1
|
Ebo DG, Bahri R, Eggel A, Sabato V, Tontini C, Elst J. Flow cytometry-based basophil and mast cell activation tests in allergology: State of the art. J Allergy Clin Immunol 2025; 155:286-297. [PMID: 39581294 DOI: 10.1016/j.jaci.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The major challenge in allergy diagnosis is development of accessible and reliable diagnostics that can predict the clinical outcome following exposure to culprit allergen(s) or cross-reactive molecules and identification of safer alternatives than the current state-of-the-art methods. There is accumulating evidence that flow-based analyses for the quantification of activated basophils and mast cells subsequent to in vitro challenge (the basophil and mast cell activation test [BAT/MAT] or basophil activation test [BAT] and mast cell activation test [MAT]) could meet the diagnostic requirements for IgE-dependent allergies, drug hypersensitivities, and subsets of autoimmune urticaria. Furthermore, the BAT and MAT have found application in research and other nondiagnostic fields. However, appropriate use of the BAT and MAT requires understanding of the diversity of the source materials used and degranulation metrics to ensure correct test performance and interpretation of results. In this review, we provide the main applications and limitations of the BAT and MAT, as performed thus far.
Collapse
Affiliation(s)
- Didier G Ebo
- Immunology-Allergology-Rheumatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp University Hospital, and Infla-Med Centre of Excellence Antwerp University, Antwerp, Belgium; Immunology-Allergology AZ Jan Palfijn Ghent, Ghent, Belgium.
| | - Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Core Technology Facility, University of Manchester, Manchester, United Kingdom
| | - Alexander Eggel
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland; Department for BioMedical Research, Lung Precision Medicine, University of Bern, Bern, Switzerland
| | - Vito Sabato
- Immunology-Allergology-Rheumatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp University Hospital, and Infla-Med Centre of Excellence Antwerp University, Antwerp, Belgium
| | - Chiara Tontini
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Core Technology Facility, University of Manchester, Manchester, United Kingdom
| | - Jessy Elst
- Immunology-Allergology-Rheumatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp University Hospital, and Infla-Med Centre of Excellence Antwerp University, Antwerp, Belgium
| |
Collapse
|
2
|
Salcman B, Bahri R, West PW, Tontini C, Affleck K, Bulfone-Paus S. P2X7 Receptor-Induced Human Mast Cell Degranulation Is Enhanced by Interleukin 33. Int J Mol Sci 2024; 25:1730. [PMID: 38339008 PMCID: PMC10855801 DOI: 10.3390/ijms25031730] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
MCs are tissue-resident immune cells that strategically reside in barrier organs and respond effectively to a wide range of stimuli, such as IL-33, a mediator released upon epithelial damage. Adenosine triphosphate (ATP) accumulates at sites of tissue injury and is known to modulate MC activities. This study investigated how an inflammatory tissue environment rich in IL-33 modulates the ATP-mediated activation of MCs. Human primary MCs primed with IL-33 displayed a strongly increased response to ATP but not ADP. This resulted in increased degranulation, IL-8 release, and pERK1/2 signalling. Such effects are unique to IL-33 stimulation and not shared by the epithelial alarmin, TSLP. MC exposure to IL-33 also increased membrane expression of purinergic and ATP-binding P2X receptors. The use of selective P2X receptor inhibitors identified P2X7 receptor as the key mediator of the enhanced ATP-induced ERK1/2 signalling and degranulation in IL-33-primed MCs. Whilst the inhibition of P2X1 and P2X4 receptors had no effect on MC degranulation, inhibiting these receptors together with P2X7 resulted in further decreased MC-mediated degranulation. These data therefore point toward the potential mechanisms by which IL-33 contributes to the modulation of ATP-mediated activation in human MCs.
Collapse
Affiliation(s)
- Barbora Salcman
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9NT, UK; (B.S.); (R.B.); (P.W.W.); (C.T.)
| | - Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9NT, UK; (B.S.); (R.B.); (P.W.W.); (C.T.)
| | - Peter W. West
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9NT, UK; (B.S.); (R.B.); (P.W.W.); (C.T.)
| | - Chiara Tontini
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9NT, UK; (B.S.); (R.B.); (P.W.W.); (C.T.)
| | | | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9NT, UK; (B.S.); (R.B.); (P.W.W.); (C.T.)
| |
Collapse
|
3
|
Figueiredo IAD, Ferreira SRD, Fernandes JM, Silva BA, Vasconcelos LHC, Cavalcante FA. A review of the pathophysiology and the role of ion channels on bronchial asthma. Front Pharmacol 2023; 14:1236550. [PMID: 37841931 PMCID: PMC10568497 DOI: 10.3389/fphar.2023.1236550] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Asthma is one of the main non-communicable chronic diseases and affects a huge portion of the population. It is a multifactorial disease, classified into several phenotypes, being the allergic the most frequent. The pathophysiological mechanism of asthma involves a Th2-type immune response, with high concentrations of allergen-specific immunoglobulin E, eosinophilia, hyperreactivity and airway remodeling. These mechanisms are orchestrated by intracellular signaling from effector cells, such as lymphocytes and eosinophils. Ion channels play a fundamental role in maintaining the inflammatory response on asthma. In particular, transient receptor potential (TRP), stock-operated Ca2+ channels (SOCs), Ca2+-activated K+ channels (IKCa and BKCa), calcium-activated chloride channel (TMEM16A), cystic fibrosis transmembrane conductance regulator (CFTR), piezo-type mechanosensitive ion channel component 1 (PIEZO1) and purinergic P2X receptor (P2X). The recognition of the participation of these channels in the pathological process of asthma is important, as they become pharmacological targets for the discovery of new drugs and/or pharmacological tools that effectively help the pharmacotherapeutic follow-up of this disease, as well as the more specific mechanisms involved in worsening asthma.
Collapse
Affiliation(s)
- Indyra Alencar Duarte Figueiredo
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Sarah Rebeca Dantas Ferreira
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Jayne Muniz Fernandes
- Graduação em Farmácia, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Bagnólia Araújo da Silva
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Luiz Henrique César Vasconcelos
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Fabiana de Andrade Cavalcante
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
- Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
4
|
Molcak H, Jiang K, Campbell CJ, Matsubara JA. Purinergic signaling via P2X receptors and mechanisms of unregulated ATP release in the outer retina and age-related macular degeneration. Front Neurosci 2023; 17:1216489. [PMID: 37496736 PMCID: PMC10366617 DOI: 10.3389/fnins.2023.1216489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Age-related macular degeneration (AMD) is a chronic and progressive inflammatory disease of the retina characterized by photoceptor loss and significant central visual impairment due to either choroidal neovascularization or geographic atrophy. The pathophysiology of AMD is complex and multifactorial, driven by a combination of modifiable and non-modifiable risk factors, molecular mechanisms, and cellular processes that contribute to overall disease onset, severity, and progression. Unfortunately, due to the structural, cellular, and pathophysiologic complexity, therapeutic discovery is challenging. While purinergic signaling has been investigated for its role in the development and treatment of ocular pathologies including AMD, the potential crosstalk between known contributors to AMD, such as the complement cascade and inflammasome activation, and other biological systems, such as purinergic signaling, have not been fully characterized. In this review, we explore the interactions between purinergic signaling, ATP release, and known contributors to AMD pathogenesis including complement dysregulation and inflammasome activation. We begin by identifying what is known about purinergic receptors in cell populations of the outer retina and potential sources of extracellular ATP required to trigger purinergic receptor activation. Next, we examine evidence in the literature that the purinergic system accelerates AMD pathogenesis leading to apoptotic and pyroptotic cell death in retinal cells. To fully understand the potential role that purinergic signaling plays in AMD, more research is needed surrounding the expression, distribution, functions, and interactions of purinergic receptors within cells of the outer retina as well as potential crosstalk with other systems. By determining how these processes are affected in the context of purinergic signaling, it will improve our understanding of the mechanisms that drive AMD pathogenesis which is critical in developing treatment strategies that prevent or slow progression of the disease.
Collapse
Affiliation(s)
- Haydn Molcak
- Matsubara Lab, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Eye Care Centre, Vancouver, BC, Canada
| | - Kailun Jiang
- Matsubara Lab, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Eye Care Centre, Vancouver, BC, Canada
| | | | - Joanne A. Matsubara
- Matsubara Lab, Faculty of Medicine, Department of Ophthalmology and Visual Sciences, Eye Care Centre, Vancouver, BC, Canada
| |
Collapse
|
5
|
Wang C, Zhao X, Zhang H, Bing Z, Wu Y, Li R, Yang Y, Yang K. Comprehensive analysis of immune-related genes associated with the microenvironment of patients with unexplained infertility. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:84. [PMID: 36819496 PMCID: PMC9929778 DOI: 10.21037/atm-22-5810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/07/2023] [Indexed: 01/30/2023]
Abstract
Background Disturbances in immunological responses and modulation lead to implantation and pregnancy failure and might be involved in the pathogenesis of infertility. This project aimed to screen and identify immune-related genes as potential biomarkers for treatment. Methods Gene expression profiles were obtained from Gene Expression Omnibus (GEO) databases. Differentially expressed genes (DEGs) were screened using GEO 2R to explore potential biomarkers. Protein-protein interaction (PPI) network analysis and functional enrichment analysis were applied to explore possible mechanisms. The deconvolution algorithm [referred to as Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT)] was employed to assess tissue-infiltrating immune cells. Western blot analysis and immunohistochemistry (IHC) were conducted for determination of protein levels. Results In this research, we identified 24 candidate immune-related DEGs via combined DEGs and functional analysis. We also found that the ratio of M0 macrophages and resting mast cells was higher in infertile group (P<0.05), whereas the amounts of activated natural killer (NK) cells was significantly lower compared with the control group (P<0.05). Furthermore, we evaluated the relationship between immune cells and candidate genes and found that 17 genes were related to M0 macrophages, resting mast cells, or activated NK cells. The genes CD40, PRF1, and EDN3 were chosen based on validation from independent datasets. Finally, our clinical samples confirmed the expression of the 3 genes. Conclusions The study recognized 3 genes that are signatures and could be potential biomarkers for unexplained infertility. These genes might guide the immunotherapy of these patients and become new treatment targets.
