1
|
Liu C, Efimova E, Santala V, Santala S. Analysis of detoxification kinetics and end products of furan aldehydes in Acinetobacter baylyi ADP1. Sci Rep 2024; 14:29678. [PMID: 39613800 DOI: 10.1038/s41598-024-81124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
The efficient utilization of lignocellulosic hydrolysates in bioprocesses is impeded by their complex composition and the presence of toxic compounds, such as furan aldehydes, formed during lignocellulose pretreatment. Biological detoxification of these furan aldehydes offers a promising solution to enhance the utilization of lignocellulosic hydrolysates. Acinetobacter baylyi ADP1 is known to metabolize furan aldehydes, yet the complete spectrum of reaction products and dynamics remains unclear. Here, we determined the detoxification metabolites of furfural and 5-hydroxymethylfurfural in A. baylyi ADP1 and studied the kinetics of detoxification. The results indicate that detoxification in A. baylyi ADP1 follows a typical alcohol-aldehyde-acid scheme, with furoic acid and 5-hydroxymethyl-2-furancarboxylic acid as the final products for furfural and 5-hydroxymethylfurfural, respectively. Both end products were found to be less toxic for cells than their unmodified forms. These findings underscore the potential of A. baylyi ADP1 in detoxifying lignocellulosic hydrolysates for bioprocess applications.
Collapse
Affiliation(s)
- Changshuo Liu
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, PO Box 527, Tampere, FI-33014, Finland
| | - Elena Efimova
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, PO Box 527, Tampere, FI-33014, Finland
| | - Ville Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, PO Box 527, Tampere, FI-33014, Finland
| | - Suvi Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, PO Box 527, Tampere, FI-33014, Finland.
| |
Collapse
|
2
|
Swart A, Caspi R, Paley S, Karp PD. Visual analysis of multi-omics data. FRONTIERS IN BIOINFORMATICS 2024; 4:1395981. [PMID: 39318761 PMCID: PMC11420163 DOI: 10.3389/fbinf.2024.1395981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
We present a tool for multi-omics data analysis that enables simultaneous visualization of up to four types of omics data on organism-scale metabolic network diagrams. The tool's interactive web-based metabolic charts depict the metabolic reactions, pathways, and metabolites of a single organism as described in a metabolic pathway database for that organism; the charts are constructed using automated graphical layout algorithms. The multi-omics visualization facility paints each individual omics dataset onto a different "visual channel" of the metabolic-network diagram. For example, a transcriptomics dataset might be displayed by coloring the reaction arrows within the metabolic chart, while a companion proteomics dataset is displayed as reaction arrow thicknesses, and a complementary metabolomics dataset is displayed as metabolite node colors. Once the network diagrams are painted with omics data, semantic zooming provides more details within the diagram as the user zooms in. Datasets containing multiple time points can be displayed in an animated fashion. The tool will also graph data values for individual reactions or metabolites designated by the user. The user can interactively adjust the mapping from data value ranges to the displayed colors and thicknesses to provide more informative diagrams.
Collapse
Affiliation(s)
- Austin Swart
- Bioinformatics Research Group, SRI International, Menlo Park, CA, United States
| | - Ron Caspi
- Bioinformatics Research Group, SRI International, Menlo Park, CA, United States
| | - Suzanne Paley
- Bioinformatics Research Group, SRI International, Menlo Park, CA, United States
| | - Peter D Karp
- Bioinformatics Research Group, SRI International, Menlo Park, CA, United States
| |
Collapse
|
3
|
Meriläinen E, Efimova E, Santala V, Santala S. Carbon-wise utilization of lignin-related compounds by synergistically employing anaerobic and aerobic bacteria. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:78. [PMID: 38851749 PMCID: PMC11161944 DOI: 10.1186/s13068-024-02526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Lignin is a highly abundant but strongly underutilized natural resource that could serve as a sustainable feedstock for producing chemicals by microbial cell factories. Because of the heterogeneous nature of the lignin feedstocks, the biological upgrading of lignin relying on the metabolic routes of aerobic bacteria is currently considered as the most promising approach. However, the limited substrate range and the inefficient catabolism of the production hosts hinder the upgrading of lignin-related aromatics. Particularly, the aerobic O-demethylation of the methoxyl groups in aromatic substrates is energy-limited, inhibits growth, and results in carbon loss in the form of CO2. RESULTS In this study, we present a novel approach for carbon-wise utilization of lignin-related aromatics by the integration of anaerobic and aerobic metabolisms. In practice, we employed an acetogenic bacterium Acetobacterium woodii for anaerobic O-demethylation of aromatic compounds, which distinctively differs from the aerobic O-demethylation; in the process, the carbon from the methoxyl groups is fixed together with CO2 to form acetate, while the aromatic ring remains unchanged. These accessible end-metabolites were then utilized by an aerobic bacterium Acinetobacter baylyi ADP1. By utilizing this cocultivation approach, we demonstrated an upgrading of guaiacol, an abundant but inaccessible substrate to most microbes, into a plastic precursor muconate, with a nearly equimolar yields (0.9 mol/mol in a small-scale cultivation and 1.0 mol/mol in a one-pot bioreactor cultivation). The process required only a minor genetic engineering, namely a single gene knock-out. Noticeably, by employing a metabolic integration of the two bacteria, it was possible to produce biomass and muconate by utilizing only CO2 and guaiacol as carbon sources. CONCLUSIONS By the novel approach, we were able to overcome the issues related to aerobic O-demethylation of methoxylated aromatic substrates and demonstrated carbon-wise conversion of lignin-related aromatics to products with yields unattainable by aerobic processes. This study highlights the power of synergistic integration of distinctive metabolic features of bacteria, thus unlocking new opportunities for harnessing microbial cocultures in upgrading challenging feedstocks.
