intracellular energy production through shuffling electrons between oxidized and reduced forms. However, recent data indicate that NAD, along with its biosynthetic and degrading enzymes, has a life outside of cells, possibly linked to immuno-modulating non-enzymatic activities. Extracellular NAD can engage puriginergic receptors triggering an inflammatory response, similar - to a certain extent - to what described for adenosine triphosphate (ATP). Likewise, NAD biosynthetic and degrading enzymes have been amply reported in the extracellular space, where they possess both enzymatic and non-enzymatic functions. Modulation of these enzymes has been described in several acute and chronic conditions, including obesity, cancer, inflammatory bowel diseases and sepsis. In this review, the role of the extracellular NADome will be discussed, focusing on its proposed role in immunomodulation, together with the different strategies for its targeting and their potential therapeutic impact.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vincenzo Gianluca Messana
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lorenzo Brandimarte
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Braidy N, Villalva MD, Grant R. NADomics: Measuring NAD + and Related Metabolites Using Liquid Chromatography Mass Spectrometry. Life (Basel) 2021; 11:life11060512. [PMID: 34073099 PMCID: PMC8230230 DOI: 10.3390/life11060512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) and its metabolome (NADome) play important roles in preserving cellular homeostasis. Altered levels of the NADome may represent a likely indicator of poor metabolic function. Accurate measurement of the NADome is crucial for biochemical research and developing interventions for ageing and neurodegenerative diseases. In this mini review, traditional methods used to quantify various metabolites in the NADome are discussed. Owing to the auto-oxidation properties of most pyridine nucleotides and their differential chemical stability in various biological matrices, accurate assessment of the concentrations of the NADome is an analytical challenge. Recent liquid chromatography mass spectrometry (LC-MS) techniques which overcome some of these technical challenges for quantitative assessment of the NADome in the blood, CSF, and urine are described. Specialised HPLC-UV, NMR, capillary zone electrophoresis, or colorimetric enzymatic assays are inexpensive and readily available in most laboratories but lack the required specificity and sensitivity for quantification of human biological samples. LC-MS represents an alternative means of quantifying the concentrations of the NADome in clinically relevant biological specimens after careful consideration of analyte extraction procedures, selection of internal standards, analyte stability, and LC assays. LC-MS represents a rapid, robust, simple, and reliable assay for the measurement of the NADome between control and test samples, and for identifying biological correlations between the NADome and various biochemical processes and testing the efficacy of strategies aimed at raising NAD+ levels during physiological ageing and disease states.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia;
- Euroa Centre, UNSW School of Psychiatry, NPI, Prince of Wales Hospital, Barker Street, Randwick, Sydney, NSW 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-3763; Fax: +61-2-9382-3774
| | - Maria D. Villalva
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Ross Grant
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia;
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW 2076, Australia
| |
Collapse
|
8
|
Sex-related differences in human plasma NAD+/NADH levels depend on age. Biosci Rep 2021; 41:227457. [PMID: 33393613 PMCID: PMC7809543 DOI: 10.1042/bsr20200340] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a coenzyme in metabolic reactions and cosubstrate in signaling pathways of cells. While the intracellular function of NAD is well described, much less is known about its importance as an extracellular molecule. Moreover, there is only little information about the concentration of extracellular NAD and the ratio between its oxidized (NAD+) and reduced (NADH) form in humans. Therefore, our study aimed at the analysis of total NAD and NAD+/NADH ratio in human plasma depending on sex and age. First, an enzymatic assay was established for detecting NAD+ and NADH in human plasma samples. Then, plasma NAD was analyzed in 205 probands without severe diseases (91 men, 114 women) being 18-83 years old. The total plasma NAD concentration was determined with median 1.34 µM (0.44-2.88 µM) without difference between men and women. Although the amounts of NAD+ and NADH were nearly balanced, women had higher plasma NAD+/NADH ratios than men (median 1.33 vs. 1.09, P<0.001). The sex-related difference in the plasma NAD+/NADH ratio reduces with increasing age, an effect that was more obvious for two parameters of the biological age (skin autofluorescence, brachial-femoral pulse wave velocity (PWV)) than for the chronological age. However, plasma values for total NAD and NAD+/NADH ratio did not generally alter with increasing age. In conclusion, human plasma contains low micromolar concentrations of total NAD with higher NAD+/NADH redox ratios in adult but not older women compared with same-aged men.