Collapse
Affiliation(s)
- Caiyun Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China;,Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, China;,Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China;,Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Xiaodong Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China;,Reproductive Medicine Center of The First Hospital of Lanzhou University, Lanzhou, China
| | - Haibin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China;,Department of Obstetrics and Gynecology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhitong Bing
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China;,Department of Computational Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yu Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China;,Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Rui Li
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China;,Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China;,Evidence-Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yongxiu Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China;,Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Kehu Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China;,Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China;,Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China;,Department of Computational Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
6
|
Lian X, Zhang W, He-Yang J, Zhou X. Human milk oligosaccharide disialyllacto-n-tetraose protects human intestinal epithelium integrity and permeability against mast cell chymase-induced disruption by stabilizing ZO-1/FAK/P38 pathway of intestinal epithelial cell. Immunopharmacol Immunotoxicol 2022:1-10. [PMID: 36537314 DOI: 10.1080/08923973.2022.2160730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONTEXT Inflammatory bowel disease (IBD) is a chronic gut disease with intestinal-epithelium disruption. Mast cell (MC) has been discussed in IBD studies, but its subset MCTC (chymase/tryptase) and MC-chymase have not been well-explored extensively. Human-milk-oligosaccharide-Disialyllacto-N-Tetraose (DSLNT) was reported as an effective strategy to protect infants against IBD with unclear mechanism. OBJECTIVE This study was to examine the distribution of chymase-positive mast cells in the intestinal-epithelium-tissue of IBD infants, to explore the MC-chymase function on intestinal-epithelium, and to investigate the influences of DSLNT against MC-chymase-induced disruptions. MATERIALS AND METHODS The intestinal-biopsies (surgical-waste) of the infants with IBD or with intestinal-atresia (non-IBD) were paraffin-embedded for immunohistochemistry. In-situ intestinal-tissue model and in-vitro human-intestinal-epithelial-cell (Caco-2) model were established with or without the treatments of MC-chymase (50mU/mL), DSLNT (600 µM) and DSLNT + MC-chymase respectively. The tissue morphology analysis, cell proliferation assay, cell-gap-closure assessment, fluorescence-immunocytochemistry, western blot, trans-epithelial-electrical-resistance, cell-cycle and statistical analysis were applied. RESULTS There was an increased number of MCTC subset around the inflamed intestinal area in-vivo; MC-chymase caused intestinal-epithelial-barrier damage in-situ, decreased trans-epithelial-electrical-resistance of caco-2 cell monolayer in-vitro; while DSLNT protected epithelium against MC-chymase induced disruptions. MC-chymase reduced cell-viability, proliferation and migration, altered cell-cycle, down-regulated ZO-1, FAK, and P38 expressions, while DSLNT protected cells by impairing MC-chymase-induced interruptions. DSLNT can rescue ZO-1, FAK and P38 expressions and restore epithelial-cell integrity and cell cycle. CONCLUSIONS Chymase-positive MCs are involved in IBD progress. MC-chymase disrupts intracellular ZO-1/FAK/P38 signal pathway and cell-cell/cell-matrix contacts, while DSLNT protects intestinal-epithelium against MC-chymase to maintain the intestinal epithelium integrity.
Collapse
Affiliation(s)
- Xuejiao Lian
- The School of Pharmacy, Changzhou University, Jiangsu, China
| | - Wenting Zhang
- The School of Pharmacy, Changzhou University, Jiangsu, China.,Department of Pharmacy, Changzhou Children's Hospital, Changzhou, China
| | - Jingqiu He-Yang
- The School of Pharmacy, Changzhou University, Jiangsu, China
| | - Xiaoying Zhou
- The School of Pharmacy, Changzhou University, Jiangsu, China
| |
Collapse
|
7
|
Alberto AVP, Ferreira NCDS, Bonavita AGC, Nihei OK, de Farias FP, Bisaggio RDC, de Albuquerque C, Savino W, Coutinho‐Silva R, Persechini PM, Alves LA. Physiologic roles of P2 receptors in leukocytes. J Leukoc Biol 2022; 112:983-1012. [PMID: 35837975 PMCID: PMC9796137 DOI: 10.1002/jlb.2ru0421-226rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Since their discovery in the 1970s, purinergic receptors have been shown to play key roles in a wide variety of biologic systems and cell types. In the immune system, purinergic receptors participate in innate immunity and in the modulation of the adaptive immune response. In particular, P2 receptors, which respond to extracellular nucleotides, are widely expressed on leukocytes, causing the release of cytokines and chemokines and the formation of inflammatory mediators, and inducing phagocytosis, degranulation, and cell death. The activity of these receptors is regulated by ectonucleotidases-expressed in these same cell types-which regulate the availability of nucleotides in the extracellular environment. In this article, we review the characteristics of the main purinergic receptor subtypes present in the immune system, focusing on the P2 family. In addition, we describe the physiologic roles of the P2 receptors already identified in leukocytes and how they can positively or negatively modulate the development of infectious diseases, inflammation, and pain.
Collapse
Affiliation(s)
- Anael Viana Pinto Alberto
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| | | | | | - Oscar Kenji Nihei
- Center of Education and LetterState University of the West of ParanáFoz do IguaçuPRBrazil
| | | | - Rodrigo da Cunha Bisaggio
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Federal Institute of Education, Science, and Technology of Rio de JaneiroRio de JaneiroRJBrazil
| | | | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil,Brazilian National Institute of Science and Technology on NeuroimmunomodulationRio de Janeiro Research Network on NeuroinflammationRio de JaneiroRJBrazil
| | - Robson Coutinho‐Silva
- Laboratory of Immunophysiology, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Pedro Muanis Persechini
- Laboratory of Immunobiophysics, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Luiz Anastacio Alves
- Laboratory of Cellular Communication, Oswaldo Cruz InstituteOswaldo Cruz FoundationRio de JaneiroRJBrazil
| |
Collapse
|
8
|
Matsuoka I, Yoshida K, Ito MA. Purinergic regulation of mast cell function: P2X4 receptor-mediated enhancement of allergic responses. J Pharmacol Sci 2022; 150:94-99. [PMID: 36055757 DOI: 10.1016/j.jphs.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022] Open
Abstract
Adenosine triphosphate (ATP) initially attracted attention as a neurotransmitter, with much research conducted on the regulation of neurotransmission in the autonomic and central nervous systems. ATP is also abundant as an energy currency in all living cells and is released into extracellular spaces by various regulated mechanisms. The role of ATP and related purine and pyrimidine nucleotides as extracellular signaling molecules in the regulation of immune cell functions has been reported as evidence for purinergic signaling and has become the focus of attention as therapeutic targets for various diseases. Mast cells (MCs) are distributed in tissues in contact with the outside environment and are the first immune cells to respond to non-microbial environmental antigens. Although extracellular ATP is known as an activator of MCs, the details remain to be investigated. Based on our series of studies, this review describes the unique features of ionotropic P2X4 receptor signals in MC functions. The role of purinergic signaling may exist in combination with various physiological, chemical and physical stimuli. The characteristics of P2X4 receptor-mediated action in MCs described in this article may provide clues to reveal the previously unknown effects induced by purinergic signaling.
Collapse
Affiliation(s)
- Isao Matsuoka
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan.
| | - Kazuki Yoshida
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan
| | - Masa-Aki Ito
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan
| |
Collapse
|
9
|
Yue M, Hu M, Fu F, Ruan H, Wu C. Emerging Roles of Platelets in Allergic Asthma. Front Immunol 2022; 13:846055. [PMID: 35432313 PMCID: PMC9010873 DOI: 10.3389/fimmu.2022.846055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/21/2023] Open
Abstract
Allergic asthma is a complex chronic inflammatory disease of the airways, driven by Th2 immune responses and characterized by eosinophilic pulmonary inflammation, airway hyperresponsiveness, excessive mucus production, and airway remodeling. Overwhelming evidence from studies in animal models and allergic asthmatic patients suggests that platelets are aberrantly activated and recruited to the lungs. It has been established that platelets can interact with other immune cells and secrete various biochemical mediators to promote allergic sensitization and airway inflammatory response, and platelet deficiency may alleviate the pathological features and symptoms of allergic asthma. However, the comprehensive roles of platelets in allergic asthma have not been fully clarified, leaving attempts to treat allergic asthma with antiplatelet agents questionable. In this review, we summarize the role of platelet activation and pulmonary accumulation in allergic asthma; emphasis is placed on the different interactions between platelets with crucial immune cell types and the contribution of platelet-derived mediators in this context. Furthermore, clinical antiplatelet approaches to treat allergic asthma are discussed. This review provides a clearer understanding of the roles of platelets in the pathogenesis of allergic asthma and could be informative in the development of novel strategies for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Ming Yue
- Department of Physiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengjiao Hu
- Department of Immunology and Microbiology, College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Hongfeng Ruan,
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Mangum JE, Needham KW, Sieck DC, Ely MR, Larson EA, Peck MC, Minson CT, Halliwill JR. The effect of local passive heating on skeletal muscle histamine concentration: implications for exercise-induced histamine release. J Appl Physiol (1985) 2022; 132:367-374. [PMID: 34941436 PMCID: PMC8799384 DOI: 10.1152/japplphysiol.00740.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aerobic exercise induces mast cell degranulation and increases histamine formation by histidine decarboxylase, resulting in an ∼150% increase in intramuscular histamine. The purpose of this study was to determine if the increase in skeletal muscle temperature associated with exercise is sufficient to explain this histamine response. Specifically, we hypothesized that local passive heating that mimics the magnitude and time course of changes in skeletal muscle temperature observed during exercise would result in increased intramuscular histamine concentrations comparable to exercising values. Seven subjects participated in the main study in which pulsed short-wave diathermy was used to passively raise the temperature of the vastus lateralis over 60 min. Heating increased intramuscular temperature from 32.6°C [95% confidence interval (CI) 32.0°C to 33.2°C] to 38.9°C (38.7°C to 39.2°C) (P < 0.05) and increased intramuscular histamine concentration from 2.14 ng/mL (1.92 to 2.36 ng/mL) to 2.97 ng/mL (2.57 to 3.36 ng/mL) (P < 0.05), an increase of 41%. In a follow-up in vitro experiment using human-derived cultured mast cells, heating to comparable temperatures did not activate mast cell degranulation. Therefore, it appears that exercise-associated changes in skeletal muscle temperature are sufficient to generate elevations in intramuscular histamine concentration. However, this thermal effect is most likely due to changes in de novo histamine formation via histidine decarboxylase and not due to degranulation of mast cells. In conclusion, physiologically relevant increases in skeletal muscle temperature explain part, but not all, of the histamine response to aerobic exercise. This thermal effect may be important in generating positive adaptations to exercise training.NEW & NOTEWORTHY The "exercise signal" that triggers histamine release within active skeletal muscle during aerobic exercise is unknown. By mimicking the magnitude and time course of increasing skeletal muscle temperature observed during aerobic exercise, we demonstrate that part of the exercise-induced rise in histamine is explained by a thermal effect, with in vitro experiments suggesting this is most likely via de novo histamine formation. This thermal effect may be important in generating positive adaptations to exercise training.