Collapse
Affiliation(s)
- Ella Meriläinen
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, Korkeakoulunkatu 8, 33720, Tampere, Finland
| | - Elena Efimova
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, Korkeakoulunkatu 8, 33720, Tampere, Finland
| | - Ville Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, Korkeakoulunkatu 8, 33720, Tampere, Finland
| | - Suvi Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, Korkeakoulunkatu 8, 33720, Tampere, Finland.
| |
Collapse
|
4
|
Biggs BW, Tyo KEJ. Aromatic natural products synthesis from aromatic lignin monomers using Acinetobacter baylyi ADP1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554694. [PMID: 37662333 PMCID: PMC10473687 DOI: 10.1101/2023.08.24.554694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Achieving sustainable chemical synthesis and a circular economy will require process innovation to minimize or recover existing waste streams. Valorization of lignin biomass has the ability to advance this goal. While lignin has proved a recalcitrant feedstock for upgrading, biological approaches can leverage native microbial metabolism to simplify complex and heterogeneous feedstocks to tractable starting points for biochemical upgrading. Recently, we demonstrated that one microbe with lignin relevant metabolism, Acinetobacter baylyi ADP1, is both highly engineerable and capable of undergoing rapid design-build-test-learn cycles, making it an ideal candidate for these applications. Here, we utilize these genetic traits and ADP1's native β-ketoadipate metabolism to convert mock alkali pretreated liquor lignin (APL) to two valuable natural products, vanillin-glucoside and resveratrol. En route, we create strains with up to 22 genetic modifications, including up to 8 heterologously expressed enzymes. Our approach takes advantage of preexisting aromatic species in APL (vanillate, ferulate, and p-coumarate) to create shortened biochemical routes to end products. Together, this work demonstrates ADP1's potential as a platform for upgrading lignin waste streams and highlights the potential for biosynthetic methods to maximize the existing chemical potential of lignin aromatic monomers.
Collapse
Affiliation(s)
- Bradley W. Biggs
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Keith E. J. Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
5
|
Analyzing Prokaryotic Transcriptomics in the Light of Genome Data with the MicroScope Platform. Methods Mol Biol 2022; 2605:241-270. [PMID: 36520398 DOI: 10.1007/978-1-0716-2871-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Large-scale genome sequencing and the increasingly massive use of high-throughput approaches produce a vast amount of new information that completely transforms our understanding of thousands of microbial species occurring in our environment. However, despite the development of powerful bioinformatics approaches, full interpretation of the content of these genomes remains a difficult task. To address this challenge, the MicroScope platform has been developed. It is an integrated Web platform for management, annotation, comparative analysis, and visualization of microbial genomes ( https://mage.genoscope.cns.fr/microscope ). Launched in 2005, the platform has been under continuous development and provides analyzes for complete and ongoing genome projects together with metabolic network reconstruction and transcriptomic experiments allowing users to improve the understanding of gene functions. MicroScope platform is widely used by microbiologists from academia and industry all around the world for collaborative studies and expert annotation. It enables collaborative work in a rich comparative genomic context and improves community-based curation efforts. Here, we describe the protocol to follow for the integration and analysis of transcriptomics data in the Microscope platform. The chapter reviews each key step from the experimental design to the analysis and interpretation of the experiment data and results. The integration of transcriptomics data gives a dynamic view of the genome by allowing the users to improve the understanding of gene functions by interpreting them in the light of regulatory cell processes. Moreover, they can also contribute to the refinement of genome annotation through the discovery of new genes and help to fill metabolic gaps.