Collapse
|
9
|
Sun C, Jiao T, Merkus D, Duncker DJ, Mustafa SJ, Zhou Z. Activation of adenosine A 2A but not A 2B receptors is involved in uridine adenosine tetraphosphate-induced porcine coronary smooth muscle relaxation. J Pharmacol Sci 2019; 141:64-69. [PMID: 31640919 PMCID: PMC7418061 DOI: 10.1016/j.jphs.2019.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022] Open
Abstract
Activation of both adenosine A2A and A2B receptors (A2BR) contributes to coronary vasodilation. We previously demonstrated that uridine adenosine tetraphosphate (Up4A) is a novel vasodilator in the porcine coronary microcirculation, acting mainly on A2AR in smooth muscle cells (SMC). We further investigated whether activation of A2BR is involved in Up4A-mediated coronary SMC relaxation. Both A2AR and A2BR may stimulate H2O2 production leading to activation of KATP channels in SMCs, we also studied the involvement of H2O2 and KATP channels in Up4A-mediated effect. Coronary small arteries dissected from the apex of porcine hearts were mounted on wire myograph for Up4A concentration responses. Up4A-induced coronary SMC relaxation was attenuated by A2AR but not A2BR antagonism or non-selective P2R antagonism, despite greater endogenous A2BR expression vs. A2AR in both coronary small arteries and primary cultured coronary SMCs. Moreover, Up4A-induced coronary SMC relaxation was blunted by H2O2 catabolism. This effect was not altered by KATP channel blockade. Combination of H2O2 catabolism and A2AR antagonism attenuated Up4A-induced coronary SMC relaxation to the similar extent as A2AR antagonism alone. Collectively, Up4A-induced porcine coronary SMC relaxation is mediated by activation of A2AR-H2O2 pathway. This process does not involve A2BR, P2R or KATP channels.
Collapse
Affiliation(s)
- Changyan Sun
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Tong Jiao
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands; Walter-Brendel-Centre of Experimental Medicine, University Hostpital, LMU Munich, Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Zhichao Zhou
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA; Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
10
|
Pustovit KB, Potekhina VM, Ivanova AD, Petrov AM, Abramochkin DV, Kuzmin VS. Extracellular ATP and β-NAD alter electrical properties and cholinergic effects in the rat heart in age-specific manner. Purinergic Signal 2019; 15:107-117. [PMID: 30756226 DOI: 10.1007/s11302-019-09645-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/04/2019] [Indexed: 12/20/2022] Open
Abstract
Extracellular ATP and nicotinamide adenine dinucleotide (β-NAD) demonstrate properties of neurotransmitters and neuromodulators in peripheral and central nervous system. It has been shown previously that ATP and β-NAD affect cardiac functioning in adult mammals. Nevertheless, the modulation of cardiac activity by purine compounds in the early postnatal development is still not elucidated. Also, the potential influence of ATP and β-NAD on cholinergic neurotransmission in the heart has not been investigated previously. Age-dependence of electrophysiological effects produced by extracellular ATP and β-NAD was studied in the rat myocardium using sharp microelectrode technique. ATP and β-NAD could affect ventricular and supraventricular myocardium independent from autonomic influences. Both purines induced reduction of action potentials (APs) duration in tissue preparations of atrial, ventricular myocardium, and myocardial sleeves of pulmonary veins from early postnatal rats similarly to myocardium of adult animals. Both purine compounds demonstrated weak age-dependence of the effect. We have estimated the ability of ATP and β-NAD to alter cholinergic effects in the heart. Both purines suppressed inhibitory effects produced by stimulation of intracardiac parasympathetic nerve in right atria from adult animals, but not in preparations from neonates. Also, ATP and β-NAD suppressed rest and evoked release of acetylcholine (ACh) in adult animals. β-NAD suppressed effects of parasympathetic stimulation and ACh release stronger than ATP. In conclusion, ATP and β-NAD control the heart at the postsynaptic and presynaptic levels via affecting the cardiac myocytes APs and ACh release. Postsynaptic and presynaptic effects of purines may be antagonistic and the latter demonstrates age-dependence.