Collapse
Affiliation(s)
- Joshua E. Mangum
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Karen Wiedenfeld Needham
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Dylan C. Sieck
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Matthew R. Ely
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Emily A. Larson
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Mairin C. Peck
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Christopher T. Minson
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - John R. Halliwill
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, Oregon
| |
Collapse
|
11
|
Straus DB, Pryor D, Haque TT, Kee SA, Dailey JM, Jackson KG, Barnstein BO, Ryan JJ. IL-33 priming amplifies ATP-mediated mast cell cytokine production. Cell Immunol 2022; 371:104470. [PMID: 34942481 DOI: 10.1016/j.cellimm.2021.104470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 12/28/2022]
Abstract
Inflammatory responses are required to block pathogen infection but can also lead to hypersensitivity and chronic inflammation. Barrier tissues actively release IL-33, ATP, and other alarmins during cell stress, helping identify pathogenic stimuli. However, it is unclear how these signals are integrated. Mast cells are critical initiators of allergic inflammation and respond to IL-33 and ATP. We found that mouse mast cells had a 3-6-fold increase in ATP-induced cytokine production when pre-treated with IL-33. This effect was observed at ATP concentrations < 100 µM and required < 30-minute IL-33 exposure. ATP-induced degranulation was not enhanced by pretreatment nor was the response to several pathogen molecules. Mechanistic studies implicated the P2X7 receptor and calcineurin/NFAT pathway in the enhanced ATP response. Finally, we found that IL-33 + ATP co-stimulation enhanced peritoneal eosinophil and macrophage recruitment. These results support the hypothesis that alarmins collaborate to surpass a threshold necessary to initiate an inflammatory response.
Collapse
Affiliation(s)
- David B Straus
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Destiny Pryor
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Tamara T Haque
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sydney A Kee
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Jordan M Dailey
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Kaitlyn G Jackson
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Brian O Barnstein
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
12
|
Hasan D, Shono A, van Kalken CK, van der Spek PJ, Krenning EP, Kotani T. A novel definition and treatment of hyperinflammation in COVID-19 based on purinergic signalling. Purinergic Signal 2021; 18:13-59. [PMID: 34757513 PMCID: PMC8578920 DOI: 10.1007/s11302-021-09814-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/18/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperinflammation plays an important role in severe and critical COVID-19. Using inconsistent criteria, many researchers define hyperinflammation as a form of very severe inflammation with cytokine storm. Therefore, COVID-19 patients are treated with anti-inflammatory drugs. These drugs appear to be less efficacious than expected and are sometimes accompanied by serious adverse effects. SARS-CoV-2 promotes cellular ATP release. Increased levels of extracellular ATP activate the purinergic receptors of the immune cells initiating the physiologic pro-inflammatory immune response. Persisting viral infection drives the ATP release even further leading to the activation of the P2X7 purinergic receptors (P2X7Rs) and a severe yet physiologic inflammation. Disease progression promotes prolonged vigorous activation of the P2X7R causing cell death and uncontrolled ATP release leading to cytokine storm and desensitisation of all other purinergic receptors of the immune cells. This results in immune paralysis with co-infections or secondary infections. We refer to this pathologic condition as hyperinflammation. The readily available and affordable P2X7R antagonist lidocaine can abrogate hyperinflammation and restore the normal immune function. The issue is that the half-maximal effective concentration for P2X7R inhibition of lidocaine is much higher than the maximal tolerable plasma concentration where adverse effects start to develop. To overcome this, we selectively inhibit the P2X7Rs of the immune cells of the lymphatic system inducing clonal expansion of Tregs in local lymph nodes. Subsequently, these Tregs migrate throughout the body exerting anti-inflammatory activities suppressing systemic and (distant) local hyperinflammation. We illustrate this with six critically ill COVID-19 patients treated with lidocaine.
Collapse
Affiliation(s)
| | - Atsuko Shono
- Department of Anaesthesiology and Critical Care Medicine, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| | | | - Peter J van der Spek
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Erasmus Universiteit Rotterdam, 3015 CE, Rotterdam, The Netherlands
| | | | - Toru Kotani
- Department of Anaesthesiology and Critical Care Medicine, School of Medicine, Showa University, Tokyo, 142-8666, Japan
| |
Collapse
|
13
|
Kong X, Bennett WC, Jania CM, Chason KD, German Z, Adouli J, Budney SD, Oby BT, van Heusden C, Lazarowski ER, Jaspers I, Randell SH, Hedgespeth BA, Cruse G, Hua X, Schworer SA, Smith GJ, Kelada SN, Tilley SL. Identification of an ATP/P2X7/mast cell pathway mediating ozone-induced bronchial hyperresponsiveness. JCI Insight 2021; 6:e140207. [PMID: 34546976 PMCID: PMC8663556 DOI: 10.1172/jci.insight.140207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/16/2021] [Indexed: 11/20/2022] Open
Abstract
Ozone is a highly reactive environmental pollutant with well-recognized adverse effects on lung health. Bronchial hyperresponsiveness (BHR) is one consequence of ozone exposure, particularly for individuals with underlying lung disease. Our data demonstrated that ozone induced substantial ATP release from human airway epithelia in vitro and into the airways of mice in vivo and that ATP served as a potent inducer of mast cell degranulation and BHR, acting through P2X7 receptors on mast cells. Both mast cell-deficient and P2X7 receptor-deficient (P2X7-/-) mice demonstrated markedly attenuated BHR to ozone. Reconstitution of mast cell-deficient mice with WT mast cells and P2X7-/- mast cells restored ozone-induced BHR. Despite equal numbers of mast cells in reconstituted mouse lungs, mice reconstituted with P2X7-/- mast cells demonstrated significantly less robust BHR than mice reconstituted with WT mast cells. These results support a model where P2X7 on mast cells and other cell types contribute to ozone-induced BHR.
Collapse
Affiliation(s)
- Xiaomei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - William C Bennett
- Marsico Lung Institute and
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Corey M Jania
- Marsico Lung Institute and
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Kelly D Chason
- Marsico Lung Institute and
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Zachary German
- Marsico Lung Institute and
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jennifer Adouli
- Marsico Lung Institute and
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Samuel D Budney
- Marsico Lung Institute and
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Brandon T Oby
- Marsico Lung Institute and
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Catharina van Heusden
- Marsico Lung Institute and
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Eduardo R Lazarowski
- Marsico Lung Institute and
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Ilona Jaspers
- Department of Pediatrics and Center for Environmental Medicine, Asthma, and Lung Biology and
| | - Scott H Randell
- Marsico Lung Institute and
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Barry A Hedgespeth
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Glenn Cruse
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Xiaoyang Hua
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Otolaryngology - Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Stephen A Schworer
- Marsico Lung Institute and
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
- Division of Allergy and Immunology, Department of Pediatrics, and
| | - Gregory J Smith
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Samir Np Kelada
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephen L Tilley
- Marsico Lung Institute and
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Salcman B, Affleck K, Bulfone-Paus S. P2X Receptor-Dependent Modulation of Mast Cell and Glial Cell Activities in Neuroinflammation. Cells 2021; 10:cells10092282. [PMID: 34571930 PMCID: PMC8471135 DOI: 10.3390/cells10092282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 11/27/2022] Open
Abstract
Localisation of mast cells (MCs) at the abluminal side of blood vessels in the brain favours their interaction with glial cells, neurons, and endothelial cells, resulting in the activation of these cells and the release of pro-inflammatory mediators. In turn, stimulation of glial cells, such as microglia, astrocytes, and oligodendrocytes may result in the modulation of MC activities. MCs, microglia, astrocytes, and oligodendrocytes all express P2X receptors (P2XRs) family members that are selectively engaged by ATP. As increased concentrations of extracellular adenosine 5′-triphosphate (ATP) are present in the brain in neuropathological conditions, P2XR activation in MCs and glial cells contributes to the control of their communication and amplification of the inflammatory response. In this review we discuss P2XR-mediated MC activation, its bi-directional effect on microglia, astrocytes and oligodendrocytes and role in neuroinflammation.