Collapse
|
6
|
Perchat N, Dubois C, Mor-Gautier R, Duquesne S, Lechaplais C, Roche D, Fouteau S, Darii E, Perret A. Characterization of a novel β-alanine biosynthetic pathway consisting of promiscuous metabolic enzymes. J Biol Chem 2022; 298:102067. [PMID: 35623386 PMCID: PMC9213253 DOI: 10.1016/j.jbc.2022.102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 10/28/2022] Open
Abstract
Bacteria adapt to utilize the nutrients available in their environment through a sophisticated metabolic system composed of highly specialized enzymes. Although these enzymes can metabolize molecules other than those for which they evolved, their efficiency toward promiscuous substrates is considered too low to be of physiological relevance. Herein, we investigated the possibility that these promiscuous enzymes are actually efficient enough at metabolizing secondary substrates to modify the phenotype of the cell. For example, in the bacterium Acinetobacter baylyi ADP1 (ADP1), panD (coding for l-aspartate decarboxylase) encodes the only protein known to catalyze the synthesis of β-alanine, an obligate intermediate in CoA synthesis. However, we show that the ADP1 ΔpanD mutant could also form this molecule through an unknown metabolic pathway arising from promiscuous enzymes and grow as efficiently as the wildtype strain. Using metabolomic analyses, we identified 1,3-diaminopropane and 3-aminopropanal as intermediates in this novel pathway. We also conducted activity screening and enzyme kinetics to elucidate candidate enzymes involved in this pathway, including 2,4-diaminobutyrate aminotransferase (Dat) and 2,4-diaminobutyrate decarboxylase (Ddc) and validated this pathway in vivo by analyzing the phenotype of mutant bacterial strains. Finally, we experimentally demonstrate that this novel metabolic route is not restricted to ADP1. We propose that the occurrence of conserved genes in hundreds of genomes across many phyla suggests that this previously undescribed pathway is widespread in prokaryotes.
Collapse
Affiliation(s)
- Nadia Perchat
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Christelle Dubois
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Rémi Mor-Gautier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Sophie Duquesne
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Christophe Lechaplais
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - David Roche
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Stéphanie Fouteau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Ekaterina Darii
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Alain Perret
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.
| |
Collapse
|
7
|
Horemans S, Pitoulias M, Holland A, Pateau E, Lechaplais C, Ekaterina D, Perret A, Soultanas P, Janniere L. Pyruvate kinase, a metabolic sensor powering glycolysis, drives the metabolic control of DNA replication. BMC Biol 2022; 20:87. [PMID: 35418203 PMCID: PMC9009071 DOI: 10.1186/s12915-022-01278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background In all living organisms, DNA replication is exquisitely regulated in a wide range of growth conditions to achieve timely and accurate genome duplication prior to cell division. Failures in this regulation cause DNA damage with potentially disastrous consequences for cell viability and human health, including cancer. To cope with these threats, cells tightly control replication initiation using well-known mechanisms. They also couple DNA synthesis to nutrient richness and growth rate through a poorly understood process thought to involve central carbon metabolism. One such process may involve the cross-species conserved pyruvate kinase (PykA) which catalyzes the last reaction of glycolysis. Here we have investigated the role of PykA in regulating DNA replication in the model system Bacillus subtilis. Results On analysing mutants of the catalytic (Cat) and C-terminal (PEPut) domains of B. subtilis PykA we found replication phenotypes in conditions where PykA is dispensable for growth. These phenotypes are independent from the effect of mutations on PykA catalytic activity and are not associated with significant changes in the metabolome. PEPut operates as a nutrient-dependent inhibitor of initiation while Cat acts as a stimulator of replication fork speed. Disruption of either PEPut or Cat replication function dramatically impacted the cell cycle and replication timing even in cells fully proficient in known replication control functions. In vitro, PykA modulates activities of enzymes essential for replication initiation and elongation via functional interactions. Additional experiments showed that PEPut regulates PykA activity and that Cat and PEPut determinants important for PykA catalytic activity regulation are also important for PykA-driven replication functions. Conclusions We infer from our findings that PykA typifies a new family of cross-species replication control regulators that drive the metabolic control of replication through a mechanism involving regulatory determinants of PykA catalytic activity. As disruption of PykA replication functions causes dramatic replication defects, we suggest that dysfunctions in this new family of universal replication regulators may pave the path to genetic instability and carcinogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01278-3.