Collapse
Affiliation(s)
- Ksenia B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, Russia, 119991.,Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, Russia, 117997
| | - Viktoria M Potekhina
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, Russia, 119991
| | - Alexandra D Ivanova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, Russia, 119991
| | - Alexey M Petrov
- Institute of Neuroscience, Kazan State Medial University, Butlerova st. 49, Kazan, Russia, 420012.,Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", P. O. Box 30, Lobachevsky Str., 2/31, Kazan, Russia, 420111
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, Russia, 119991.,Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, Russia, 117997.,Laboratory of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Division, Russian Academy of Sciences, Pervomayskaya 50, Syktyvkar, Russia, 167982
| | - Vlad S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, Russia, 119991. .,Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, Russia, 117997.
| |
Collapse
|
11
|
Kotova PD, Bystrova MF, Rogachevskaja OA, Khokhlov AA, Sysoeva VY, Tkachuk VA, Kolesnikov SS. Coupling of P2Y receptors to Ca 2+ mobilization in mesenchymal stromal cells from the human adipose tissue. Cell Calcium 2017; 71:1-14. [PMID: 29604959 DOI: 10.1016/j.ceca.2017.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/25/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022]
Abstract
The purinergic transduction was examined in mesenchymal stromal cells (MSCs) from the human adipose tissue, and several nucleotides, including ATP, UTP, and ADP, were found to mobilize cytosolic Ca2+. Transcripts for multiple purinoreceptors were detected in MSC preparations, including A1, A2A, A2B, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y13, P2Y14, P2X2, P2X4, and P2X7. Cellular responses to nucleotides were insignificantly sensitive to bath Ca2+, pointing at a minor contribution of Ca2+ entry, and were suppressed by U73122 and 2-APB, implicating the phosphoinositide cascade in coupling P2Y receptors to Ca2+ release. While individual cells were sensitive to several P2Y agonists, responsiveness to a given nucleotide varied from cell to cell, suggesting that particular MSCs could employ different sets of purinoreceptors. Caged Ca2+ stimulated Ca2+-induced Ca2+ release (CICR) that was mediated largely by IP3 receptors, and resultant Ca2+ transients were similar to nucleotide responses by magnitude and kinetics. A variety of findings hinted at CICR to be a universal mechanism that finalizes Ca2+ signaling initiated by agonists in MSCs. Individual MSCs responded to nucleotides in an all-or-nothing manner. Presumably just CICR provided invariant Ca2+ responses observed in MSCs at different nucleotide concentrations. The effects of isoform specific agonists and antagonists suggested that both P2Y1 and P2Y13 were obligatory for ADP responses, while P2Y4 and P2Y11 served as primary UTP and ATP receptors, respectively. Extracellular NAD+ stimulated Ca2+ signaling in each ATP-responsive MSC by involving P2Y11. The overall data indicate that extracellular nucleotides and NAD+ can serve as autocrine/paracrine factors regulating MSC functions.