Collapse
Affiliation(s)
- Barbora Salcman
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK;
| | - Karen Affleck
- GlaxoSmithKline, Immunology Research Unit, Stevenage SG1 2NY, UK;
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK;
- Correspondence:
| |
Collapse
|
15
|
Nishi H, Niyonsaba F, Pelleg A, Schulman ES. Enhancement of Mast Cell Degranulation Mediated by Purinergic Receptors' Activation and PI3K Type δ. THE JOURNAL OF IMMUNOLOGY 2021; 207:1001-1008. [PMID: 34330752 DOI: 10.4049/jimmunol.2001002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/28/2021] [Indexed: 11/19/2022]
Abstract
Mast cells express multiple metabotropic purinergic P2Y receptor (P2YR) subtypes. Few studies have evaluated their role in human mast cell (HMC) allergic response as quantified by degranulation induced by cross-linking the high-affinity IgE receptor (FcεRI). We have previously shown that extracellular nucleotides modify the FcεRI activation-dependent degranulation in HMCs derived from human lungs, but the mechanism of this action has not been fully delineated. This study was undertaken to determine the mechanism of activation of P2YRs on the degranulation of HMCs and elucidate the specific postreceptor pathways involved. Sensitized LAD2 cells, a human-derived mast cell line, were subjected to a weak allergic stimulation (WAS) using a low concentration of Ag in the absence and presence of P2YR agonists. Only the metabotropic purinergic P2Y11 receptor (P2Y11R) agonist, adenosine 5'-(3-thio)triphosphate (ATPγS), enhanced WAS-induced degranulation resulting in a net 7-fold increase in release (n = 4; p < 0.01). None of the P2YR agonists tested, including high concentrations of ATPγS (1000 μM), enhanced WAS-induced intracellular Ca2+ mobilization, an essential component of activated FcεRI-induced degranulation. Both a PI3K inhibitor and the relevant gene knockout decreased the ATPγS-induced enhancement. The effect of ATPγS was associated with enhanced phosphorylation of PI3K type δ and protein kinase B, but not the phosphoinositide-dependent kinase-1. The effects of ATPγS were dose dependently inhibited by NF157, a P2Y11R antagonist. To our knowledge, these data indicate for the first time that P2YR is linked to enhancement of allergic degranulation in HMC via the PI3K/protein kinase B pathway.
Collapse
Affiliation(s)
- Haruhisa Nishi
- Department of Pharmacology, Jikei University School of Medicine, Tokyo, Japan;
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan
| | - Amir Pelleg
- Danmir Therapeutics, LLC, Haverford, PA; and
| | | |
Collapse
|
16
|
Jiang Y, Ye F, Du Y, Zong Y, Tang Z. P2X7R in Mast Cells is a Potential Target for Salicylic Acid and Aspirin in Treatment of Inflammatory Pain. J Inflamm Res 2021; 14:2913-2931. [PMID: 34239315 PMCID: PMC8259951 DOI: 10.2147/jir.s313348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/04/2021] [Indexed: 12/27/2022] Open
Abstract
Background Mast cells are well known for their role in inflammatory pain. P2X7 receptor (P2X7R) has attracted much attention due to its prominent role in inflammatory diseases. Salicylates are commonly used anti-inflammatory and analgesic drugs. Until now, little has been known about whether P2X7R in mast cells is involved in inflammatory pain and whether it is a potential target for salicylates. Methods First, the expression of P2X receptors in mouse peritoneal mast cells was detected by using RT-PCR, immunofluorescence, calcium imaging and electrophysiological technique. In addition, the functions of P2X receptors, especially P2X7R, in mast cells were studied by using QPCR, ELISA and behavioral tests. Furthermore, P2X7R was used as a target to screen for some anti-inflammatory monomers that could inhibit its activity. At last, the effect of salicylic acid (SA) and aspirin (ASA) on the activity of P2X7R was studied by using calcium imaging, electrophysiological technique, ELISA, real-time PCR, behavioral tests, immunofluorescence and molecular docking. Results We found that P2X1, P2X3, P2X4 and P2X7 receptors were expressed in mouse peritoneal mast cells. The functions of different P2X receptors were various. Activation of P2X7R in mouse mast cells induced the release of inflammatory mediators, such as histamine, IL-1β, and CCL3. In addition, inflammation pain induced by high concentrations of ATP could be alleviated by P2X7R blockers or mast cell defects. Interestingly, SA or ASA could reduce high concentrations of ATP-induced inward current, P2X7R upregulation, mediators release, and inflammatory pain. SA or ASA also inhibited the inward current evoked by P2X7R agonist, BZATP. Molecular docking showed that SA or ASA had affinity for the cytoplasmic GDP-binding region of P2X7R. Conclusion P2X7R in mast cells was involved in inflammation pain by releasing inflammatory mediators, and P2X7R might be a potential target for SA and ASA analgesia.
Collapse
Affiliation(s)
- Yucui Jiang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China.,School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Fan Ye
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Ying Du
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Yingxin Zong
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Zongxiang Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
17
|
Thompson RJ, Sayers I, Kuokkanen K, Hall IP. Purinergic Receptors in the Airways: Potential Therapeutic Targets for Asthma? FRONTIERS IN ALLERGY 2021; 2:677677. [PMID: 35386996 PMCID: PMC8974712 DOI: 10.3389/falgy.2021.677677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
Extracellular ATP functions as a signaling messenger through its actions on purinergic receptors, and is known to be involved in numerous physiological and pathophysiological processes throughout the body, including in the lungs and airways. Consequently, purinergic receptors are considered to be promising therapeutic targets for many respiratory diseases, including asthma. This review explores how online bioinformatics resources combined with recently generated datasets can be utilized to investigate purinergic receptor gene expression in tissues and cell types of interest in respiratory disease to identify potential therapeutic targets, which can then be investigated further. These approaches show that different purinergic receptors are expressed at different levels in lung tissue, and that purinergic receptors tend to be expressed at higher levels in immune cells and at more moderate levels in airway structural cells. Notably, P2RX1, P2RX4, P2RX7, P2RY1, P2RY11, and P2RY14 were revealed as the most highly expressed purinergic receptors in lung tissue, therefore suggesting that these receptors have good potential as therapeutic targets for asthma and other respiratory diseases.
Collapse
Affiliation(s)
- Rebecca J. Thompson
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, National Institute for Health Research, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Ian Sayers
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, National Institute for Health Research, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Katja Kuokkanen
- Orion Corporation, Orion Pharma, Research and Development, Turku, Finland
| | - Ian P. Hall
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, National Institute for Health Research, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Ian P. Hall
| |
Collapse
|
18
|
Nurkhametova D, Siniavin A, Streltsova M, Kudryavtsev D, Kudryavtsev I, Giniatullina R, Tsetlin V, Malm T, Giniatullin R. Does Cholinergic Stimulation Affect the P2X7 Receptor-Mediated Dye Uptake in Mast Cells and Macrophages? Front Cell Neurosci 2020; 14:548376. [PMID: 33328886 PMCID: PMC7673375 DOI: 10.3389/fncel.2020.548376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Extracellular ATP is a powerful trigger of neuroinflammation by activating immune cells via P2X7 receptors. Acetylcholine and nicotinic agonists inhibit ATP-triggered proinflammatory cytokines via the so-called “cholinergic anti-inflammatory pathway” (CAP). However, it remains unclear as to what stage of ATP-induced signaling cholinergic agents provide this anti-inflammatory effect. Using the specific property of P2X7 receptor to open a pathway permeable to large molecules, associated with activation of inflammasome, we studied the action of cholinergic agents on this key event in CAP activation. Methods: Freshly isolated mouse peritoneal mast cells and primary human macrophages were used. To assess P2X7 channel opening, the permeability to the fluorescent dye YO-PRO1 or ethidium bromide (EtBr) was measured by flow cytometry. Expression of nicotinic receptors was probed in macrophages with the fluorescently labeled α-bungarotoxin or with patch-clamp recordings. Results: ATP opened P2X7 ion channels in mast cells and macrophages permeable to YO-PRO1 or EtBr, respectively. This stimulatory effect in mast cells was inhibited by the specific P2X7 antagonist A839977 confirming that YO-PRO1 uptake was mediated via ATP-gated P2X7 ion channels. Cholinergic agents also slightly induced dye uptake to mast cells but not in macrophages, which expressed functional α7 nicotinic receptors. However, both in mast cells and in macrophages, acetylcholine and nicotine failed to inhibit the stimulatory effect of ATP on dye uptake. Conclusion: These data suggest that in immune cells, cholinergic agents do not act on P2X7 receptor-coupled large pore formation but can mediate the anti-inflammatory effect underlying CAP downstream of ATP-driven signaling.
Collapse
Affiliation(s)
- Dilyara Nurkhametova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Andrei Siniavin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria Streltsova
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Denis Kudryavtsev
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor Kudryavtsev
- Department of Immunology, Institute of Experimental Medicine, St. Petersburg, Russia.,Department of Fundamental Medicine, Far Eastern Federal University, Vladivostok, Russia
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Victor Tsetlin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
19
|
Xu H, Shi X, Li X, Zou J, Zhou C, Liu W, Shao H, Chen H, Shi L. Neurotransmitter and neuropeptide regulation of mast cell function: a systematic review. J Neuroinflammation 2020; 17:356. [PMID: 33239034 PMCID: PMC7691095 DOI: 10.1186/s12974-020-02029-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The existence of the neural control of mast cell functions has long been proposed. Mast cells (MCs) are localized in association with the peripheral nervous system (PNS) and the brain, where they are closely aligned, anatomically and functionally, with neurons and neuronal processes throughout the body. They express receptors for and are regulated by various neurotransmitters, neuropeptides, and other neuromodulators. Consequently, modulation provided by these neurotransmitters and neuromodulators allows neural control of MC functions and involvement in the pathogenesis of mast cell–related disease states. Recently, the roles of individual neurotransmitters and neuropeptides in regulating mast cell actions have been investigated extensively. This review offers a systematic review of recent advances in our understanding of the contributions of neurotransmitters and neuropeptides to mast cell activation and the pathological implications of this regulation on mast cell–related disease states, though the full extent to which such control influences health and disease is still unclear, and a complete understanding of the mechanisms underlying the control is lacking. Future validation of animal and in vitro models also is needed, which incorporates the integration of microenvironment-specific influences and the complex, multifaceted cross-talk between mast cells and various neural signals. Moreover, new biological agents directed against neurotransmitter receptors on mast cells that can be used for therapeutic intervention need to be more specific, which will reduce their ability to support inflammatory responses and enhance their potential roles in protecting against mast cell–related pathogenesis.