Collapse
Affiliation(s)
- Steff Horemans
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Matthaios Pitoulias
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Alexandria Holland
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Emilie Pateau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Christophe Lechaplais
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Dariy Ekaterina
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Alain Perret
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France.
| |
Collapse
|
8
|
Acinetobacter baylyi ADP1-naturally competent for synthetic biology. Essays Biochem 2021; 65:309-318. [PMID: 33769448 DOI: 10.1042/ebc20200136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/02/2023]
Abstract
Acinetobacter baylyi ADP1 is a non-pathogenic soil bacterium known for its metabolic diversity and high natural transformation and recombination efficiency. For these features, A. baylyi ADP1 has been long exploited in studying bacterial genetics and metabolism. The large pool of information generated in the fundamental studies has facilitated the development of a broad range of sophisticated and robust tools for the genome and metabolic engineering of ADP1. This mini-review outlines and describes the recent advances in ADP1 engineering and tool development, exploited in, for example, pathway and enzyme evolution, genome reduction and stabilization, and for the production of native and non-native products in both pure and rationally designed multispecies cultures. The rapidly expanding toolbox together with the unique features of A. baylyi ADP1 provide a strong base for a microbial cell factory excelling in synthetic biology applications where evolution meets rational engineering.
Collapse
|
9
|
Biggs BW, Bedore SR, Arvay E, Huang S, Subramanian H, McIntyre EA, Duscent-Maitland CV, Neidle EL, Tyo KEJ. Development of a genetic toolset for the highly engineerable and metabolically versatile Acinetobacter baylyi ADP1. Nucleic Acids Res 2020; 48:5169-5182. [PMID: 32246719 PMCID: PMC7229861 DOI: 10.1093/nar/gkaa167] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 01/10/2023] Open
Abstract
One primary objective of synthetic biology is to improve the sustainability of chemical manufacturing. Naturally occurring biological systems can utilize a variety of carbon sources, including waste streams that pose challenges to traditional chemical processing, such as lignin biomass, providing opportunity for remediation and valorization of these materials. Success, however, depends on identifying micro-organisms that are both metabolically versatile and engineerable. Identifying organisms with this combination of traits has been a historic hindrance. Here, we leverage the facile genetics of the metabolically versatile bacterium Acinetobacter baylyi ADP1 to create easy and rapid molecular cloning workflows, including a Cas9-based single-step marker-less and scar-less genomic integration method. In addition, we create a promoter library, ribosomal binding site (RBS) variants and test an unprecedented number of rationally integrated bacterial chromosomal protein expression sites and variants. At last, we demonstrate the utility of these tools by examining ADP1’s catabolic repression regulation, creating a strain with improved potential for lignin bioprocessing. Taken together, this work highlights ADP1 as an ideal host for a variety of sustainability and synthetic biology applications.
Collapse
Affiliation(s)
- Bradley W Biggs
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.,Biotechnology Training Program, Northwestern University, Evanston, IL 60208, USA
| | - Stacy R Bedore
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Erika Arvay
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.,Biotechnology Training Program, Northwestern University, Evanston, IL 60208, USA
| | - Shu Huang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Harshith Subramanian
- Master of Science in Biotechnology Program, Northwestern University, Evanston, IL 60208, USA
| | - Emily A McIntyre
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | | | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
10
|
Suárez GA, Dugan KR, Renda BA, Leonard SP, Gangavarapu LS, Barrick JE. Rapid and assured genetic engineering methods applied to Acinetobacter baylyi ADP1 genome streamlining. Nucleic Acids Res 2020; 48:4585-4600. [PMID: 32232367 PMCID: PMC7192602 DOI: 10.1093/nar/gkaa204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 01/10/2023] Open
Abstract
One goal of synthetic biology is to improve the efficiency and predictability of living cells by removing extraneous genes from their genomes. We demonstrate improved methods for engineering the genome of the metabolically versatile and naturally transformable bacterium Acinetobacter baylyi ADP1 and apply them to a genome streamlining project. In Golden Transformation, linear DNA fragments constructed by Golden Gate Assembly are directly added to cells to create targeted deletions, edits, or additions to the chromosome. We tested the dispensability of 55 regions of the ADP1 chromosome using Golden Transformation. The 18 successful multiple-gene deletions ranged in size from 21 to 183 kb and collectively accounted for 23.4% of its genome. The success of each multiple-gene deletion attempt could only be partially predicted on the basis of an existing collection of viable ADP1 single-gene deletion strains and a new transposon insertion sequencing (Tn-Seq) dataset that we generated. We further show that ADP1’s native CRISPR/Cas locus is active and can be retargeted using Golden Transformation. We reprogrammed it to create a CRISPR-Lock, which validates that a gene has been successfully removed from the chromosome and prevents it from being reacquired. These methods can be used together to implement combinatorial routes to further genome streamlining and for more rapid and assured metabolic engineering of this versatile chassis organism.