Collapse
Affiliation(s)
- Polina D Kotova
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutional Street 3, Pushchino, Moscow Region, 142290, Russia
| | - Marina F Bystrova
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutional Street 3, Pushchino, Moscow Region, 142290, Russia
| | - Olga A Rogachevskaja
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutional Street 3, Pushchino, Moscow Region, 142290, Russia
| | - Alexander A Khokhlov
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutional Street 3, Pushchino, Moscow Region, 142290, Russia
| | - Veronika Yu Sysoeva
- Department of Biochemistry and Molecular Medicine, Faculty of Basic Medicine, Lomonosov Moscow State University, Russia
| | - Vsevolod A Tkachuk
- Department of Biochemistry and Molecular Medicine, Faculty of Basic Medicine, Lomonosov Moscow State University, Russia
| | - Stanislav S Kolesnikov
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutional Street 3, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
12
|
Burnstock G. Purinergic Signaling in the Cardiovascular System. Circ Res 2017; 120:207-228. [PMID: 28057794 DOI: 10.1161/circresaha.116.309726] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023]
Abstract
There is nervous control of the heart by ATP as a cotransmitter in sympathetic, parasympathetic, and sensory-motor nerves, as well as in intracardiac neurons. Centers in the brain control heart activities and vagal cardiovascular reflexes involve purines. Adenine nucleotides and nucleosides act on purinoceptors on cardiomyocytes, AV and SA nodes, cardiac fibroblasts, and coronary blood vessels. Vascular tone is controlled by a dual mechanism. ATP, released from perivascular sympathetic nerves, causes vasoconstriction largely via P2X1 receptors. Endothelial cells release ATP in response to changes in blood flow (via shear stress) or hypoxia, to act on P2 receptors on endothelial cells to produce nitric oxide, endothelium-derived hyperpolarizing factor, or prostaglandins to cause vasodilation. ATP is also released from sensory-motor nerves during antidromic reflex activity, to produce relaxation of some blood vessels. Purinergic signaling is involved in the physiology of erythrocytes, platelets, and leukocytes. ATP is released from erythrocytes and platelets, and purinoceptors and ectonucleotidases are expressed by these cells. P1, P2Y1, P2Y12, and P2X1 receptors are expressed on platelets, which mediate platelet aggregation and shape change. Long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides promote migration and proliferation of vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis, vessel remodeling during restenosis after angioplasty and atherosclerosis. The involvement of purinergic signaling in cardiovascular pathophysiology and its therapeutic potential are discussed, including heart failure, infarction, arrhythmias, syncope, cardiomyopathy, angina, heart transplantation and coronary bypass grafts, coronary artery disease, diabetic cardiomyopathy, hypertension, ischemia, thrombosis, diabetes mellitus, and migraine.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- From the Autonomic Neuroscience Institute, Royal Free and University College Medical School, London, United Kingdom.
| |
Collapse
|
13
|
Kuzmin VS, Pustovit KB, Abramochkin DV. Effects of exogenous nicotinamide adenine dinucleotide (NAD+) in the rat heart are mediated by P2 purine receptors. J Biomed Sci 2016; 23:50. [PMID: 27350532 PMCID: PMC4924331 DOI: 10.1186/s12929-016-0267-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/17/2016] [Indexed: 12/13/2022] Open
Abstract
Background Recently, NAD+ has been considered as an essential factor, participating in nerve control of physiological functions and intercellular communication. NAD+ also has been supposed as endogenous activator of P1 and P2 purinoreceptors. Effects of extracellular NAD+ remain poorly investigated in cardiac tissue. This study aims to investigate the effects of extracellular NAD+ in different types of supraventricular and ventricular working myocardium from rat and their potential mechanisms. Methods The standard technique of sharp microelectrode action potential recording in cardiac multicellular preparations was used to study the effects of NAD+. Results Extracellular NAD+ induced significant changes in bioelectrical activity of left auricle (LA), right auricle (RA), pulmonary veins (PV) and right ventricular wall (RV) myocardial preparations. 10–100 μM NAD+ produced two opposite effects in LA and RA – quickly developing and transient prolongation of action potentials (AP) and delayed sustained AP shortening, which follows the initial positive effect. In PV and RV only AP shortening was observed in response to NAD+ application. In PV preparations AP shortening induced by NAD+ may be considered as a potential proarrhythmic effect. Revealed cardiotropic effects of NAD+ are likely to be mediated by P2 purine receptors, since P1 blocker DPCPX failed to affect them and P2 antagonist suramin abolished NAD + −induced alterations of electrical activity. P2X receptors may be responsible for NAD + −induced short-lasting AP prolongation, while P2Y receptors mediate persistent AP shortening. The latter effect is partially removed by PLC inhibitor U73122 showing the potential involvement of phosphoinositide signaling pathway in mediation of NAD+ cardiotropic effects. Conclusions Extracellular NAD+ is supposed to be a novel regulator of cardiac electrical activity. P2 receptors represent the main target of NAD+ at least in the rat heart.
Collapse
Affiliation(s)
- Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, 119991, Russia.,Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, 117997, Russia
| | - Ksenia B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, 119991, Russia.,Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, 117997, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, 119991, Russia. .,Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, 117997, Russia.
| |
Collapse
|