Collapse
Affiliation(s)
- Huaping Xu
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xiaoyun Shi
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xin Li
- School of Food Science, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Jiexin Zou
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Chunyan Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Wenfeng Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Huming Shao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Linbo Shi
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
20
|
Koroleva K, Ermakova E, Mustafina A, Giniatullina R, Giniatullin R, Sitdikova G. Protective Effects of Hydrogen Sulfide Against the ATP-Induced Meningeal Nociception. Front Cell Neurosci 2020; 14:266. [PMID: 32982692 PMCID: PMC7492747 DOI: 10.3389/fncel.2020.00266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/29/2020] [Indexed: 11/26/2022] Open
Abstract
We previously showed that extracellular ATP and hydrogen sulfide (H2S), a recently discovered gasotransmitter, are both triggering the nociceptive firing in trigeminal nociceptors implicated in migraine pain. ATP contributes to meningeal nociception by activating the P2X3 subunit-containing receptors whereas H2S operates mainly via TRP receptors. However, H2S was also proposed as a neuroprotective and anti-nociceptive agent. This study aimed to test the effect of H2S on ATP-mediated nociceptive responses in rat meningeal afferents and trigeminal neurons and on ATP-induced degranulation of dural mast cells. Electrophysiological recording of trigeminal nerve activity in meninges was supplemented by patch-clamp and calcium imaging studies of isolated trigeminal neurons. The H2S donor NaHS induced a mild activation of afferents and fully suppressed the subsequent ATP-induced firing of meningeal trigeminal nerve fibers. This anti-nociceptive effect of H2S was specific as an even stronger effect of capsaicin did not abolish the action of ATP. In isolated trigeminal neurons, NaHS decreased the inward currents and calcium transients evoked by activation of ATP-gated P2X3 receptors. Moreover, NaHS prevented ATP-induced P2X7 receptor-mediated degranulation of meningeal mast cells which emerged as triggers of migraine pain. Finally, NaHS decreased the concentration of extracellular ATP in the meningeal preparation. Thus, H2S exerted the multiple protective actions against the nociceptive effects of ATP. These data highlight the novel pathways to reduce purinergic mechanisms of migraine with pharmacological donors or by stimulation production of endogenous H2S.
Collapse
Affiliation(s)
- Kseniia Koroleva
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elizaveta Ermakova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alsu Mustafina
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,A.I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Guzel Sitdikova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
21
|
Bonvini SJ, Birrell MA, Dubuis E, Adcock JJ, Wortley MA, Flajolet P, Bradding P, Belvisi MG. Novel airway smooth muscle-mast cell interactions and a role for the TRPV4-ATP axis in non-atopic asthma. Eur Respir J 2020; 56:13993003.01458-2019. [PMID: 32299856 PMCID: PMC7330131 DOI: 10.1183/13993003.01458-2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/27/2020] [Indexed: 01/28/2023]
Abstract
Mast cell–airway smooth muscle (ASM) interactions play a major role in the immunoglobulin (Ig)E- dependent bronchoconstriction seen in asthma but less is known about IgE-independent mechanisms of mast cell activation. Transient receptor potential cation channel, subfamily V, member 4 (TRPV4) activation causes contraction of human ASM via the release of cysteinyl leukotrienes (cysLTs) but the mechanism is unknown. The objective of the present study was to investigate a role for IgE-independent, mast cell–ASM interaction in TRPV4-induced bronchospasm. A technique not previously applied to respiratory research now uncovers important IgE-independent mechanisms involved in human mast cell–airway smooth muscle interactions that may be responsible for the bronchospasm associated with non-atopic asthmahttp://bit.ly/2U1n5nT
Collapse
Affiliation(s)
- Sara J Bonvini
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK.,Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Contributed equally
| | - Mark A Birrell
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK.,Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Contributed equally
| | - Eric Dubuis
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - John J Adcock
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK.,Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael A Wortley
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Pauline Flajolet
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter Bradding
- Dept of Infection, Immunity and Inflammation, University of Leicester University, Institute for Lung Health, Glenfield Hospital, Leicester, UK
| | - Maria G Belvisi
- Respiratory Pharmacology Group, Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK .,Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
22
|
Yoshida K, Ito MA, Sato N, Obayashi K, Yamamoto K, Koizumi S, Tanaka S, Furuta K, Matsuoka I. Extracellular ATP Augments Antigen-Induced Murine Mast Cell Degranulation and Allergic Responses via P2X4 Receptor Activation. THE JOURNAL OF IMMUNOLOGY 2020; 204:3077-3085. [PMID: 32358018 DOI: 10.4049/jimmunol.1900954] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 04/06/2020] [Indexed: 01/09/2023]
Abstract
Extracellular ATP released from stimulated and/or damaged cells modulates physiological responses via stimulation of various purinoceptors. We previously showed that ATP potentiated the Ag-induced mast cell (MC) degranulation via purinoceptors pharmacologically similar to the ionotropic P2X4 receptor. In this study, we investigated the role of P2X4 receptor in MC degranulation induced by stimulation of IgE-FcεRI complex with Ag, using bone marrow-derived MCs (BMMCs) prepared from wild type and P2X4 receptor-deficient (P2rx4-/- ) mice. ATP significantly increased Ag-induced degranulation in BMMCs prepared from wild type mice. This effect of ATP was reduced in BMMCs prepared from P2rx4-/- mice. The potentiating effect of ATP was restored by expressing P2X4 receptor in P2rx4-/- BMMCs. The P2X4 receptor-mediated effects were maintained even after differentiating into the connective tissue-type MCs. P2X4 receptor stimulation did not affect the Ag-induced Ca2+ response but enhanced Ag-induced early signals, such as tyrosine phosphorylation of Syk and phospholipase C-γ. Interestingly, these effects of ATP on Syk phosphorylation were not impaired by pretreatment with Cu2+, an inhibitor of the P2X4 receptor channel, or removal of external Ca2+, suggesting that a mechanisms other than Ca2+ influx through ion channel activity may be involved. In vivo experiments revealed that systemic and intradermal passive anaphylaxis responses were significantly alleviated in P2rx4-/- mice. Taken together, the present data suggest that the P2X4 receptor plays an essential role in ATP-induced upregulation of MC degranulation in response to Ag, and also contributes to the Ag-induced allergic response in vivo.
Collapse
Affiliation(s)
- Kazuki Yoshida
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan
| | - Masa-Aki Ito
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan
| | - Naoko Sato
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan
| | - Kosuke Obayashi
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan
| | - Kimiko Yamamoto
- Department of Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Satoshi Tanaka
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; and
| | - Kazuyuki Furuta
- Department of Immunobiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Isao Matsuoka
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki-shi, Gunma 370-0033, Japan;
| |
Collapse
|
23
|
Shen D, Shen X, Schwarz W, Grygorczyk R, Wang L. P2Y 13 and P2X 7 receptors modulate mechanically induced adenosine triphosphate release from mast cells. Exp Dermatol 2020; 29:499-508. [PMID: 32155290 DOI: 10.1111/exd.14093] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
Subcutaneous mast cells (MCs) are vulnerable to mechanical stimulation from external environment. Thus, MCs immune function could be modulated by their mechanosensitivity. This property has been identified as the trigger mechanism of needling acupuncture, a traditional oriental therapy. Previously we have demonstrated the release of adenosine triphosphate (ATP), a stress-responsive signalling molecule, from mechanical-perturbed MCs. The current work explores its underlying mechanisms. We noticed that propagation of intracellular free Ca2+ occurred among HMC-1 cells in response to 50% hypotonic shock. Additionally, amplifying cascade of ATP-induced ATP release was observed in RBL-2H3 cells stimulated by medium displacement, which could be mimicked by exogenous ATP (exoATP). Secondary ATP liberation induced by low level (50 nmol/L) of exoATP was reduced by inhibiting ecto-ATPase-dependent ADP production with ARL67156, or blocking P2 receptors with suramin or PPADS, or with specific P2Y13 receptor antagonist MRS2211, or siRNA. Secondary ATP release induced by higher dose (200 μmol/L) of exoATP, sufficient to stimulate P2X7 receptor, was attenuated by suramin, PPADS or specific P2X7 receptor antagonist BBG, or siRNA. Finally, RT-PCR confirmed mRNA expression of P2Y13 and P2X7 in RBL-2H3 cells. Additionally, such secondary ATP release was attenuated by DPCPX, specific antagonist of adenosine A1 receptor, but not by MRS2179, specific inhibitor of P2Y1 receptor. In summary, mechanosensitive ATP release from MCs is facilitated by paracrine/autocrine stimulation of P2Y13 and P2X7 receptors. This multi-receptor combination could mediate transmission of information from a local site to distal areas, enabling communication with multiple surrounding cells to coordinate and synchronize their function.
Collapse
Affiliation(s)
- Dan Shen
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueyong Shen
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Research Center for Acupuncture and Meridians, Shanghai, China
| | - Wolfgang Schwarz
- Institute for Biophysics, Goethe-University Frankfurt, Frankfurt a.M., Germany
| | - Ryszard Grygorczyk
- Centre de Recherche, Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Lina Wang
- Acupuncture and Moxibustion College, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function (14DZ2260500), Fudan University, Shanghai, China
| |
Collapse
|
24
|
Bergmann P, Garcia de Paco E, Rissiek B, Menzel S, Dubberke G, Hua J, Rassendren F, Ulmann L, Koch-Nolte F. Generation and Characterization of Specific Monoclonal Antibodies and Nanobodies Directed Against the ATP-Gated Channel P2X4. Front Cell Neurosci 2019; 13:498. [PMID: 31798414 PMCID: PMC6861843 DOI: 10.3389/fncel.2019.00498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
The P2X4 channel is involved in different physiological and pathological conditions and functions in the nervous system. Despite the existence of several mouse models for which the expression of the gene was manipulated, there is still little information on the expression of the protein at the cellular level. In particular, supposedly specific available antibodies have often proved to recognize unrelated proteins in P2X4-deficient mice. Here, we used an in vivo DNA vaccine approach to generate a series of monoclonal antibodies and nanobodies specific for human, mouse, and rat P2X4 channels. We further characterized these antibodies and show that they solely recognize the native form of the proteins both in biochemical and cytometric applications. Some of these antibodies prove to specifically recognize P2X4 channels by immunostaining in brain or sensory ganglia slices, as well as at the cellular and subcellular levels. Due to their clonality, these different antibodies should represent versatile tools for further characterizing the cellular functions of P2X4 in the nervous system as well as at the periphery.