Collapse
Affiliation(s)
- Gabriel A Suárez
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kyle R Dugan
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Brian A Renda
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sean P Leonard
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lakshmi Suryateja Gangavarapu
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
11
|
Thomas M, Stuani L, Darii E, Lechaplais C, Pateau E, Tabet JC, Salanoubat M, Saaidi PL, Perret A. De novo structure determination of 3-((3-aminopropyl)amino)-4-hydroxybenzoic acid, a novel and abundant metabolite in Acinetobacter baylyi ADP1. Metabolomics 2019; 15:45. [PMID: 30874951 DOI: 10.1007/s11306-019-1508-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Metabolite identification remains a major bottleneck in the understanding of metabolism. Many metabolomics studies end up with unknown compounds, leaving a landscape of metabolites and metabolic pathways to be unraveled. Therefore, identifying novel compounds within a metabolome is an entry point into the 'dark side' of metabolism. OBJECTIVES This work aimed at elucidating the structure of a novel metabolite that was first detected in the soil bacterium Acinetobacter baylyi ADP1 (ADP1). METHODS We used high resolution multi-stage tandem mass spectrometry for characterizing the metabolite within the metabolome. We purified the molecule for 1D- and 2D-NMR (1H, 13C, 1H-1H-COSY, 1H-13C-HSQC, 1H-13C-HMBC and 1H-15N-HMBC) analyses. Synthetic standards were chemically prepared from MS and NMR data interpretation. RESULTS We determined the de novo structure of a previously unreported metabolite: 3-((3-aminopropyl)amino)-4-hydroxybenzoic acid. The proposed structure was validated by comparison to a synthetic standard. With a concentration in the millimolar range, this compound appears as a major metabolite in ADP1, which we anticipate to participate to an unsuspected metabolic pathway. This novel metabolite was also detected in another γ-proteobacterium. CONCLUSION Structure elucidation of this abundant and novel metabolite in ADP1 urges to decipher its biosynthetic pathway and cellular function.
Collapse
Affiliation(s)
- Marion Thomas
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Lucille Stuani
- INSERM, Institut National de la Santé et de la Recherche Médicale - CNRS - UPS - Centre de Recherche en Cancérologie de Toulouse (CRCT), Toulouse, France
| | - Ekaterina Darii
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Christophe Lechaplais
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Emilie Pateau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Jean-Claude Tabet
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, Paris, France
- CEA, iBiTec-S, SPI, LEMM, Gif-sur-Yvette, France
| | - Marcel Salanoubat
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France
| | - Pierre-Loïc Saaidi
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France.
| | - Alain Perret
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057, Evry, France.
| |
Collapse
|
12
|
Characterization of l-Carnitine Metabolism in Sinorhizobium meliloti. J Bacteriol 2019; 201:JB.00772-18. [PMID: 30670548 DOI: 10.1128/jb.00772-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/15/2019] [Indexed: 11/20/2022] Open
Abstract
l-Carnitine is a trimethylammonium compound mostly known for its contribution to fatty acid transport into mitochondria. In bacteria, it is synthesized from γ-butyrobetaine (GBB) and can be used as a carbon source. l-Carnitine can be formed directly by GBB hydroxylation or synthesized via a biosynthetic route analogous to fatty acid degradation. However, this multistep pathway has not been experimentally characterized. In this work, we identified by gene context analysis a cluster of l-carnitine anabolic genes next to those involved in its catabolism and proceeded to the complete in vitro characterization of l-carnitine biosynthesis and degradation in Sinorhizobium meliloti The five enzymes catalyzing the seven steps that convert GBB to glycine betaine are described. Metabolomic analysis confirmed the multistage synthesis of l-carnitine in GBB-grown cells but also revealed that GBB is synthesized by S. meliloti To our knowledge, this is the first report of aerobic GBB synthesis in bacteria. The conservation of l-carnitine metabolism genes in different bacterial taxonomic classes underscores the role of l-carnitine as a ubiquitous nutrient.IMPORTANCE The experimental characterization of novel metabolic pathways is essential for realizing the value of genome sequences and improving our knowledge of the enzymatic capabilities of the bacterial world. However, 30% to 40% of genes of a typical genome remain unannotated or associated with a putative function. We used enzyme kinetics, liquid chromatography-mass spectroscopy (LC-MS)-based metabolomics, and mutant phenotyping for the characterization of the metabolism of l-carnitine in Sinorhizobium meliloti to provide an accurate annotation of the corresponding genes. The occurrence of conserved gene clusters for carnitine metabolism in soil, plant-associated, and marine bacteria underlines the environmental abundance of carnitine and suggests this molecule might make a significant contribution to ecosystem nitrogen and carbon cycling.