Collapse
Affiliation(s)
- Philine Bergmann
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elvira Garcia de Paco
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.,Laboratoire d'Excellence Canaux Ioniques d'Intérêt Thérapeutique (LabEx ICST), Montpellier, France
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gudrun Dubberke
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Hua
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.,Laboratoire d'Excellence Canaux Ioniques d'Intérêt Thérapeutique (LabEx ICST), Montpellier, France
| | - François Rassendren
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.,Laboratoire d'Excellence Canaux Ioniques d'Intérêt Thérapeutique (LabEx ICST), Montpellier, France
| | - Lauriane Ulmann
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.,Laboratoire d'Excellence Canaux Ioniques d'Intérêt Thérapeutique (LabEx ICST), Montpellier, France
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
25
|
Elieh Ali Komi D, Bjermer L. Mast Cell-Mediated Orchestration of the Immune Responses in Human Allergic Asthma: Current Insights. Clin Rev Allergy Immunol 2019; 56:234-247. [PMID: 30506113 DOI: 10.1007/s12016-018-8720-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Improving the lung function after experimental allergen challenge by blocking of mast cell (MC) mediators and the capability of MC mediators (including histamine, prostaglandin (PG) D2, and leukotriene (LT) C4) in induction of mucosal edema, bronchoconstriction, and mucus secretion provide evidence that MCs play a key role in pathophysiology of asthma. In asthma, the number of MCs increases in the airways and infiltration of MCs in a variety of anatomical sites including the epithelium, the submucosal glands, and the smooth muscle bundles occurs. MC localization within the ASM is accompanied with the hypertrophy and hyperplasia of the layer, and smooth muscle dysfunction that is mainly observed in forms of bronchial hyperresponsiveness, and variable airflow obstruction. Owing to the expression of a wide range of surface receptors and releasing various cytoplasmic mediators, MCs orchestrate the pathologic events of the disease. MC-released preformed mediators including chymase, tryptase, and histamine and de novo synthesized mediators such as PGD2, LTC4, and LTE4 in addition of cytokines mainly TGFβ1, TSLP, IL-33, IL-4, and IL-13 participate in pathogenesis of asthma. The release of MC mediators and MC/airway cell interactions during remodeling phase of asthma results in persistent cellular and structural changes in the airway wall mainly epithelial cell shedding, goblet cell hyperplasia, hypertrophy of ASM bundles, fibrosis in subepithelial region, abnormal deposition of extracellular matrix (ECM), increased tissue vascularity, and basement membrane thickening. We will review the current knowledge regarding the participation of MCs in each stage of asthma pathophysiology including the releasing mediators and their mechanism of action, expression of receptors by which they respond to stimuli, and finally the pharmaceutical products designed based on the strategy of blocking MC activation and mediator release.
Collapse
Affiliation(s)
- Daniel Elieh Ali Komi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leif Bjermer
- Department of Respiratory Medicine & Allergology, Inst for Clinical Science, Lund University, Lund, Sweden.
- Lung and Allergy Research, Skane University Hospital, Lasarettsgatan 7, 22185, Lund, Sweden.
| |
Collapse
|
26
|
Pavlopoulou A, Karaca E, Balestrazzi A, Georgakilas AG. In Silico Phylogenetic and Structural Analyses of Plant Endogenous Danger Signaling Molecules upon Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8683054. [PMID: 31396307 PMCID: PMC6668560 DOI: 10.1155/2019/8683054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/03/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
The plant innate immune system has two major branches, the pathogen-triggered immunity and the effector-triggered immunity (ETI). The effectors are molecules released by plant attackers to evade host immunity. In addition to the foreign intruders, plants possess endogenous instigators produced in response to general cellular injury termed as damage-associated molecular patterns (DAMPs). In plants, DAMPs or alarmins are released by damaged, stressed, or dying cells following abiotic stress such as radiation, oxidative and drought stresses. In turn, a cascade of downstream signaling events is initiated leading to the upregulation of defense or response-related genes. In the present study, we have investigated more thoroughly the conservation status of the molecular mechanisms implicated in the danger signaling primarily in plants. Towards this direction, we have performed in silico phylogenetic and structural analyses of the associated biomolecules in taxonomically diverse plant species. On the basis of our results, the defense mechanisms appear to be largely conserved within the plant kingdom. Of note, the sequence and/or function of several components of these mechanisms was found to be conserved in animals, as well. At the same time, the molecules involved in plant defense were found to form a dense protein-protein interaction (PPi) network, suggesting a crosstalk between the various defense mechanisms to a variety of stresses, like oxidative stress.
Collapse
Affiliation(s)
- Athanasia Pavlopoulou
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Izmir, Turkey
| | - Ezgi Karaca
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 Balcova, Izmir, Turkey
- Izmir Biomedicine and Genome Center, 35340 Balcova, Izmir, Turkey
| | - Alma Balestrazzi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| |
Collapse
|
27
|
Magadmi R, Meszaros J, Damanhouri ZA, Seward EP. Secretion of Mast Cell Inflammatory Mediators Is Enhanced by CADM1-Dependent Adhesion to Sensory Neurons. Front Cell Neurosci 2019; 13:262. [PMID: 31275114 PMCID: PMC6591473 DOI: 10.3389/fncel.2019.00262] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/24/2019] [Indexed: 01/05/2023] Open
Abstract
Neuroimmune interactions are important in the pathophysiology of many chronic inflammatory diseases, particularly those associated with alterations in sensory processing and pain. Mast cells and sensory neuron nerve endings are found in areas of the body exposed to the external environment, both are specialized to sense potential damage by injury or pathogens and signal to the immune system and nervous system, respectively, to elicit protective responses. Cell adhesion molecule 1 (CADM1), also known as SynCAM1, has previously been identified as an adhesion molecule which may couple mast cells to sensory neurons however, whether this molecule exerts a functional as well as structural role in neuroimmune cross-talk is unknown. Here we show, using a newly developed in vitro co-culture system consisting of murine bone marrow derived mast cells (BMMC) and adult sensory neurons isolated from dorsal root ganglions (DRG), that CADM1 is expressed in mast cells and adult sensory neurons and mediates strong adhesion between the two cell types. Non-neuronal cells in the DRG cultures did not express CADM1, and mast cells did not adhere to them. The interaction of BMMCs with sensory neurons was found to induce mast cell degranulation and IL-6 secretion and to enhance responses to antigen stimulation and activation of FcεRI receptors. Secretion of TNFα in contrast was not affected, nor was secretion evoked by compound 48/80. Co-cultures of BMMCs with HEK 293 cells, which also express CADM1, while also leading to adhesion did not replicate the effects of sensory neurons on mast cells, indicative of a neuron-specific interaction. Application of a CADM1 blocking peptide or knockdown of CADM1 in BMMCs significantly decreased BMMC attachment to sensory neurites and abolished the enhanced secretory responses of mast cells. In conclusion, CADM1 is necessary and sufficient to drive mast cell-sensory neuron adhesion and promote the development of a microenvironment in which neurons enhance mast cell responsiveness to antigen, this interaction could explain why the incidence of painful neuroinflammatory disorders such as irritable bowel syndrome (IBS) are increased in atopic patients.
Collapse
Affiliation(s)
- Rania Magadmi
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.,Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Judit Meszaros
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Zoheir A Damanhouri
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elizabeth P Seward
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
28
|
Koroleva K, Gafurov O, Guselnikova V, Nurkhametova D, Giniatullina R, Sitdikova G, Mattila OS, Lindsberg PJ, Malm TM, Giniatullin R. Meningeal Mast Cells Contribute to ATP-Induced Nociceptive Firing in Trigeminal Nerve Terminals: Direct and Indirect Purinergic Mechanisms Triggering Migraine Pain. Front Cell Neurosci 2019; 13:195. [PMID: 31133812 PMCID: PMC6524559 DOI: 10.3389/fncel.2019.00195] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 12/27/2022] Open
Abstract
Peripheral mechanisms of primary headaches such as a migraine remain unclear. Meningeal afferents surrounded by multiple mast cells have been suggested as a major source of migraine pain. Extracellular ATP released during migraine attacks is a likely candidate for activating meningeal afferents via neuronal P2X receptors. Recently, we showed that ATP also increased degranulation of resident meningeal mast cells (Nurkhametova et al., 2019). However, the contribution of ATP-induced mast cell degranulation in aggravating the migraine pain remains unknown. Here we explored the role of meningeal mast cells in the pro-nociceptive effects of extracellular ATP. The impact of mast cells on ATP mediated activation of peripheral branches of trigeminal nerves was measured electrophysiologically in the dura mater of adult wild type (WT) or mast cell deficient mice. We found that a spontaneous spiking activity in the meningeal afferents, at baseline level, did not differ in two groups. However, in WT mice, meningeal application of ATP dramatically (24.6-fold) increased nociceptive firing, peaking at frequencies around 10 Hz. In contrast, in mast cell deficient animals, ATP-induced excitation was significantly weaker (3.5-fold). Application of serotonin to meninges in WT induced strong spiking. Moreover, in WT mice, the 5-HT3 antagonist MDL-7222 inhibited not only serotonin but also the ATP induced nociceptive firing. Our data suggest that extracellular ATP activates nociceptive firing in meningeal trigeminal afferents via amplified degranulation of resident mast cells in addition to direct excitatory action on the nerve terminals. This highlights the importance of mast cell degranulation via extracellular ATP, in aggravating the migraine pain.
Collapse
Affiliation(s)
- Ksenia Koroleva
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Oleg Gafurov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Valeriia Guselnikova
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg, Russia
| | - Dilyara Nurkhametova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Raisa Giniatullina
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Guzel Sitdikova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Olli S. Mattila
- Department of Neurology and Clinical Neurosciences, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Perttu J. Lindsberg
- Department of Neurology and Clinical Neurosciences, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tarja Maarit Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
29
|
Koyuncu Irmak D, Kilinc E, Tore F. Shared Fate of Meningeal Mast Cells and Sensory Neurons in Migraine. Front Cell Neurosci 2019; 13:136. [PMID: 31024263 PMCID: PMC6460506 DOI: 10.3389/fncel.2019.00136] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/20/2019] [Indexed: 12/24/2022] Open
Abstract
Migraine is a primary headache disorder which has complex neurogenic pathophysiological mechanisms still requiring full elucidation. The sensory nerves and meningeal mast cell couplings in the migraine target tissue are very effective interfaces between the central nervous system and the immune system. These couplings fall into three categories: intimacy, cross-talk and a shared fate. Acting as the immediate call-center of the neuroimmune system, mast cells play fundamental roles in migraine pathophysiology. Considerable evidence shows that neuroinflammation in the meninges is the key element resulting in the sensitization of trigeminal nociceptors. The successive events such as neuropeptide release, vasodilation, plasma protein extravasation, and mast cell degranulation that form the basic characteristics of the inflammation are believed to occur in this persistent pain state. In this regard, mast cells and sensory neurons represent both the target and source of the neuropeptides that play autocrine, paracrine, and neuro-endocrine roles during this inflammatory process. This review intends to contribute to a better understanding of the meningeal mast cell and sensory neuron bi-directional interactions from molecular, cellular, functional points of view. Considering the fact that mast cells play a sine qua non role in expanding the opportunities for targeted new migraine therapies, it is of crucial importance to explore these multi-faceted interactions.
Collapse
Affiliation(s)
- Duygu Koyuncu Irmak
- Department of Histology and Embryology, School of Medicine, Biruni University, Istanbul, Turkey
| | - Erkan Kilinc
- Department of Physiology, School of Medicine, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Fatma Tore
- Department of Physiology, School of Medicine, Biruni University, Istanbul, Turkey
| |
Collapse
|
30
|
Nurkhametova D, Kudryavtsev I, Guselnikova V, Serebryakova M, Giniatullina RR, Wojciechowski S, Tore F, Rizvanov A, Koistinaho J, Malm T, Giniatullin R. Activation of P2X7 Receptors in Peritoneal and Meningeal Mast Cells Detected by Uptake of Organic Dyes: Possible Purinergic Triggers of Neuroinflammation in Meninges. Front Cell Neurosci 2019; 13:45. [PMID: 30814932 PMCID: PMC6381076 DOI: 10.3389/fncel.2019.00045] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/28/2019] [Indexed: 12/24/2022] Open
Abstract
Extracellular ATP activates inflammasome and triggers the release of multiple cytokines in various immune cells, a process primarily mediated by P2X7 receptors. However, the expression and functional properties of P2X7 receptors in native mast cells in tissues such as meninges where migraine pain originates from have not been explored. Here we report a novel model of murine cultured meningeal mast cells and using these, as well as easily accessible peritoneal mast cells, studied the mechanisms of ATP-mediated mast cell activation. We show that ATP induced a time and dose-dependent activation of peritoneal mast cells as analyzed by the uptake of organic dye YO-PRO1 as well as 4,6-diamidino-2-phenylindole (DAPI). Both YO-PRO1 and DAPI uptake in mast cells was mediated by the P2X7 subtype of ATP receptors as demonstrated by the inhibitory effect of P2X7 antagonist A839977. Consistent with this, significant YO-PRO1 uptake was promoted by the P2X7 agonist 2′,3′-O-(benzoyl-4-benzoyl)-ATP (BzATP). Extracellular ATP-induced degranulation of native and cultured meningeal mast cells was shown with Toluidine Blue staining. Taken together, these data demonstrate the important contribution of P2X7 receptors to ATP-driven activation of mast cells, suggesting these purinergic mechanisms as potential triggers of neuroinflammation and pain sensitization in migraine.
Collapse
Affiliation(s)
- Dilyara Nurkhametova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Igor Kudryavtsev
- Department of Immunology, Institute of Experimental Medicine, St. Petersburg, Russia.,Department of Fundamental Medicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Guselnikova
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Department of General and Special Morphology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Maria Serebryakova
- Department of Immunology, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Raisa R Giniatullina
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sara Wojciechowski
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Fatma Tore
- School of Medicine, Biruni University, Istanbul, Turkey
| | - Albert Rizvanov
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Jari Koistinaho
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tarja Malm
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
31
|
Downregulation of iNOS, IL-1 β, and P2X7 Expression in Mast Cells via Activation of PAR4 Contributes to the Inhibition of Visceral Hyperalgesia in Rats. J Immunol Res 2018; 2018:3256908. [PMID: 29854833 PMCID: PMC5966670 DOI: 10.1155/2018/3256908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/10/2018] [Accepted: 01/23/2018] [Indexed: 01/11/2023] Open
Abstract
Protease-activated receptor 4 (PAR4) is implicated in the inhibition of visceral hyperalgesia. In the present study, the effects of PAR4 activation on visceral hypersensitivity and expression of inflammatory mediators, including interleukin-1β (IL-1β), P2RX7 purinergic receptor (P2X7), inducible nitric oxide synthase (iNOS), and tryptase, in mast cells (MCs) were investigated via in vivo and in vitro studies. The numbers of tryptase-positive MCs with extensive PAR4, P2X7, and iNOS expression were increased in the colons of visceral hyperalgesia rats compared with controls. Intracolonic administration of PAR4-activating peptide (PAR4-AP) significantly attenuated the visceral hypersensitivity to colorectal distention and reduced the iNOS, IL-1β, P2X7, and tryptase protein and mRNA levels in the colonic mucosa. Treatment of rat bone marrow MCs (BMMCs) with PAR4-AP also reduced the iNOS, IL-1β, P2X7, and tryptase protein and mRNA levels. ERK1/2 and p38 activators (t-butylhydroquinone, tBHQ, and U-46619) reversed the suppressive effect of PAR4 activation on IL-1β and iNOS expression, whereas ERK1/2 and p38 inhibitors (PD98059 and SB203580) reversed the suppressive effect of PAR4 activation on P2X7 and tryptase expression. Our results indicate that the downregulation of inflammatory mediators, including iNOS, IL-1β, P2X7, and tryptase, in MCs that are mediated by PAR4 activation could inhibit visceral hyperalgesia via the mitogen-activated protein kinase (MAPK) signal pathway.
Collapse
|
32
|
Pelletier L, Savignac M. Involvement of ion channels in allergy. Curr Opin Immunol 2018; 52:60-67. [PMID: 29704811 DOI: 10.1016/j.coi.2018.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022]
Abstract
Allergic asthma is a complex disease, often characterized by an inappropriate Th2 response to normally harmless allergens. Epithelial cells damaged or activated by the allergen produce IL-33, TSLP and IL-25, activating ILC2 and dendritic cells. The latter migrate into lymph nodes where they induce Th2-cell commitment. Th2 and other type 2 innate inflammatory cells trigger inflammation and airway hyper-reactivity. The toolbox consisting of the ion channels varies from one cellular type to another and depends on its activation state, offering the possibility to design novel drugs in the field of allergy. We will discuss about some channels as calcium, nonselective cation, potassium and chloride channels that appear as good candidates in allergy.
Collapse
Affiliation(s)
- Lucette Pelletier
- Center of Physiopathology Toulouse Purpan, University Paul Sabatier Toulouse III, INSERM U1043, CNRS UMR 5282, 31024 Toulouse, France.