Collapse
|
13
|
Metabolomic Investigation of Staphylococcus aureus Antibiotic Susceptibility by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Methods Mol Biol 2019; 1871:279-293. [PMID: 30276746 DOI: 10.1007/978-1-4939-8814-3_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a major human pathogen that can readily acquire antibiotic resistance. For instance, methicillin-resistant S. aureus represents a major cause of hospital- and community-acquired bacterial infections. In this chapter, we first provide a detailed protocol for obtaining unbiased and reproducible S. aureus metabolic profiles. The resulting intracellular metabolome is then analyzed in an untargeted manner by using both hydrophilic interaction liquid chromatography and pentafluorophenyl-propyl columns coupled to high-resolution mass spectrometry. Such analyses are done in conjunction with our in-house spectral database to identify with high confidence as many meaningful S. aureus metabolites as possible. Under these conditions, we can routinely monitor more than 200 annotated S. aureus metabolites. We also indicate how this protocol can be used to investigate the metabolic differences between methicillin-resistant and susceptible strains.
Collapse
|
14
|
Herrou J, Czyż DM, Fiebig A, Willett JW, Kim Y, Wu R, Babnigg G, Crosson S. Molecular control of gene expression by Brucella BaaR, an IclR-type transcriptional repressor. J Biol Chem 2018; 293:7437-7456. [PMID: 29567835 PMCID: PMC5949995 DOI: 10.1074/jbc.ra118.002045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/19/2018] [Indexed: 01/06/2023] Open
Abstract
The general stress response sigma factor σE1 directly and indirectly regulates the transcription of dozens of genes that influence stress survival and host infection in the zoonotic pathogen Brucella abortus Characterizing the functions of σE1-regulated genes therefore would contribute to our understanding of B. abortus physiology and infection biology. σE1 indirectly activates transcription of the IclR family regulator Bab2_0215, but the function of this regulator remains undefined. Here, we present a structural and functional characterization of Bab2_0215, which we have named B rucella adipic acid-activated regulator (BaaR). We found that BaaR adopts a classic IclR-family fold and directly represses the transcription of two operons with predicted roles in carboxylic acid oxidation. BaaR binds two sites on chromosome II between baaR and a divergently transcribed hydratase/dehydrogenase (acaD2), and it represses transcription of both genes. We identified three carboxylic acids (adipic acid, tetradecanedioic acid, and ϵ-aminocaproic acid) and a lactone (ϵ-caprolactone) that enhance transcription from the baaR and acaD2 promoters. However, neither the activating acids nor caprolactone enhanced transcription by binding directly to BaaR. Induction of baaR transcription by adipic acid required the gene bab2_0213, which encodes a major facilitator superfamily transporter, suggesting that Bab2_0213 transports adipic acid across the inner membrane. We conclude that a suite of structurally related organic molecules activate transcription of genes repressed by BaaR. Our study provides molecular-level understanding of a gene expression program in B. abortus that is downstream of σE1.
Collapse
Affiliation(s)
- Julien Herrou
- Departments of Biochemistry and Molecular Biology, Chicago, Illinois 60637; Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, Illinois 60439
| | - Daniel M Czyż
- Departments of Biochemistry and Molecular Biology, Chicago, Illinois 60637; Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, Illinois 60439
| | - Aretha Fiebig
- Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, Illinois 60439
| | - Jonathan W Willett
- Departments of Biochemistry and Molecular Biology, Chicago, Illinois 60637; Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, Illinois 60439
| | | | - Ruiying Wu
- Argonne National Laboratory, Argonne, Illinois 60439
| | | | - Sean Crosson
- Departments of Biochemistry and Molecular Biology, Chicago, Illinois 60637; Howard Taylor Ricketts Laboratory, University of Chicago, Argonne, Illinois 60439; Microbiology, University of Chicago, Chicago, Illinois 60637.
| |
Collapse
|
15
|
Mol M, Kabra R, Singh S. Genome modularity and synthetic biology: Engineering systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 132:43-51. [PMID: 28801037 DOI: 10.1016/j.pbiomolbio.2017.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/05/2017] [Indexed: 12/15/2022]
Abstract
Whole genome sequencing projects running in various laboratories around the world has generated immense data. A systematic phylogenetic analysis of this data shows that genome complexity goes on decreasing as it evolves, due to its modular nature. This modularity can be harnessed to minimize the genome further to reduce it with the bare minimum essential genes. A reduced modular genome, can fuel progress in the area of synthetic biology by providing a ready to use plug and play chassis. Advances in gene editing technology such as the use of tailor made synthetic transcription factors will further enhance the availability of synthetic devices to be applied in the fields of environment, agriculture and health.