| | - Magali Savignac
- Center of Physiopathology Toulouse Purpan, University Paul Sabatier Toulouse III, INSERM U1043, CNRS UMR 5282, 31024 Toulouse, France
| |
Collapse
|
33
|
Redegeld FA, Yu Y, Kumari S, Charles N, Blank U. Non-IgE mediated mast cell activation. Immunol Rev 2018; 282:87-113. [DOI: 10.1111/imr.12629] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Frank A. Redegeld
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Yingxin Yu
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Sangeeta Kumari
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Nicolas Charles
- INSERM U1149; Centre de Recherche sur l'Inflammation; Paris France
- CNRS ERL8252; Paris France
- Université Paris-Diderot; Sorbonne Paris Cité; Faculté de Médecine; Site Xavier Bichat; Paris France
| | - Ulrich Blank
- INSERM U1149; Centre de Recherche sur l'Inflammation; Paris France
- CNRS ERL8252; Paris France
- Université Paris-Diderot; Sorbonne Paris Cité; Faculté de Médecine; Site Xavier Bichat; Paris France
- Inflamex Laboratory of Excellence; Paris France
| |
Collapse
|
34
|
New roles and controls of mast cells. Curr Opin Immunol 2018; 50:39-47. [DOI: 10.1016/j.coi.2017.10.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/13/2017] [Accepted: 10/28/2017] [Indexed: 12/14/2022]
|
35
|
Gao ZG, Jacobson KA. Purinergic Signaling in Mast Cell Degranulation and Asthma. Front Pharmacol 2017; 8:947. [PMID: 29311944 PMCID: PMC5744008 DOI: 10.3389/fphar.2017.00947] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/14/2017] [Indexed: 11/13/2022] Open
Abstract
Mast cells are responsible for the majority of allergic conditions. It was originally thought that almost all allergic events were mediated directly only via the high-affinity immunoglobulin E receptors. However, recent evidence showed that many other receptors, such as G protein-coupled receptors and ligand-gated ion channels, are also directly involved in mast cell degranulation, the release of inflammatory mediators such as histamine, serine proteases, leukotrienes, heparin, and serotonin. These mediators are responsible for the symptoms in allergic conditions such as allergic asthma. In recent years, it has been realized that purinergic signaling, induced via the activation of G protein-coupled adenosine receptors and P2Y nucleotide receptors, as well as by ATP-gated P2X receptors, plays a significant role in mast cell degranulation. Both adenosine and ATP can induce degranulation and bronchoconstriction on their own and synergistically with allergens. All three classes of receptors, adenosine, P2X and P2Y are involved in tracheal mucus secretion. This review will summarize the currently available knowledge on the role of purinergic signaling in mast cell degranulation and its most relevant disease, asthma.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
36
|
Wajdner HE, Farrington J, Barnard C, Peachell PT, Schnackenberg CG, Marino JP, Xu X, Affleck K, Begg M, Seward EP. Orai and TRPC channel characterization in Fc εRI-mediated calcium signaling and mediator secretion in human mast cells. Physiol Rep 2017; 5:5/5/e13166. [PMID: 28292887 PMCID: PMC5350174 DOI: 10.14814/phy2.13166] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/23/2016] [Accepted: 12/28/2016] [Indexed: 12/23/2022] Open
Abstract
Inappropriate activation of mast cells via the FcεRI receptor leads to the release of inflammatory mediators and symptoms of allergic disease. Calcium influx is a critical regulator of mast cell signaling and is required for exocytosis of preformed mediators and for synthesis of eicosanoids, cytokines and chemokines. Studies in rodent and human mast cells have identified Orai calcium channels as key contributors to FcεRI-initiated mediator release. However, until now the role of TRPC calcium channels in FcεRI-mediated human mast cell signaling has not been published. Here, we show evidence for the expression of Orai 1,2, and 3 and TRPC1 and 6 in primary human lung mast cells and the LAD2 human mast cell line but, we only find evidence of functional contribution of Orai and not TRPC channels to FcεRI-mediated calcium entry. Calcium imaging experiments, utilizing an Orai selective antagonist (Synta66) showed the contribution of Orai to FcεRI-mediated signaling in human mast cells. Although, the use of a TRPC3/6 selective antagonist and agonist (GSK-3503A and GSK-2934A, respectively) did not reveal evidence for TRPC6 contribution to FcεRI-mediated calcium signaling in human mast cells. Similarly, inactivation of STIM1-regulated TRPC1 in human mast cells (as tested by transfecting cells with STIM1-KK684-685EE - TRPC1 gating mutant) failed to alter FcεRI-mediated calcium signaling in LAD2 human mast cells. Mediator release assays confirm that FcεRI-mediated calcium influx through Orai is necessary for histamine and TNFα release but is differentially involved in the generation of cytokines and eicosanoids.
Collapse
Affiliation(s)
- Hannah E Wajdner
- Department of Biomedical Science, University of Sheffield Western Bank, Sheffield, UK
| | - Jasmine Farrington
- Department of Biomedical Science, University of Sheffield Western Bank, Sheffield, UK
| | - Claire Barnard
- Department of Biomedical Science, University of Sheffield Western Bank, Sheffield, UK
| | - Peter T Peachell
- Academic Unit of Respiratory Medicine, University of Sheffield The Royal Hallamshire Hospital, Sheffield, UK
| | | | - Joseph P Marino
- Metabolic Pathways and Cardiovascular Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Xiaoping Xu
- Metabolic Pathways and Cardiovascular Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Karen Affleck
- Respiratory Therapy Area Unit, GlaxoSmithKline, Stevenage, UK
| | - Malcolm Begg
- Respiratory Therapy Area Unit, GlaxoSmithKline, Stevenage, UK
| | - Elizabeth P Seward
- Department of Biomedical Science, University of Sheffield Western Bank, Sheffield, UK
| |
Collapse
|
37
|
Hasan D, Blankman P, Nieman GF. Purinergic signalling links mechanical breath profile and alveolar mechanics with the pro-inflammatory innate immune response causing ventilation-induced lung injury. Purinergic Signal 2017; 13:363-386. [PMID: 28547381 PMCID: PMC5563293 DOI: 10.1007/s11302-017-9564-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/26/2017] [Indexed: 02/06/2023] Open
Abstract
Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis.
Collapse
Affiliation(s)
- Djo Hasan
- Department of Adult ICU, University Hospital Erasmus MC Rotterdam, 's-Gravendijkwal 230 3015 CE, Rotterdam, the Netherlands.
| | - Paul Blankman
- Department of Adult ICU, University Hospital Erasmus MC Rotterdam, 's-Gravendijkwal 230 3015 CE, Rotterdam, the Netherlands
| | - Gary F Nieman
- Department of Surgery, Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| |
Collapse
|
38
|
LL-37-induced human mast cell activation through G protein-coupled receptor MrgX2. Int Immunopharmacol 2017; 49:6-12. [PMID: 28549244 DOI: 10.1016/j.intimp.2017.05.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/10/2017] [Accepted: 05/16/2017] [Indexed: 12/30/2022]
Abstract
Human LL-37 is an important class of cationic antimicrobial peptide (CAP) that is known to stimulate mast cell activation. While many studies have been conducted on LL-37, to date little is known about the functional receptors for LL-37-induced human mast cell activation, in particular in terms of the release of de novo synthesized mediators. Thus, the aim of the present study is to identify the functional receptors for LL-37-induced human mast cell activation in terms of the degranulation and release of de novo synthesized mediators and investigate the downstream signalling pathways involved in mast cell activation. Overall, our study importantly demonstrates that LL-37-induced human mast cell degranulation and release of de novo synthesized mediators function primarily through the activation of MrgX2. We furthermore show that LL-37-induced human mast cell line LAD2 cells are involved in the degranulation and release of IL-8, and that FPRL1 and P2X7 have only a partial effect on IL-8 release, and no effect on mast cell degranulation triggered by LL-37. Instead, we find that silencing the expression of MrgX2 in human mast cell significantly inhibits the LL-37-induced degranulation and release of IL-8. Overall, this effect is associated with the activation of the Gi protein, PLC/PKC/Calcium/NFAT, PI3K/Akt and MAPKs signalling pathways.
Collapse
|
39
|
Yoshida K, Ito M, Matsuoka I. Divergent regulatory roles of extracellular ATP in the degranulation response of mouse bone marrow-derived mast cells. Int Immunopharmacol 2016; 43:99-107. [PMID: 27988461 DOI: 10.1016/j.intimp.2016.12.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/25/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs) play a critical role in allergic inflammation. Although purinergic signalling is implicated in the regulation of various immune responses, its role in MC function is not fully understood. In this study, we investigated the regulatory role of purinergic signalling in MC degranulation, using mouse bone marrow-derived mast cells (BMMCs). Notably, BMMCs expressed various functional P2 adenosine triphosphate (ATP) receptors, including ionotropic P2X4 and P2X7, involved in the regulation of BMMC degranulation. Thus, P2X7 receptor activation induced a marked degranulation from BMMCs directly. Although P2X4 receptor activation did not independently induce degranulation, it significantly potentiated the degranulation triggered by antigen-induced, high-affinity IgE receptor (FcεRI) stimulation. In addition, ATP synergistically augmented degranulation induced by adenosine A3 receptor activation. Moreover, BMMCs highly expressed ecto-nucleotidase CD39, but not ecto-5'-nucleotidase (CD73), and were therefore unable to directly convert ATP to adenosine. However, in the presence of CD73-expressing cells, ATP-mediated BMMC stimulation caused a marked degranulation in a CD73- and adenosine-dependent manner. These results demonstrate that purinergic signalling plays an important role in MC degranulation through at least three distinct mechanisms: (1) higher ATP concentrations directly induce degranulation via P2X7 receptor activation, (2) lower ATP concentrations augment FcεRI-mediated degranulation via P2X4 receptor activation, and (3) in an ecto-nucleotidase-enrich environment, ATP and the converted product adenosine induce a synergistic degranulation by P1 and P2 receptor co-activation.
Collapse
Affiliation(s)
- Kazuki Yoshida
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Masaaki Ito
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Isao Matsuoka
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan.
| |
Collapse
|
40
|
Gangwar RS, Landolina N, Arpinati L, Levi-Schaffer F. Mast cell and eosinophil surface receptors as targets for anti-allergic therapy. Pharmacol Ther 2016; 170:37-63. [PMID: 27773785 DOI: 10.1016/j.pharmthera.2016.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Roopesh Singh Gangwar
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Nadine Landolina
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Ludovica Arpinati
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
41
|
Pelleg A, Schulman ES, Barnes PJ. Extracellular Adenosine 5'-Triphosphate in Obstructive Airway Diseases. Chest 2016; 150:908-915. [PMID: 27568579 DOI: 10.1016/j.chest.2016.06.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
In recent years, numerous studies have generated data supporting the hypothesis that extracellular adenosine 5'-triphosphate (ATP) plays a major role in obstructive airway diseases. Studies in animal models and human subjects have shown that increased amounts of extracellular ATP are found in the lungs of patients with COPD and asthma and that ATP has effects on multiple cell types in the lungs, resulting in increased inflammation, induction of bronchoconstriction, and cough. These effects of ATP are mediated by cell surface P2 purinergic receptors and involve other endogenous inflammatory agents. Recent clinical trials reported promising treatment with P2X3R antagonists for the alleviation of chronic cough. The purpose of this review was to describe these studies and outline some of the remaining questions, as well as the potential clinical implications, associated with the pharmacologic manipulation of ATP signaling in the lungs.
Collapse
Affiliation(s)
- Amir Pelleg
- College of Medicine, Department of Medicine, Drexel University, Philadelphia, PA.
| | - Edward S Schulman
- College of Medicine, Department of Medicine, Drexel University, Philadelphia, PA
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|