Collapse
Affiliation(s)
- Milsee Mol
- National Centre for Cell Science, NCCS Complex, SP Pune University Campus, Pune 411007, India
| | - Ritika Kabra
- National Centre for Cell Science, NCCS Complex, SP Pune University Campus, Pune 411007, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, SP Pune University Campus, Pune 411007, India.
| |
Collapse
|
16
|
Bastard K, Perret A, Mariage A, Bessonnet T, Pinet-Turpault A, Petit JL, Darii E, Bazire P, Vergne-Vaxelaire C, Brewee C, Debard A, Pellouin V, Besnard-Gonnet M, Artiguenave F, Médigue C, Vallenet D, Danchin A, Zaparucha A, Weissenbach J, Salanoubat M, de Berardinis V. Parallel evolution of non-homologous isofunctional enzymes in methionine biosynthesis. Nat Chem Biol 2017; 13:858-866. [PMID: 28581482 DOI: 10.1038/nchembio.2397] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 03/22/2017] [Indexed: 12/30/2022]
Abstract
Experimental validation of enzyme function is crucial for genome interpretation, but it remains challenging because it cannot be scaled up to accommodate the constant accumulation of genome sequences. We tackled this issue for the MetA and MetX enzyme families, phylogenetically unrelated families of acyl-L-homoserine transferases involved in L-methionine biosynthesis. Members of these families are prone to incorrect annotation because MetX and MetA enzymes are assumed to always use acetyl-CoA and succinyl-CoA, respectively. We determined the enzymatic activities of 100 enzymes from diverse species, and interpreted the results by structural classification of active sites based on protein structure modeling. We predict that >60% of the 10,000 sequences from these families currently present in databases are incorrectly annotated, and suggest that acetyl-CoA was originally the sole substrate of these isofunctional enzymes, which evolved to use exclusively succinyl-CoA in the most recent bacteria. We also uncovered a divergent subgroup of MetX enzymes in fungi that participate only in L-cysteine biosynthesis as O-succinyl-L-serine transferases.
Collapse
Affiliation(s)
- Karine Bastard
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Alain Perret
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Aline Mariage
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Thomas Bessonnet
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Agnès Pinet-Turpault
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Jean-Louis Petit
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Ekaterina Darii
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Pascal Bazire
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Carine Vergne-Vaxelaire
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Clémence Brewee
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Adrien Debard
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Virginie Pellouin
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Marielle Besnard-Gonnet
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | | | - Claudine Médigue
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - David Vallenet
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Antoine Danchin
- Institute of Cardiometabolism and Nutrition (ICAN), Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Anne Zaparucha
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Jean Weissenbach
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Marcel Salanoubat
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| | - Véronique de Berardinis
- CEA, DRF, Genoscope, Evry, France.,CNRS, UMR8030 Génomique Métabolique, Evry, France.,Université d'Evry Val d'Essonne, Evry, France.,Université Paris-Saclay, Evry, France
| |
Collapse
|
17
|
Vallenet D, Calteau A, Cruveiller S, Gachet M, Lajus A, Josso A, Mercier J, Renaux A, Rollin J, Rouy Z, Roche D, Scarpelli C, Médigue C. MicroScope in 2017: an expanding and evolving integrated resource for community expertise of microbial genomes. Nucleic Acids Res 2016; 45:D517-D528. [PMID: 27899624 PMCID: PMC5210572 DOI: 10.1093/nar/gkw1101] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
The annotation of genomes from NGS platforms needs to be automated and fully integrated. However, maintaining consistency and accuracy in genome annotation is a challenging problem because millions of protein database entries are not assigned reliable functions. This shortcoming limits the knowledge that can be extracted from genomes and metabolic models. Launched in 2005, the MicroScope platform (http://www.genoscope.cns.fr/agc/microscope) is an integrative resource that supports systematic and efficient revision of microbial genome annotation, data management and comparative analysis. Effective comparative analysis requires a consistent and complete view of biological data, and therefore, support for reviewing the quality of functional annotation is critical. MicroScope allows users to analyze microbial (meta)genomes together with post-genomic experiment results if any (i.e. transcriptomics, re-sequencing of evolved strains, mutant collections, phenotype data). It combines tools and graphical interfaces to analyze genomes and to perform the expert curation of gene functions in a comparative context. Starting with a short overview of the MicroScope system, this paper focuses on some major improvements of the Web interface, mainly for the submission of genomic data and on original tools and pipelines that have been developed and integrated in the platform: computation of pan-genomes and prediction of biosynthetic gene clusters. Today the resource contains data for more than 6000 microbial genomes, and among the 2700 personal accounts (65% of which are now from foreign countries), 14% of the users are performing expert annotations, on at least a weekly basis, contributing to improve the quality of microbial genome annotations.
Collapse
Affiliation(s)
- David Vallenet
- UMR 8030, CNRS, Université Évry-Val-d'Essonne, CEA, Institut de Génomique - Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, F-91000 Évry, France
| | - Alexandra Calteau
- UMR 8030, CNRS, Université Évry-Val-d'Essonne, CEA, Institut de Génomique - Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, F-91000 Évry, France
| | - Stéphane Cruveiller
- UMR 8030, CNRS, Université Évry-Val-d'Essonne, CEA, Institut de Génomique - Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, F-91000 Évry, France
| | - Mathieu Gachet
- UMR 8030, CNRS, Université Évry-Val-d'Essonne, CEA, Institut de Génomique - Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, F-91000 Évry, France
| | - Aurélie Lajus
- UMR 8030, CNRS, Université Évry-Val-d'Essonne, CEA, Institut de Génomique - Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, F-91000 Évry, France
| | - Adrien Josso
- UMR 8030, CNRS, Université Évry-Val-d'Essonne, CEA, Institut de Génomique - Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, F-91000 Évry, France
| | - Jonathan Mercier
- UMR 8030, CNRS, Université Évry-Val-d'Essonne, CEA, Institut de Génomique - Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, F-91000 Évry, France
| | - Alexandre Renaux
- UMR 8030, CNRS, Université Évry-Val-d'Essonne, CEA, Institut de Génomique - Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, F-91000 Évry, France
| | - Johan Rollin
- UMR 8030, CNRS, Université Évry-Val-d'Essonne, CEA, Institut de Génomique - Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, F-91000 Évry, France
| | - Zoe Rouy
- UMR 8030, CNRS, Université Évry-Val-d'Essonne, CEA, Institut de Génomique - Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, F-91000 Évry, France
| | - David Roche
- UMR 8030, CNRS, Université Évry-Val-d'Essonne, CEA, Institut de Génomique - Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, F-91000 Évry, France
| | - Claude Scarpelli
- CEA, Institut de Génomique - Genoscope, Laboratoire d'Informatique Scientifique, F-91000 Évry, France
| | - Claudine Médigue
- UMR 8030, CNRS, Université Évry-Val-d'Essonne, CEA, Institut de Génomique - Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, F-91000 Évry, France
| |
Collapse
|
18
|
Madji Hounoum B, Blasco H, Emond P, Mavel S. Liquid chromatography–high-resolution mass spectrometry-based cell metabolomics: Experimental design, recommendations, and applications. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.08.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Aros-Calt S, Muller BH, Boudah S, Ducruix C, Gervasi G, Junot C, Fenaille F. Annotation of the Staphylococcus aureus Metabolome Using Liquid Chromatography Coupled to High-Resolution Mass Spectrometry and Application to the Study of Methicillin Resistance. J Proteome Res 2015; 14:4863-75. [PMID: 26502275 DOI: 10.1021/acs.jproteome.5b00697] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Staphylococcus aureus can cause a variety of severe disease patterns and can readily acquire antibiotic resistance; however, the mechanisms by which this commensal becomes a pathogen or develops antibiotic resistance are still poorly understood. Here we asked whether metabolomics can be used to distinguish bacterial strains with different antibiotic susceptibilities. Thus, an efficient and robust method was first thoroughly implemented to measure the intracellular metabolites of S. aureus in an unbiased and reproducible manner. We also placed special emphasis on metabolome coverage and annotation and used both hydrophilic interaction liquid chromatography and pentafluorophenyl-propyl columns coupled to high-resolution mass spectrometry in conjunction with our spectral database developed in-house to identify with high confidence as many meaningful S. aureus metabolites as possible. Overall, we were able to characterize up to 210 metabolites in S. aureus, which represents a substantial ∼50% improvement over previously published data. We then preliminarily compared the metabolic profiles of 10 clinically relevant methicillin-resistant and susceptible strains harvested at different time points during the exponential growth phase (without any antibiotic exposure). Interestingly, the resulting data revealed a distinct behavior of "slow-growing" resistant strains, which show modified levels of several precursors of peptidoglycan and capsular polysaccharide biosynthesis.
Collapse
Affiliation(s)
- Sandrine Aros-Calt
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, CEA Saclay, Building 136, 91191 Gif-sur-Yvette cedex, France.,bioMérieux S.A., Innovation Unit, 376 Chemin de l'Orme, 69280 Marcy l'Etoile, France
| | - Bruno H Muller
- bioMérieux S.A., Innovation Unit, 376 Chemin de l'Orme, 69280 Marcy l'Etoile, France
| | - Samia Boudah
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, CEA Saclay, Building 136, 91191 Gif-sur-Yvette cedex, France.,GlaxoSmithKline - Centre de recherche F.Hyafil, 25 Avenue du Québec, 91140 Villebon-sur-Yvette, France
| | - Céline Ducruix
- bioMérieux S.A., Innovation Unit, 376 Chemin de l'Orme, 69280 Marcy l'Etoile, France
| | - Gaspard Gervasi
- bioMérieux S.A., Innovation Unit, 376 Chemin de l'Orme, 69280 Marcy l'Etoile, France
| | - Christophe Junot
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, CEA Saclay, Building 136, 91191 Gif-sur-Yvette cedex, France
| | - François Fenaille
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, MetaboHUB-Paris, CEA Saclay, Building 136, 91191 Gif-sur-Yvette cedex, France
| |
Collapse
|